Trig Identities

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trig Identities as PDF for free.

More details

  • Words: 931
  • Pages: 2
TRIGONOMETRIC IDENTITIES The six trigonometric functions: opp y hyp r 1 = = = sin θ = csc θ = hyp r opp y sin θ

adj x = hyp r opp y sin θ tan θ = = = adj x cos θ

cos θ =

sec θ =

cot θ =

sin 2θ = 2 sin θ cos θ cos 2θ = 1 − 2 sin 2 θ

Pythagorean Identities: tan θ + 1 = sec θ 2

2

cos a sin b

= 12 [sin (a + b ) − sin (a − b )]

hyp r 1 = = adj x cos θ

cos a cos b =

1 [cos (a 2

+ b ) + cos (a − b )]

adj x 1 = = opp y tan θ

sin a sin b =

1 [cos (a 2

− b ) − cos (a + b )]

sin a + sin b = 2 sin( a +2 b ) cos( a −2 b )

Sum or difference of two angles: sin (a ± b ) = sin a cos b ± cos a sin b cos(a ± b ) = cos a cos b m sin a sin b tan a ± tan b tan( a ± b) = 1 m tan a tan b Double angle formulas:

Sum and product formulas: sin a cos b = 1 [sin (a + b ) + sin (a − b )] 2

sin a − sin b = 2 cos( a +2 b ) sin( a −2 b )

cos a + cos b = 2 cos( a +2 b ) cos( a −2 b )

cos a − cos b = −2 sin( a +2 b ) sin( a −2 b )

2 tan θ tan 2θ = 1 − tan 2 θ cos 2θ = 2 cos 2 θ − 1 cos 2θ = cos 2 θ − sin 2 θ

sin 2 θ + cos 2 θ = 1 cot 2 θ + 1 = csc 2 θ

Half angle formulas: 1 1 cos2 θ = (1 + cos 2θ) sin 2 θ = (1 − cos 2θ ) 2 2 θ 1 − cos θ θ 1 + cos θ sin = ± cos = ± 2 2 2 2 θ 1 − cos θ sin θ 1 − cos θ tan = ± = = 2 1 + cos θ 1 + cos θ sin θ

2 2 2 Law of cosines: a = b + c − 2bc cos A where A is the angle of a scalene triangle opposite side a. π Radian measure: 8.1 p420 1° = radians 180 180° 1 radian = π

Reduction formulas: sin( −θ) = − sin θ

cos( −θ) = cos θ

sin(θ) = − sin(θ − π)

cos(θ) = − cos(θ − π)

tan( −θ) = − tan θ

tan(θ) = tan(θ − π )

m sin x = cos( x ± ) π 2

Complex Numbers:

cos θ = 12 ( e jθ + e − jθ )

± cos x = sin( x ± π2 ) e ± jθ = cos θ ± j sin θ sin θ = j12 ( e jθ − e − jθ )

TRIGONOMETRIC VALUES FOR COMMON ANGLES

Degrees

Radians

sin θ

cos θ

0° 30°

0 π/6

0 1/2

1

45°

π/4

60°

π/3

2 /2 3/2

90° 120°

π/2 2π/3

135°

3π/4

3/2 2 /2

150°

5π/6

1/2

180° 210° 225°

π 7π/6 5π/4

0 -1/2

- 3/2 -1 - 3/2

240°

4π/3

- 2 /2 - 3/2

- 2 /2 -1/2

-1

0 1/2

1

270° 300°

3π/2 5π/3

315°

7π/4

- 3/2 - 2 /2

11π/6 2π

-1/2 0

330° 360°

3/2 2 /2 1/2

tan θ 0 3/3 1 3

0 -1/2

Undefined - 3

- 2 /2

-1 - 3/3 0 3/3 1

2 /2 3/2 1

cot θ

sec θ

csc θ

Undefined 3

1 2 3/3

Undefined 2

1

2 2

3/3 0

- 3/3 -1 - 3 Undefined 3

1

Undefined -2

2 2 3/3 1 2 3/3

- 2 -2 3 / 3 -1 -2 3 / 3 - 2

Undefined -2 - 2

2 2

-2

-2 3 / 3

Undefined - 3

0 - 3

Undefined 2

-1 - 3/3 0

-1 - 3 Undefined

2

-1 -2 3 / 3 - 2

2 3/3 1

-2 Undefined

3

Tom Penick

3/3

[email protected]

www.teicontrols.com/notes

2/20/2000

Expansions for sine, cosine, tangent, cotangent:

y3 y5 y 7 sin y = y − + − +L 6 5! 7! y2 y4 y6 cos y = 1 − + − +L 2 4! 6! y3 2 y5 tan y = y + + +L 3 15 1 y y3 2 y5 cot y = − − − −L y 3 45 945 Hyperbolic functions:

(

)

sinh jy = jsin y

(

)

cosh jy = jcos y

1 y e − e− y 2 1 cosh y = e y + e − y 2

sinh y =

tanh jy = j tan y

Expansions for hyperbolic functions:

y3 sinh y = y + +L 6 y2 cosh y = 1 + +L 2 y2 5y 4 sech y = 1 − + −L 2 24 1 y y3 ctnh y = + − +L y 3 45 1 y 7 y3 csch y = − + −L y 6 360 y3 2 y5 tanh y = y − + −L 3 15

Tom Penick

[email protected]

www.teicontrols.com/notes

2/20/2000

Related Documents

Trig. Identities
October 2019 25
Trig Identities
May 2020 7
Trig Review
June 2020 6
Partition Identities
October 2019 20