Week 1-2 - Functions: 2003 Prentice Hall, Inc. All Rights Reserved

  • Uploaded by: api-3737023
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Week 1-2 - Functions: 2003 Prentice Hall, Inc. All Rights Reserved as PDF for free.

More details

  • Words: 5,415
  • Pages: 53
1

Week 1-2 - Functions Outline • Introduction • Program Components in C++ • Functions • Function Definitions • Function Prototypes • Math Library Functions • Storage Classes • Scope Rules • Recursion • Example Using Recursion: The Factorial Number • Functions with Empty Parameter Lists • References and Reference Parameters • Call by value • Call by reference • Default Arguments • Function Overloading

 2003 Prentice Hall, Inc. All rights reserved.

2

Introduction • Reason of using functions – Divide and conquer • Construct a program from smaller pieces or components • Each piece more manageable than the original program

 2003 Prentice Hall, Inc. All rights reserved.

3

Program Components in C++ • Modules: functions and classes • Programs use new and “prepackaged” modules – New: programmer-defined functions, classes (user-defined functions) – Prepackaged: from the standard library (Reserved functions)

• Functions invoked by function call – Function name and information (arguments) it needs

• Function definitions – Only written once – Hidden from other functions

• Boss to worker correspondence – A boss (the calling function or caller) asks a worker (the called function) to perform a task and return (i.e., report back) the results when the task is done.  2003 Prentice Hall, Inc. All rights reserved.

4

Functions • Functions – Modularize a program – Software reusability • Call function multiple times

• Local variables – Known only in the function in which they are defined – All variables declared in function definitions are local variables

• Parameters – Local variables passed to function when called – Provide outside information

 2003 Prentice Hall, Inc. All rights reserved.

5

Function Definitions • Function prototype – Tells compiler argument type and return type of function – int square( int ); • Function takes an int and returns an int

– Explained in more detail later

• Calling/invoking a function – square(x); – Parentheses an operator used to call function • Pass argument x • Function gets its own copy of arguments

– After finished, passes back result

 2003 Prentice Hall, Inc. All rights reserved.

6

Function Definitions • Format for function definition return-value-type function-name( parameter-list ) { declarations and statements } – Parameter list • Comma separated list of arguments – Data type needed for each argument • If no arguments, use void or leave blank

– Return-value-type • Data type of result returned (use void if nothing returned)

 2003 Prentice Hall, Inc. All rights reserved.

7

Function Definitions • Example function int square( int y ) { return y * y; }

• return keyword – Returns data, and control goes to function’s caller • If no data to return, use return;

– Function ends when reaches right brace • Control goes to caller

• Functions cannot be defined inside other functions • Next: program examples  2003 Prentice Hall, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

// Fig. 3.3: fig03_03.cpp // Creating and using a programmer-defined function. #include using std::cout; using std::endl; int square( int );

//

Function prototype: specifies data types of arguments and return values. square expects and int, and returns function prototype an int.

Outline fig03_03.cpp (1 of 2)

int main() { Parentheses () cause function // loop 10 times and calculate and output to be called. When done, it // square of x each time returns the result. for ( int x = 1; x <= 10; x++ ) cout << square( x ) << " "; // function call cout << endl; return 0;

// indicates successful termination

} // end main

 2003 Prentice Hall, Inc. All rights reserved.

8

23 24 25 26 27 28

1

// square function definition returns square of an integer int square( int y ) // y is a copy of argument to function { return y * y; // returns square of y as an int } // end function square

4

9

16

25

36

49

64

81

100

Definition of square. y is a copy of the argument passed. Returns y * y, or y squared.

