Transformer

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Transformer as PDF for free.

More details

  • Words: 422
  • Pages: 3
%Design a 25KVA, 11000/433v, 50Hz, delta/star, core type, oil immersed %natural cooled distribution transformer.The transformer is provided with %tapping + 2.5 + 5% on the h.v. winding. Maximum temp rise not to exceed %45'c with mean temp rise of oil 35'c. %CORE DESIGN k=input('enter the value of k: '); q=input('KVA rating of transformer'); Et=k*sqrt(q) f=input('enter the value of frequency: '); disp('flux of core') %f is the frequency phic=Et/(4.44*f) %phi is the flux per pole Bm=1; %Bm is the mean flux density A=phic/Bm %A is net iron area disp('diameter of the circumscribing circle is : ') d=sqrt(A/.56) %d1 is the diameter of circumscribing circle %width of dimension theta=0.548; a=d*cos(theta) b=d*sin(theta)

%theta is angle in radian

%WINDOW DESIGN Kv=input('enter the value of high voltage winding in KV :'); Kw=8/(30+Kv) Js=2.3*10^(6); %j is the current density Aw=(q*10^3)/(3.33*f*Bm*Kw*Js*A) %Hw/Ww= 2.5 Ww=sqrt(Aw/2.5) %width of the window Hw=2.5*Ww %height of the window D=Ww+d %distance between adjacent core centres %YOKE DESIGN phiy=phic/(1.2*A) Ay=1.2*A Ag=Ay/.9 Dy=a Hy=Ag/a %OVERALL DIMENSION OF FRAME% H=Hw+(2*Hy) W=2*D+a Dy=a %lv Winding% disp('**************low voltage winding*********') Vs=input('enter the secondary side voltage in volts');

%height of frame %Width of frame %Depth of yoke=depth of frame

Vph=Vs/sqrt(3) Ts=Vph/Et Is=(q*(10^3))/(3*Vph) as=Is/Js ab=7.0*2.2*10^(-6) Cd=7.5*2.7*10^(-6) t=38 Lcs=t*7.5*10^(-3) min_c=(Hw-Lcs)/2 n=3 bs=(n*2.7*10^(-3))+(2*.5*10^(-3)) dintlv=d+(2*1.5*10^(-3)) dextlv=dintlv+2*bs

%star connected %turns per phase %secondary phase current %area of secondary conductor %conductor diameter because of paper insulation %no. of secondary turns %axial depth of the conductor %no. of layers %radial depth of Lv winding

%HV winding disp('**********************HV WINDING**********************') Vp=input('Enter the primary side voltage in volts') Tp=(Vp*Ts)/Vph Tp_new=1.05*Tp % 5% tappings Vc=Vp/8 %Voltage per coil Tc=Tp_new/8 %Turns per coil Ip=(q*10^3)/(3*Vp) %HV winding phase current Jp=2.4*10^6 %Current density Ap=Ip/Jp %Area of the hv conductor dp=sqrt((4/pi)*Ap) %diameter of bare conductors di=.805*(10^(-3)) %insulated diameter Tl=28 %Turns per layer Ad=Tl*di %Axial depth of one coil Lcp=(8*Ad)+(40*10^(-3)) %Axial length of one coil i=0.3*10^(-3) %insulation used between layers Rd=(24*di)+(23*i) %Radial depth of each coil dinthv=dextlv+(2*15*10^(-3)) %internal diameter of hv winding dexthv=dinthv+(2*Rd) %outside diameter of hv winding %Resistance disp('******************RESISTANCE******************') dmeanhv=(dinthv+dexthv)/2 %mean diameter of hv winding Lmtp=pi*dmeanhv %mean turn of hv winding rp=(Tp*.021*10^(-6)*Lmtp)/Ap %Resistance of primary winding at 75'C dmeanlv=(dextlv+dintlv)/2 %mean diameter of lv winding Lmts=pi*dmeanlv %length of mean turn of secondary winding rs=(Ts*.021*10^(-6)*Lmts)/as %resistance of secondary winding at 75'C Rp=rp+(Tp/Ts)^2*rs %total resistance referred to hv side pur=Ip*Rp/Vp %per unit resistance of transformer %LEAKAGE REACTANCE%

disp('************leakage reactance*************') mean_dia=(dintlv+dexthv)/2 Lmt=3.141*mean_dia Lc=(Lcs+Lcp)/2 Xp=2*3.141*f*4*3.141*10^(-7)*Tp*Tp*(Lmt/Lc)*(.015+((Rd+bs)/3)) purl=(Ip*Xp)/Vp puz=sqrt(pur^2+purl^2) %REGULATION pu_reg=(pur*.8)+(purl*.6) %LOSSES disp('*********************losses*************') i2r_loss=3*Ip^2*Rp i2r_loss_total=1.15*i2r_loss Wl=3*.3*.010135*7.6*10^3%taking density of lamination as 7.6*10^3% core_loss_limb=Wl*1.2 Wyoke=2*.624*.01216*7.6*10^3 core_loss_yoke=Wyoke*.85 t_coreloss=core_loss_limb+core_loss_yoke %EFFICIENCY disp('************EFFICIENCY**********') t_loss=t_coreloss+i2r_loss_total eff=(q*10^3)/(q*10^3+t_loss) %No load Current disp('*************no load current**************8') atc=120 aty=80 t_mmf=3*atc*.3+2*aty*.624 mmf_ph=t_mmf/3 Im=mmf_ph/((sqrt(2)*Tp)) Il=t_coreloss/(3*Vp) I_noload=sqrt(Im^2+Il^2) per_of_fullload=(I_noload/Ip)*100 %end

Related Documents

Transformer
June 2020 13
Transformer
May 2020 16
Transformer
May 2020 25
Transformer
April 2020 22
Transformer
June 2020 13
Transformer
May 2020 22