Types.docx

  • Uploaded by: Sanket Kodolikar
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Types.docx as PDF for free.

More details

  • Words: 1,355
  • Pages: 4
Six-stroke engine From Wikipedia, the free encyclopedia Jump to navigationJump to search The term six-stroke engine has been applied to a number of alternative internal combustion engine designs that attempt to improve on traditional two-stroke and four-strokeengines. Claimed advantages may include increased fuel efficiency, reduced mechanical complexity and/or reduced emissions. These engines can be divided into two groups based on the number of pistons that contribute to the six strokes. In the single-piston designs, the engine captures the heat lost from the four-stroke Otto cycle or Diesel cycle and uses it to drive an additional power and exhaust stroke of the piston in the same cylinder in an attempt to improve fuel-efficiency and/or assist with engine cooling. The pistons in this type of six-stroke engine go up and down three times for each injection of fuel. These designs use either steam or air as the working fluid for the additional power stroke.[1] The designs in which the six strokes are determined by the interactions between two pistons are more diverse. The pistons may be opposed in a single cylinder or may reside in separate cylinders. Usually one cylinder makes two strokes while the other makes four strokes giving six piston movements per cycle. The second piston may be used to replace the valve mechanism of a conventional engine, which may reduce mechanical complexity and enable an increased compression ratio by eliminating hotspots that would otherwise limit compression. The second piston may also be used to increase the expansion ratio, decoupling it from the compression ratio. Increasing the expansion ratio in this way can increase thermodynamic efficiency in a similar manner to the Miller or Atkinson cycle.

Single-piston designs[edit] These designs use a single piston per cylinder, like a conventional two- or fourstroke engine. A secondary, non-detonating fluid is injected into the chamber, and the leftover heat from combustion causes it to expand for a second power stroke followed by a second exhaust stroke. Griffin six-stroke engine[edit]

The Kerr engine at the Anson Engine Museum

In 1883, the Bath-based engineer Samuel Griffin was an established maker of steam and gas engines. He wished to produce an internal combustion engine, but without paying the licensing costs of the Otto patents. His solution was to develop a "patent slide valve" and a single-acting six-stroke engine using it. By 1886, Scottish steam locomotive maker Dick, Kerr & Co. saw a future in large oil engines and licensed the Griffin patents. These were double-acting, tandem engines and sold under the name "Kilmarnock".[2] A major market for the Griffin engine was in electricity generation, where they developed a reputation for happily running light for long periods, then suddenly being able to take up a large demand for power. Their large heavy construction didn't suit them to mobile use, but they were capable of burning heavier and cheaper grades of oil. The key principle of the "Griffin Simplex" was a heated exhaust-jacketed external vapouriser, into which the fuel was sprayed. The temperature was held around 550 °F (288 °C), sufficient to physically vapourise the oil but not to break it down chemically. This fractional distillation supported the use of heavy oil fuels, the unusable tars and asphalts separating out in the vapouriser. Hot-bulb ignitionwas used, which Griffin termed the "catathermic igniter", a small isolated cavity connected to the combustion chamber. The spray injector had an adjustable inner nozzle for the air supply, surrounded by an annular casing for the oil, both oil and air entering at 20 psi (140 kPa) pressure, and being regulated by a governor.[3][4] Griffin went out of business in 1923. Only two known examples of a

Griffin six-stroke engine survive. One is in the Anson Engine Museum. The other was built in 1885 and for some years was in the Birmingham Museum of Science and Technology, but in 2007 it returned to Bath and the Museum of Bath at Work.[5] Dyer six-stroke engine[edit] Leonard Dyer invented a six-stroke internal combustion water-injection engine in 1915, very similar to Crower's design (see below). A dozen more similar patents have been issued since. Dyer's six-stroke engine features: 

No cooling system required  Improves a typical engine’s fuel consumption  Requires a supply of pure water to act as the medium for the second power stroke.  Extracts the additional power from the expansion of steam. Bajulaz six-stroke engine[edit] The Bajulaz six-stroke engine is similar to a regular combustion engine in design. There are, however, modifications to the cylinder head, with two supplementary fixed-capacity chambers: a combustion chamber and an air-preheating chamber above each cylinder. The combustion chamber receives a charge of heated air from the cylinder; the injection of fuel begins an isochoric (constant-volume) burn, which increases the thermal efficiency compared to a burn in the cylinder. The high pressure achieved is then released into the cylinder to work the power or expansion stroke. Meanwhile, a second chamber, which blankets the combustion chamber, has its air content heated to a high degree by heat passing through the cylinder wall. This heated and pressurized air is then used to power an additional stroke of the piston. The claimed advantages of the engine include reduction in fuel consumption by at least 40%, two expansion strokes in six strokes, multi-fuel usage capability, and a dramatic reduction in pollution.[6] The Bajulaz six-stroke engine was invented in 1989 by Roger Bajulaz of the Bajulaz S.A. company, based in Geneva, Switzerland; it has U.S. Patent 4,809,511 and U.S. Patent 4,513,568. The Bajulaz six-stroke engine features claimed are: 

Reduction in fuel consumption by at least 40%  Two expansion (work) strokes in six strokes  Multifuel, including liquefied petroleum gas  Dramatic reduction in air pollution  Costs comparable to those of a four-stroke engine Velozeta six-stroke engine[edit]

In a Velozeta engine, fresh air is injected into the cylinder during the exhaust stroke, which expands by heat and therefore forces the piston down for an additional stroke. The valve overlaps have been removed, and the two additional strokes using air injection provide for better gas scavenging. The engine seems to show 40% reduction in fuel consumption and dramatic reduction in air pollution. [7] Its Power-toweight ratio is slightly less than that of a four-stroke gasoline engine.[7] The engine can run on a variety of fuels, ranging from gasoline and diesel fuel to LPG. An altered engine shows a 65% reduction in carbon monoxide pollution when compared with the four-stroke engine from which it was developed.[7]The engine was developed in 2005 by a team of mechanical engineering students, Mr. U Krishnaraj, Mr. Boby Sebastian, Mr. Arun Nair and Mr. Aaron Joseph George of the College of Engineering, Trivandrum. NIYKADO six-stroke engine[edit] This engine was designed, developed and patented by Chanayil Cleetus Anil, of Kochi, India, in 2012.[8] He holds Indian patent number IN252642, granted by IPIndia on May 25, 2012. The name of the engine is taken from the name of his company, NIYKADO Motors. The engine underwent a preliminary round of fullthrottle tests at the Automotive Research Association of India (ARAI), Pune.[8] The inventor claims this engine "is 23 per cent more fuel efficient compared to a standard four-stroke engine"[8] and that it is "very low on pollution".[8] Crower six-stroke engine[edit] In a six-stroke engine prototyped in the United States by Bruce Crower, water is injected into the cylinder after the exhaust stroke and is instantly turned to steam, which expands and forces the piston down for an additional power stroke. Thus, waste heat that requires an air or water cooling system to discharge in most engines is captured and put to use driving the piston.[1] Crower estimated that his design would reduce fuel consumption by 40% by generating the same power output at a lower rotational speed. The weight associated with a cooling system could be eliminated, but that would be balanced by a need for a water tank in addition to the normal fuel tank. The Crower six-stroke engine was an experimental design that attracted media attention in 2006 because of an interview given by the 75-yearold American inventor, who has applied for a patent on his design.[1] That patent application was subsequently abandoned.[9]

More Documents from "Sanket Kodolikar"

Types.docx
November 2019 6
Neha's Project
July 2020 12
Raunak Project
July 2020 8