Outline fig03_03.cpp (2 of 2) fig03_03.cpp output (1 of 1)

 2003 Prentice Hall, Inc. All rights reserved.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

// Fig. 3.4: fig03_04.cpp // Finding the maximum of three floating-point numbers. #include

Outline fig03_04.cpp (1 of 2)

using std::cout; using std::cin; using std::endl; double maximum( double, double, double ); // function prototype int main() { double number1; double number2; double number3;

Function maximum takes 3 arguments (all double) and returns a double.

cout << "Enter three floating-point numbers: "; cin >> number1 >> number2 >> number3; // number1, number2 and number3 are arguments to // the maximum function call cout << "Maximum is: " << maximum( number1, number2, number3 ) << endl; return 0;

// indicates successful termination

 2003 Prentice Hall, Inc. All rights reserved.

10

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Outline

} // end main

Comma separated list for multiple parameters.

// function maximum definition; // x, y and z are parameters double maximum( double x, double y, double z ) { double max = x; // assume x is largest if ( y > max ) max = y;

// if y is larger, // assign y to max

if ( z > max ) max = z;

// if z is larger, // assign z to max

return max;

// max is largest value

fig03_04.cpp (2 of 2) fig03_04.cpp output (1 of 1)

} // end function maximum

Enter three floating-point numbers: 99.32 37.3 27.1928 Maximum is: 99.32 Enter three floating-point numbers: 1.1 3.333 2.22 Maximum is: 3.333 Enter three floating-point numbers: 27.9 14.31 88.99 Maximum is: 88.99

 2003 Prentice Hall, Inc. All rights reserved.

11

12

Function Prototypes • Function prototype contains – Function name – Parameters (number and data type) – Return type (void if returns nothing)

• Prototype must match function definition – Function prototype double maximum( double, double, double );

– Function definition double maximum( double x, double y, double z ) { … }

• Function signature – Part of prototype with name and parameters • double maximum( double, double, double );  2003 Prentice Hall, Inc. All rights reserved.

Function signature

13

Function Prototypes Data types

Size in bytes

long double                                           2 bytes  double                                         8 bytes float                                           4 bytes  unsigned long int 4 bytes long int 4 bytes long double 10 bytes unsigned int 2 bytes int 2 bytes unsigned short int 2 bytes short int 2 bytes unsigned char 1 byte char 1 byte bool 1 byte Fig. 3.5 Promotion hierarchy for built-in data types.

 2003 Prentice Hall, Inc. All rights reserved.

14

Math Library Functions • Perform common mathematical calculations – Include the header file

• Functions called by writing – functionName (argument); or – functionName(argument1, argument2, …);

• Example cout << sqrt( 900.0 ); – sqrt (square root) function The preceding statement would print 30

 2003 Prentice Hall, Inc. All rights reserved.

15

Math Library Functions • Function arguments can be – Constants • sqrt( 4 );

– Variables • sqrt( x );

– Expressions • sqrt( sqrt( x ) ) ; • sqrt( 3 - 6x );

 2003 Prentice Hall, Inc. All rights reserved.

16

Method ceil( x )

Desc ription Example rounds x to the smallest integer ceil( 9.2 ) is 10.0 not less than x ceil( -9.8 ) is -9.0 cos( x ) trigonometric cosine of x cos( 0.0 ) is 1.0 (x in radians) exp( x ) exponential function ex exp( 1.0 ) is 2.71828 exp( 2.0 ) is 7.38906 fabs( x ) absolute value of x fabs( 5.1 ) is 5.1 fabs( 0.0 ) is 0.0 fabs( -8.76 ) is 8.76 floor( x ) rounds x to the largest integer floor( 9.2 ) is 9.0 not greater than x floor( -9.8 ) is -10.0 fmod( x, y ) remainder of x/y as a floating- fmod( 13.657, 2.333 ) is 1.992 point number log( x ) natural logarithm of x (base e) log( 2.718282 ) is 1.0 log( 7.389056 ) is 2.0 log10( x ) logarithm of x (base 10) log10( 10.0 ) is 1.0 log10( 100.0 ) is 2.0 pow( x, y ) x raised to power y (xy) pow( 2, 7 ) is 128 pow( 9, .5 ) is 3 sin( x ) trigonometric sine of x sin( 0.0 ) is 0 (x in radians) sqrt( x ) square root of x sqrt( 900.0 ) is 30.0 sqrt( 9.0 ) is 3.0 tan( x ) trigonometric tangent of x tan( 0.0 ) is 0 (x in radians) Fig. 3.2 Math library func tions.  2003 Prentice Hall, Inc. All rights reserved.

