Variance Value Theorem 3

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Variance Value Theorem 3 as PDF for free.

More details

  • Words: 1,143
  • Pages: 4
The Variance­Value Theorem: A foray into functional analysis Ogan Gurel 2 January 1993

Recall the Variance­Value Theorem which states that for any function  f ( t )   continuous and differentiable over an interval [ a , b ] :

L f (b) − f (a) O M P M N b−a P Q 2

2 There exists a   t * ∈[a, b],  such that [ f ′ ( t *)] ≥

It seemed strange that despite the deep ideas embodied in this result,  one wasn't able to find any formulation of this theorem in any of the  elementary calculus or introductory real analysis texts.  I was curious  to know why in these texts the mean­value theorem took precedence over  the variance value theorem.   A practical answer is that the mean­value theorem is more useful,  especially for the purposes of using calculus to approximate functions.  With the mean­value theorem one can thus formulate a linear approximation  to a function based on its derivative: f ( t ) = f ′ ( a )[ t − a ]

which serves as a prelude to Taylor's theorem and generalized power  series expansions. 2

Nevertheless I was still convinced of the importance of [ f ′ ( t )] .  I had  originally interpreted this as the variance.  Upon further reading,  however, I've come across the concept of the norm of a function  G ( x ) ,  which is a preliminary to the Banach spaces of functional analysis: On page 155 (under problem 4.8.10) of Avner Friedman's Foundations of  Modern Analysis, Dover, 1982, one can find the following inequality: Let  X be a real normed linear space,   and let  u ( t )  be continuous and strongly differentiable in  ( a , b ). Then for any  a < α < β < b ,      u ( b ) − u ( a )   ≤ ( β − α ) sup    α ≤t ≤ β

du ( t ) dt

which is equivalent, though more strongly formulated, to the "variance­ value" theorem.  It turns out that the concept of the norm of a function  underlies functional analysis.  Thus, my original curiosity was answered 

in two ways.  First the variance value theorem can be found in more  advanced discussions of analysis, and second, the concept of a norm of a  function is important in further developments.  In this sense then,  these thoughts were an early foray into functional analysis. In conceptual terms, the variance value theorem theorem sets a minimum on  the norm of a derivative, namely that it cannot be less than the norm of  a straight line.  For the sake of simplicity, let us define the function  over the unit interval [ 0 , 1] , rewrite  f ( t ) = u ( t )   and   f ′ ( t ) = The variance value theorem is thus:

du ( t ) dt

 and rearrange. 

sup    f ′ ( t )    ≥    f (1) − f ( 0 )

α ≤t ≤ β

But the next question arises: is there a maximum to the norm of a  derivative?  Intuitively, one would think that there should be no such  maximum since there really should be no limit to how fast a function may  change. Consider the function diagrammed below:  

f(t)

f(b)

f(a)

G

F

E

a

b

t

For the curve representing the function, there must be a maximum to the  arc length over the interval [ a , b ] .  In other words, for the curve to  represent a function, a vertical line can only cut the curve once,: the  curve cannot "curl" back over itself.  From the above diagram, the  maximum arc length over this interval would is the sum of the lengths, EF  and FG, given by the formula: rmax    =    b − a + f ( b ) − f ( a )

The formula for arc length gives the length of the curve over the  interval (for a function differentiable over the interval) and thus this  must be less than  rmax .

z b

rab =

2

1 + [ f ′ ( t )] dt   ≤   rmax = b − a + f ( b ) − f ( a )

a

For simplicity, we take the interval [ 0 , 1] , so that:

z 1

2

1 + [ f ′ ( t )] dt    ≤     1    +     f (1) − f ( 0 )

0

Which by the following manipulations,

z z z 1

2

1 + [ f ′ ( t )] dt      −     1     ≤     f (1) − f ( 0 )

0

1

2

1 + [ f ′ ( t )] − 1  dt    ≤     f (1) − f ( 0 )

0

1

2

[ f ′ ( t )]   dt    ≤     f (1) − f ( 0 )

0

But, by the definition of the norm of a function:

z 1

G ( x )    ≡   

2

[ G ( x )] dx

0

we get the following inequality: f ′ ( t )    ≤     f (1) − f ( 0 )

This equation tells us that the norm of the derivative must be less than  or equal to the total change of the function.  Contrast this with the  previous result of the variance value theorem: sup    f ′ ( t )    ≥    f (1) − f ( 0 )

α ≤t ≤ β

This equation states paradoxically that the norm of the derivative must  be greater than or equal to the total change of the function  Since both  conditions are true, we can thus state: f ′ ( t )    =     f (1) − f ( 0 )

In other words, the norm of the derivative is exactly equal to the total  change of the function.  And using the definition of the norm, we get:

z 1

f ′ ( t )  dt   =     f (1) − f ( 0 )

0

and for an arbitrary interval [ a , b ] :

z b

f ′ ( t )  dt   =     f ( b ) − f ( a )

a

which is, of course, the Fundamental Theorem of the Calculus.  Hence by  considering the absolute limits of a function (its minimum and maximum  possible lengths) defined over a metric space we converge to the  Fundamental Theorem.  This is a remarkable result.  We analyzed the  minimum length by appealing to differentiation, and likewise the maximum  length via integration and found out that they were in a strange sense  the same so that miraculously all differentiable functions straddle right  in between these limits.  As a bonus we find that integration is the  reverse of differentiation.  Put in these terms, the Fundamental Theorem  of the Calculus can be more deeply thought of as the Fundamental Theorem  of Functional Analysis.

Related Documents

Variance Value Theorem 3
November 2019 3
Variance Value Theorem I
November 2019 3
Mean Value Theorem
May 2020 2
Theorem
June 2020 31
Theorem
June 2020 17