TRIGONOMETRIC IDENTITIES The six trigonometric functions: opp y hyp r 1 = = = sin θ = csc θ = hyp r opp y sin θ
adj x = hyp r opp y sin θ tan θ = = = adj x cos θ
cos θ =
sec θ =
cot θ =
sin 2θ = 2 sin θ cos θ cos 2θ = 1 − 2 sin 2 θ
Pythagorean Identities: tan θ + 1 = sec θ 2
2
cos a sin b
= 12 [sin (a + b ) − sin (a − b )]
hyp r 1 = = adj x cos θ
cos a cos b =
1 [cos (a 2
+ b ) + cos (a − b )]
adj x 1 = = opp y tan θ
sin a sin b =
1 [cos (a 2
− b ) − cos (a + b )]
sin a + sin b = 2 sin( a +2 b ) cos( a −2 b )
Sum or difference of two angles: sin (a ± b ) = sin a cos b ± cos a sin b cos(a ± b ) = cos a cos b m sin a sin b tan a ± tan b tan( a ± b) = 1 m tan a tan b Double angle formulas:
Sum and product formulas: sin a cos b = 1 [sin (a + b ) + sin (a − b )] 2
sin a − sin b = 2 cos( a +2 b ) sin( a −2 b )
cos a + cos b = 2 cos( a +2 b ) cos( a −2 b )
cos a − cos b = −2 sin( a +2 b ) sin( a −2 b )
2 tan θ tan 2θ = 1 − tan 2 θ cos 2θ = 2 cos 2 θ − 1 cos 2θ = cos 2 θ − sin 2 θ
sin 2 θ + cos 2 θ = 1 cot 2 θ + 1 = csc 2 θ
Half angle formulas: 1 1 cos2 θ = (1 + cos 2θ) sin 2 θ = (1 − cos 2θ ) 2 2 θ 1 − cos θ θ 1 + cos θ sin = ± cos = ± 2 2 2 2 θ 1 − cos θ sin θ 1 − cos θ tan = ± = = 2 1 + cos θ 1 + cos θ sin θ
2 2 2 Law of cosines: a = b + c − 2bc cos A where A is the angle of a scalene triangle opposite side a. π Radian measure: 8.1 p420 1° = radians 180 180° 1 radian = π
Reduction formulas: sin( −θ) = − sin θ
cos( −θ) = cos θ
sin(θ) = − sin(θ − π)
cos(θ) = − cos(θ − π)
tan( −θ) = − tan θ
tan(θ) = tan(θ − π )
m sin x = cos( x ± ) π 2
Complex Numbers:
cos θ = 12 ( e jθ + e − jθ )
± cos x = sin( x ± π2 ) e ± jθ = cos θ ± j sin θ sin θ = j12 ( e jθ − e − jθ )
TRIGONOMETRIC VALUES FOR COMMON ANGLES
Degrees
Radians
sin θ
cos θ
0° 30°
0 π/6
0 1/2
1
45°
π/4
60°
π/3
2 /2 3/2
90° 120°
π/2 2π/3
135°
3π/4
3/2 2 /2
150°
5π/6
1/2
180° 210° 225°
π 7π/6 5π/4
0 -1/2
- 3/2 -1 - 3/2
240°
4π/3
- 2 /2 - 3/2
- 2 /2 -1/2
-1
0 1/2
1
270° 300°
3π/2 5π/3
315°
7π/4
- 3/2 - 2 /2
11π/6 2π
-1/2 0
330° 360°
3/2 2 /2 1/2
tan θ 0 3/3 1 3
0 -1/2
Undefined - 3
- 2 /2
-1 - 3/3 0 3/3 1
2 /2 3/2 1
cot θ
sec θ
csc θ
Undefined 3
1 2 3/3
Undefined 2
1
2 2
3/3 0
- 3/3 -1 - 3 Undefined 3
1
Undefined -2
2 2 3/3 1 2 3/3
- 2 -2 3 / 3 -1 -2 3 / 3 - 2
Undefined -2 - 2
2 2
-2
-2 3 / 3
Undefined - 3
0 - 3
Undefined 2
-1 - 3/3 0
-1 - 3 Undefined
2
-1 -2 3 / 3 - 2
2 3/3 1
-2 Undefined
3
Tom Penick
3/3
[email protected]
www.teicontrols.com/notes
2/20/2000
Expansions for sine, cosine, tangent, cotangent:
y3 y5 y 7 sin y = y − + − +L 6 5! 7! y2 y4 y6 cos y = 1 − + − +L 2 4! 6! y3 2 y5 tan y = y + + +L 3 15 1 y y3 2 y5 cot y = − − − −L y 3 45 945 Hyperbolic functions:
(
)
sinh jy = jsin y
(
)
cosh jy = jcos y
1 y e − e− y 2 1 cosh y = e y + e − y 2
sinh y =
tanh jy = j tan y
Expansions for hyperbolic functions:
y3 sinh y = y + +L 6 y2 cosh y = 1 + +L 2 y2 5y 4 sech y = 1 − + −L 2 24 1 y y3 ctnh y = + − +L y 3 45 1 y 7 y3 csch y = − + −L y 6 360 y3 2 y5 tanh y = y − + −L 3 15
Tom Penick
[email protected]
www.teicontrols.com/notes
2/20/2000