17

Storage Classes • Variables have attributes – name, type, size, value – Storage class • How long variable exists in memory

– Scope • Where variable is visible in program

– Lifetime • The existence of variable for entire program or during call to the function or execution of block

 2003 Prentice Hall, Inc. All rights reserved.

Storage Classes • Automatic storage class – Variable created when program enters its block – Variable destroyed when program leaves block – The complier starts off with an arbitrary value, (i.e. 0 or something else), or you can initialize explicitly – Lifetime of automatic variables is up to the time when function in which it is defined is executing – The scope is used to describe the visibility of a variable, meaning they can only accessed within that part of the program (function) in which it is defined – Only local variables of functions can be automatic • Automatic by default • keyword auto explicitly declares automatic – Not initialized

• Register storage class – register keyword • Hint: To place variable in high-speed register • Good for often-used items (loop counters) – Specify either register or auto, not both • register int counter = 1;  2003 Prentice Hall, Inc. All rights reserved.

18

19

Automatic variables • •

Using auto keyword is same as not using that keyword For example:

void somefunc( ) { int somevar; // variables defined within float othervar; // the function body // other statements } void somefunc( ) { auto int somevar; //same as int somevar auto float othervar; //same as float othervar // other statements }

 2003 Prentice Hall, Inc. All rights reserved.

20

Auto variables: visibility •

Automatic variables are visible or accessed only within the function in which they are defined



For example: void somefunc ( ) { int somevar; float othervar; somevar = 10; othervar = 11; nextvar = 12; } void otherfunc ( ) { int nextvar; somevar = 20; othervar = 21; nextvar = 22; }

 2003 Prentice Hall, Inc. All rights reserved.

// automatic variable

// ok // ok // illegal: not visible in somefunc()

// automatic variable // illegal: not visible in otherfunc() // illegal: not visible in otherfunc() // ok

21

Storage Classes (con’t) •

Static storage class – Variables exist for entire program – Static variables remember or preserve the value between function calls – Once initialized for the entire program – Visibility , inside the function in which it is defined, but it remains in existence for the life of the program – Lifetime of static variables is up to the existence for life of the program – Initialized automatically with 0 • static keyword – Local variables in function – Keeps value between function calls – Only known in own function  2003 Prentice Hall, Inc. All rights reserved.

22

Storage Classes (con’t) •

External storage class – Declared outside to any function – Visible to all the functions – Lifetime of extern variables is up to the existence for life of the program – Initialized automatically with 0 • extern keyword – Default for global variables/functions • Defined outside of a function block – Also called global variables – Known in any function that comes after it

 2003 Prentice Hall, Inc. All rights reserved.

23

Scope Rules • Scope – Portion of program where identifier can be used

• File scope (extern variables) – Defined outside a function, known in all functions – E.g. Global variables, function definitions and prototypes

• Function scope – Can only be referenced (visible) inside defining function

• Block scope (static variables) – Begins at declaration, ends at right brace } – Local variables, function parameters – static variables still have block scope • Storage class separate from scope

 2003 Prentice Hall, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

// Fig. 3.12: fig03_12.cpp // A scoping example. #include

Outline fig03_12.cpp (1 of 5)

using std::cout; using std::endl; void useLocal( void ); // function prototype Declared outside of function; void useStaticLocal( void ); // function prototype global variable with file void useGlobal( void ); // function prototype

scope.

int x = 1;

// global variable

int main() { int x = 5;

