Trig Identities Summer School

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Trig Identities Summer School as PDF for free.

More details

  • Words: 522
  • Pages: 13
In problems 1 - 6, match the trigonometric expression with one of the following. a. -1 b. cos x c. cot x d. 1 e. -tan x f. sin x 1.

sec x cos x

2.

cot x sin x

3.

tan2x - sec2x

4.

(1 - cos2x)(csc x)

6.

sin[(π/2) - x] cos[(π /2) - x]

5.

sin (-x) cos(-x)

Title: Jul 21­7:25 AM (1 of 13)

In exercises 7 - 12, match the trigonometric expression with one of the following. a. csc x b. tan x c. sin2x d. sin x tan x e. sec2x f. sec2x + tan2x 7.

sin x sec x

8.

cos2x(sec2x - 1)

9.

sec4x - tan4x

10.

cot x sec x

11.

sec2x - 1 sin2x

12.

cos2[(π/2) - x] cos x

Title: Jul 21­7:26 AM (2 of 13)

In problems 13 - 24, use the fundamental identities to simplify the expression. 13. tan x csc x 14. sin x(csc x - sin x)

15.

cos x tan x

16.

sec2x(1 - sin2x)

17.

cot x csc x

18.

csc x sec x

Title: Jul 21­7:27 AM (3 of 13)

19.

sec x sin x tan x

20.

sin(-x) cos x

21.

tan2x sec2x

22.

1 tan2x + 1

23.

cos( - x)sec x

24.

Title: Jul 21­7:27 AM (4 of 13)

cot( - x)cos x

In problems 25 - 30, factor the expression and use the fundamental identities to simplify. 25. tan2x - tan2x sin2x 26. sec2x tan2x + sec2x

27.

sin2x sec2x - sin2x

28.

tan4x + 2tan2x + 1

29.

1 - 2cos2x + cos4x

30.

sin4x - cos4x

Title: Jul 21­7:28 AM (5 of 13)

In problems 31 - 34, perform the multiplication and use the fundamental identities to simplify. 31. (sec x + 1)(sec x - 1) 32. (sin x + cos x)2

33.

(cot x + csc x)(cot x - csc x)

Title: Jul 21­7:28 AM (6 of 13)

34.

(3 - 3sin x)(3 + 3sin x)

In problems 35 - 38, verify the identity. 35. sin x csc x = 1

36.

cot2x(sec2x - 1) = 1

37.

38.

1 sin x

cos x + sin x tan x = sec x

Title: Jul 21­7:28 AM (7 of 13)

sin x = cos2x sin x

Find the exact value of the trigonometric function given that sin u = -7/25 and cos v = -4/5. (Both u and v are in Quadrant III.) 7. cos(u + v) 8. sec(v - u)

9.

csc(u + v)

Title: Jul 21­7:29 AM (8 of 13)

10.

sin(v - u)

Verify the identity. 11. sin(x + y)sin(x - y) = sin2x - sin2y

12.

sin(x + y) + sin(x - y) = 2 sin x cos y

13.

sin( + x) = ½ (cos x + sin x)

14.

cos(- x) - sin ( + x) = 0

15.

tan(+ x) = tan x

Title: Jul 21­7:30 AM (9 of 13)

Verify the identity.

Title: Jul 21­7:31 AM (10 of 13)

Title: Jul 21­7:32 AM (11 of 13)

Title: Jul 21­7:32 AM (12 of 13)

Title: Jul 21­7:33 AM (13 of 13)

Related Documents

Trig. Identities
October 2019 25
Trig Identities
May 2020 7
Summer School
May 2020 10
Summer School
April 2020 9