// local variable to main

Local variable with function scope.

cout << "local x in main's outer scope is block, " << xgiving << endl; Create a new x { // start new scope

block scope. When the block ends, this x is destroyed.

int x = 7; cout << "local x in main's inner scope is " << x << endl; } // end new scope

 2003 Prentice Hall, Inc. All rights reserved.

24

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

cout << "local x in main's outer scope is " << x << endl; useLocal(); useStaticLocal(); useGlobal(); useLocal(); useStaticLocal(); useGlobal();

// // // // // //

useLocal has local x useStaticLocal has static local x useGlobal uses global x useLocal reinitializes its local x static local x retains its prior value global x also retains its value

Outline fig03_12.cpp (2 of 5)

cout << "\nlocal x in main is " << x << endl; return 0;

// indicates successful termination

} // end main

 2003 Prentice Hall, Inc. All rights reserved.

25

43 44 45 46 47 48 49 50 51 52 53 54 55

// useLocal reinitializes local variable x during each call void useLocal( void ) { auto int x = 25; // initialized each time useLocal is called cout << << ++x; cout << <<

endl << "local x isAutomatic " << x variable (local variable function). This " on entering useLocal" << of endl;

Outline fig03_12.cpp (3 of 5)

is destroyed when the function "local x is " << x exits, and reinitialized when " on exiting useLocal" << endl; the function begins.

} // end function useLocal

 2003 Prentice Hall, Inc. All rights reserved.

26

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

// useStaticLocal initializes static local variable x only the // first time the function is called; value of x is saved // between calls to this function void useStaticLocal( void ) { // initialized only first time useStaticLocal is called static int x = 50; cout << << ++x; cout << <<

Outline fig03_12.cpp (4 of 5)

endl << "local static x is " << x " on entering useStaticLocal" << endl;

local variable of "local static x is " << Static x function; it is initialized " on exiting useStaticLocal" << endl;

} // end function useStaticLocal

only once, and retains its value between function calls.

 2003 Prentice Hall, Inc. All rights reserved.

27

72 73 74 75 76 77 78 79 80 81

// useGlobal modifies global variable x during each call void useGlobal( void ) { cout << endl << "global x is " << x This function does not declarefig03_12.cpp << " on entering useGlobal" << endl; any variables. It uses the (5 of 5) x *= 10; global x declared in the cout << "global x is " << x beginning of the program. fig03_12.cpp << " on exiting useGlobal" << endl;

Outline

output (1 of 2)

} // end function useGlobal

local x in main's outer scope is 5 local x in main's inner scope is 7 local x in main's outer scope is 5 local x is 25 on entering useLocal local x is 26 on exiting useLocal local static x is 50 on entering useStaticLocal local static x is 51 on exiting useStaticLocal global x is 1 on entering useGlobal global x is 10 on exiting useGlobal local x is 25 on entering useLocal local x is 26 on exiting useLocal local static x is 51 on entering useStaticLocal local static x is 52 on exiting useStaticLocal global x is 10 on entering useGlobal global x is 100 on exiting useGlobal local x in main is 5

 2003 Prentice Hall, Inc. All rights reserved.

28

Storage types automatic

static

external

Visibility

function

function

file

Lifetime

function

program

program

Initialized  value

Not initialized

0

0

Storage

Stack segment

Data segment

Data segment

Purpose

Variable used by a  single function

Same as auto, but  Variables used  must retain value  by several  when function  functions terminates

30

Recursion • Recursive functions – Functions that call themselves – Can only solve a base case

• If not base case – Break problem into smaller problem(s) – Perform recursive call/recursive step • Slowly converges towards base case • Function makes call to itself inside the return statement

– Eventually base case gets solved • Solves entire problem

 2003 Prentice Hall, Inc. All rights reserved.

31

Recursion • Example: factorial n! = n * ( n – 1 ) * ( n – 2 ) * … * 1 – Recursive relationship ( n! = n * ( n – 1 )! )

5! = 5 * 4! 4! = 4 * 3!… – Base case (1! = 0! = 1)

 2003 Prentice Hall, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

// Fig. 3.14: fig03_14.cpp // Recursive factorial function. #include

Outline fig03_14.cpp (1 of 2)

using std::cout; using std::endl; #include using std::setw;

// header fileunsigned for “setw” Data type

long can hold an integer from 0 to 4 billion.

unsigned long factorial( unsigned long ); // function prototype int main() { Set width // Loop 10 times. During each iteration, calculate Set the field width to allow // factorial( i ) and display result. insertion for ( int i = 0; i <= 10; i++ next ) cout << setw( 2 ) << i << "! = " << factorial( i ) << endl; return 0;

// indicates successful termination

} // end main

 2003 Prentice Hall, Inc. All rights reserved.

32

25 26 27 28 29 30 31 32 33 34 35 36 37 0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

// recursive definition of function factorial base) case occurs when unsigned long factorial( unsigned long The number have 0! or 1!. All other { cases must be split up // base case if ( number <= 1 ) (recursive step). return 1; // recursive step else return number * factorial( number - 1 );

Outline we fig03_14.cpp (2 of 2) fig03_14.cpp output (1 of 1)

} // end function factorial = = = = = = = = = = =

1 1 2 6 24 120 720 5040 40320 362880 3628800

 2003 Prentice Hall, Inc. All rights reserved.

33

Functions with Empty Parameter Lists • Empty parameter lists – void or leave parameter list empty – Indicates function takes no arguments – Function print takes no arguments and returns no value • void print(); • void print( void );

 2003 Prentice Hall, Inc. All rights reserved.

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

// Fig. 3.18: fig03_18.cpp // Functions that take no arguments. #include

Outline fig03_18.cpp (1 of 2)

using std::cout; using std::endl; void function1(); void function2( void );

// function prototype // function prototype

int main() { function1(); function2();

// call function1 with no arguments // call function2 with no arguments

return 0;

// indicates successful termination

} // end main

 2003 Prentice Hall, Inc. All rights reserved.

35

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

// function1 uses an empty parameter list to specify that // the function receives no arguments void function1() { cout << "function1 takes no arguments" << endl; } // end function1 // function2 uses a void parameter list to specify that // the function receives no arguments void function2( void ) { cout << "function2 also takes no arguments" << endl;

Outline fig03_18.cpp (2 of 2) fig03_18.cpp output (1 of 1)

} // end function2

function1 takes no arguments function2 also takes no arguments

 2003 Prentice Hall, Inc. All rights reserved.

36

References and Reference Parameters • Call by value – Copy of data passed to function – Changes to copy do not change original – Prevent unwanted side effects

• Call by reference – – – –

Function can directly access data No new copy of data passed to function Only address of the variable is passed to function Original variable is accessed in a function with reference to its second name or alias – Both variables use the same memory location – Changes affect original  2003 Prentice Hall, Inc. All rights reserved.

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

// Fig. 5.6: fig05_06.cpp // Cube a variable using pass-by-value. #include

Outline fig05_06.cpp (1 of 2)

using std::cout; using std::endl; int cubeByValue( int );

// prototype

int main() { int number = 5;

number cout << "The original value of number is " Pass << number; // pass number by value to cubeByValue number = cubeByValue( number );

by value; result returned by cubeByValue

cout << "\nThe new value of number is " << number << endl; return 0;

// indicates successful termination

} // end main

 2003 Prentice Hall, Inc. All rights reserved.

38

25 26 27 28 29 30

// calculate and return cube of integer argument int cubeByValue( int n ) { cubeByValue receives return n * n * n; // cube local variable n and return result

parameter passed-by-value

} // end function cubeByValue

The original value of number is 5 The new value of number is 125

Cubes and returns local variable n

Outline fig05_06.cpp (2 of 2) fig05_06.cpp output (1 of 1)

 2003 Prentice Hall, Inc. All rights reserved.

39

40

Calling Functions by Reference • Pass-by-reference with pointer arguments – Simulate pass-by-reference • Use pointers and indirection operator

– Pass address of argument using & operator – Arrays not passed with & because array name already pointer – * operator used as alias/nickname for variable inside of function

 2003 Prentice Hall, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

// Fig. 3.20: fig03_20.cpp // Comparing pass-by-value and pass-by-reference // with references. #include using std::cout; using std::endl; int squareByValue( int ); void squareByReference( int & );

Notice the & operator, indicating pass-by-reference.

Outline fig03_20.cpp (1 of 2)

// function prototype // function prototype

int main() { int x = 2; int z = 4; // demonstrate squareByValue cout << "x = " << x << " before squareByValue\n"; cout << "Value returned by squareByValue: " << squareByValue( x ) << endl; cout << "x = " << x << " after squareByValue\n" << endl;

 2003 Prentice Hall, Inc. All rights reserved.

41

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

// demonstrate squareByReference cout << "z = " << z << " before squareByReference" << endl; squareByReference( z ); cout << "z = " << z << " after squareByReference" << endl; return 0; // indicates successful termination } // end main

Outline fig03_20.cpp (2 of 2)

Changes number, but original parameter (x) is not squareByValue multiplies number by itself, stores the modified. result in number and returns the new value of number

// // int squareByValue( int number ) { return number *= number; // caller's argument not modified } // end function squareByValue

Changes numberRef, an squareByReference multiplies numberRef by itself alias and for the original stores the result in the variable to which numberRef parameter. Thus, z is refers in function main changed.

// // // void squareByReference( int &numberRef ) { numberRef *= numberRef; // caller's argument modified } // end function squareByReference

 2003 Prentice Hall, Inc. All rights reserved.

42

x = 2 before squareByValue Value returned by squareByValue: 4 x = 2 after squareByValue z = 4 before squareByReference z = 16 after squareByReference

Outline fig03_20.cpp output (1 of 1)

 2003 Prentice Hall, Inc. All rights reserved.

43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

// Fig. 5.7: fig05_07.cpp // Cube a variable using pass-by-reference // with a pointer argument. #include using std::cout; using std::endl; void cubeByReference( int * );

Outline Prototype indicates parameter is pointer to int

fig05_07.cpp (1 of 2)

// prototype

int main() { int number = 5;

Apply address operator & to pass address of number to cubeByReference cubeByReference

cout << "The original value of number is " << number; // pass address of number to cubeByReference( &number );

cout << "\nThe new value of number is " << number << endl; return 0; } // end main

// indicates successful termination

cubeByReference modified variable number

 2003 Prentice Hall, Inc. All rights reserved.

44

26 27 28 29 30 31

// calculate cube of *nPtr; modifies variable number in main void cubeByReference( int *nPtr ) { *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr } // end function cubeByReference

The original value of number is 5 The new value of number is 125

cubeByReference receives address of int variable, i.e., pointer to an int

Outline fig05_07.cpp (2 of 2) fig05_07.cpp output (1 of 1)

Modify and access int variable using indirection operator *

 2003 Prentice Hall, Inc. All rights reserved.

45

Default Arguments in function prototype • Default arguments – Arguments in which data is initialized during function declaration – If values of the arguments are specified in the function declaration then the arguments of the function in the function call can be omitted – If the arguments are omitted in function call then the default values are automatically passed to the function definition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 • • 18 19 20 21

// Fig. 3.18: fig03_18.cpp // Default arguments. #include using std::cout; using std::endl; void main() { void temp(char []=“Pakistan”, int = 2); clrscr(); temp( ); temp(“islamabad”, 6); cout<<“Ok”; } void temp(char x[15], int y) { for (int c=1;c<=y;c++) cout<<x<<endl; return 0;

Outline fig03_18.cpp (1 of 2) // function prototype

// indicates successful termination

} // end main

Pakistan Pakistan islamabad Islamabad Islamabad Islamabad Islamabad Islamabad

 2003 Prentice Hall, Inc. All rights reserved.

47

Default Arguments in function prototype • Function call with omitted parameters – If not enough parameters, rightmost go to their defaults – Default values • Can be constants or global variables

• Set defaults in function prototype int myFunction( int x = 1, int y = 2, int z = 3 );

– myFunction(3) • x = 3, y and z get defaults (i.e. y=2 and z=3)

– myFunction(3, 5) • x = 3, y = 5 and z gets default (i.e. z=3)

 2003 Prentice Hall, Inc. All rights reserved.

48

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

// Fig. 3.23: fig03_23.cpp // Using default arguments. #include using std::cout; using std::endl;

Outline Set defaults in function prototype.

fig03_23.cpp (1 of 2)

// function prototype that specifies default arguments int boxVolume( int length = 1, int width = 1, int height = 1 ); int main() { // no arguments--use default values for all dimensions cout << "The default box volume is: " << boxVolume(); // specify length; default width and height cout << "\n\nThe volume of a box with length 10,\n" << "width 1 and height 1 is: " << boxVolume( 10 );

Function calls with some parameters missing – the rightmost parameters get their defaults.

// specify length and width; default height cout << "\n\nThe volume of a box with length 10,\n" << "width 5 and height 1 is: " << boxVolume( 10, 5 );

 2003 Prentice Hall, Inc. All rights reserved.

49

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

// specify all arguments cout << "\n\nThe volume of a box with length 10,\n" << "width 5 and height 2 is: " << boxVolume( 10, 5, 2 ) << endl; return 0;

// indicates successful termination

} // end main

Outline fig03_23.cpp (2 of 2) fig03_23.cpp output (1 of 1)

// function boxVolume calculates the volume of a box int boxVolume( int length, int width, int height ) { return length * width * height; } // end function boxVolume

The default box volume is: 1 The volume of a box with length 10, width 1 and height 1 is: 10 The volume of a box with length 10, width 5 and height 1 is: 50 The volume of a box with length 10, width 5 and height 2 is: 100

 2003 Prentice Hall, Inc. All rights reserved.

50

51

Function Overloading • Function overloading – Functions with same name and different parameters – Should perform similar tasks • i.e. function to square ints and function to square floats int square( int x) {return x * x;} float square(float x) { return x * x; }

• Overloaded functions distinguished by signature – Based on name and parameter types (order matters)

 2003 Prentice Hall, Inc. All rights reserved.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

// Fig. 3.25: fig03_25.cpp // Using overloaded functions. #include using std::cout; using std::endl;

Outline Overloaded functions have the same name, but the different parameters distinguish them.

fig03_25.cpp (1 of 2)

// function square for int values int square( int x ) { cout << "Called square with int argument: " << x << endl; return x * x; } // end int version of function square // function square for double values double square( double y ) { cout << "Called square with double argument: " << y << endl; return y * y; } // end double version of function square

 2003 Prentice Hall, Inc. All rights reserved.

52

24 25 26 27 28 29 30 31 32 33 34 35

int main() { int intResult = square( 7 ); // calls int version double doubleResult = square( 7.5 ); // calls double version cout << "\nThe square of integer 7 is " << intResult The proper function is called << "\nThe square of double 7.5 is " << doubleResult based upon the argument << endl;

(int or double).

return 0;

Outline fig03_25.cpp (2 of 2) fig03_25.cpp output (1 of 1)

// indicates successful termination

} // end main

Called square with int argument: 7 Called square with double argument: 7.5 The square of integer 7 is 49 The square of double 7.5 is 56.25

 2003 Prentice Hall, Inc. All rights reserved.

53

Related Documents