Transformer

  • Uploaded by: MohammedSaadaniHassani
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Transformer as PDF for free.

More details

  • Words: 2,962
  • Pages: 87
Transformer Professor Mohamed A. ElSharkawi

Why do we need transformers? • Increase voltage of generator’s output – Transmit high power at low current – Reduce cost of transmission system

• • • •

Adjust voltage to a usable level Create electrical isolation Match load impedance Filters El-Sharkawi@University of Washington

2

220kV-750kV Distribution Transformer

15 kV- 25kV

Service Transformer

Transmission Transformer 208V- 416V

El-Sharkawi@University of Washington

3

Transmission Transformer

El-Sharkawi@University of Washington

4

Distribution Transformer

El-Sharkawi@University of Washington

5

Distribution Transformer

El-Sharkawi@University of Washington

6

Service Transformer

El-Sharkawi@University of Washington

7

Service Transformer bank

El-Sharkawi@University of Washington

8

Service Transformer bank

El-Sharkawi@University of Washington

9

Service Transformer

El-Sharkawi@University of Washington

10

Service Transformer

El-Sharkawi@University of Washington

11

Service Transformer

El-Sharkawi@University of Washington

12

Service Transformer

El-Sharkawi@University of Washington

13

Service Transformer

El-Sharkawi@University of Washington

14

Low power Transformer

El-Sharkawi@University of Washington

15

Basic Components Iron Core

Insulated Copper Wire

El-Sharkawi@University of Washington

16

Basic Components Laminated iron core

Insulated copper wire

El-Sharkawi@University of Washington

17

El-Sharkawi@University of Washington

18

El-Sharkawi@University of Washington

19

El-Sharkawi@University of Washington

20

dφ e1 = N1 dt 1 φ = e1 dt ∫ N1

dφ e2 = N 2 dt

i1

e1

i2 N1

N2

Primary

e2

Secondary El-Sharkawi@University of Washington

21

Basic Analysis:Voltage dφ N1 e1 ( t ) N1 dt = = e2 ( t ) N dφ N 2 2 dt

 E1 N1  = E2 N 2

i1

e1

+ _

N1

N2

i2 + _

e2

  E1 E2 = N1 N 2

• Volts/turn is constant • Voltages are in phase (no phase shift) • Voltage magnitudes vary with turns ratio. El-Sharkawi@University of Washington

22

Basic Analysis: Power and current i1

S1 = S 2

EI =E I * 1 1

* 1 * 2

* 2 2

I E2 N 2 = = I E1 N1

e1

+ _

N1

I1 N 2 = I 2 N1

N2

i2 + _

e2

N1 I 1 = N 2 I 2

• Currents are in phase. • Current ratio is opposite to the voltage ratio El-Sharkawi@University of Washington

23

Basic Analysis: Reflected impedance Flux I2

I1

Load

Source

E1

N1

N2

E2

Zload

Secondary

Primary

Z load El-Sharkawi@University of Washington

E2 = I2

24

Basic Analysis: Reflected impedance I1 Source

Z

E1 Primary

Z

' load

' load

E1 = I1

Z E1 I 2  N1   = =  Z load E2 I1  N 2  ' load

Z

' load

 N1   = Z load   N2 

El-Sharkawi@University of Washington

2

2

25

Single-Phase, Ideal Transformer Ratings

I1

Apparent Power 2 KVA, 120/240 V Primary Voltage

+ V1 ­

N1

I2

N2

+ V2 ­

Secondary Voltage

El-Sharkawi@University of Washington

26

Rated Values • Rated voltage: The device can continuously operate at the rated voltage without being damaged due to insulation failure • Rated current: The device can continuously operate at the rated current without being damaged due to thermal destruction El-Sharkawi@University of Washington

27

Example I1 Transformer rating: 2 KVA, 240/120 V Compute the currents

S = V1 I1 = V2 I 2 = 2 KVA

+ V1 ­

N1

I2 N2

+ V2 ­

S

2 KVA I2 = = = 16.67 A V2 120 V

S

2 KVA I1 = = = 8.33 A V1 240 V El-Sharkawi@University of Washington

28

Multi-Secondary Transformer

El-Sharkawi@University of Washington

29

Multi-secondary windings

El-Sharkawi@University of Washington

30

I3 N3

I1 E1

I2

N1 N2

Primary

E3

E2

E1 N1 = E2 N 2 E1 N1 = E N 3 3 El-Sharkawi@University of Washington

31

Current ratio: superposition

I12

I12 E1

N2 = I2 N1

I2

N1 N2

E2

Primary

El-Sharkawi@University of Washington

32

Current ratio: superposition

I3 N3

I13 E1

N1

E3

N3 I13 = I 3 N1

Primary

El-Sharkawi@University of Washington

33

I3

N3

I1 E1

Superposition

E3

I2

N1 N2

E2

Primary

N3 N2 I1 = I12 + I13 = I 2 + I3 N1 N1 I 1 N1 = I 2 N 2 + I 3 N 3 El-Sharkawi@University of Washington

34

I3 N3

I1 E1

Superposition

E3 I2

N1 N2

E2

Primary

S1 = S 3 + S 3 EI =E I +EI * 1 1

* 2 2

El-Sharkawi@University of Washington

* 3 3 35

Example •

The transformer consists of one primary winding and two secondary windings. The number of turns is each winding is

N1 = 4000; N 2 =1000; N 3 = 500 A voltage source of 120V is applied to the primary winding, and purely resistive loads are connected across the secondary windings. A wattmeter placed in the primary circuit measures 300W. Another wattmeter placed in the secondary winding N2 measures 90W. Compute the following: • • •

The voltages of the secondary windings The currents in N3 The power consumed by the load connected across N3

El-Sharkawi@University of Washington

36

Solution N2 1000 E2 = E1 =120 = 30 N1 4000 N3 500 E3 = E1 =120 = 15 N1 4000

P1 300 I1 = = = 2.5 E1 cos θ1 120

P2 90 I2 = = =3 E 2 cos θ 2 30

El-Sharkawi@University of Washington

37

Solution I1 N1 = I 2 N 2 + I 3 N 3 2.5 * 4000 = 1000 * 3 + 500 I 3

I 3 = 14 E1 I1 = E 2 I 2 + E3 I 3 120 * 2.5 = 30 * 3 +15 I 3

I 3 = 14 El-Sharkawi@University of Washington

38

Solution P1 = P2 + P3 300 = 90 + P3

P3 = 210 El-Sharkawi@University of Washington

39

Autotransformer

El-Sharkawi@University of Washington

40

I1

V1

A1 E1

I2

B1 N1

E2

N2

V2

A2 B2

El-Sharkawi@University of Washington

41

Autotransformer: Voltage and current Is

I load = I1 + I 2

A1

N1

I1

E1

V1 = E1 + E2

Iload

A2

V1

B1

E2

N2

I2

V2

B2 El-Sharkawi@University of Washington

42

I1 + E1 ­

N1

I2 N2

Autotransformer + E2

Is

­

E1

I1 Iload

A2

V1

S A = E1 I1 = E2 I 2

N1

A1

E2

N2

B1

I2

V2

B2

S B = V1 I s = V2 I load El-Sharkawi@University of Washington

43

Autotransformer: Power S B = V1 I s = ( E1 + E2 ) I1 = E1 I1 + E2 I1 S B = S A + E 2 I1

SB > S A El-Sharkawi@University of Washington

44

Example Ratings of regular transformer: 10 kVA, 400/200 V New voltage ratio: 600/200 V Compute the new ratings

Solution

Is N1 E1

10 I2 = = 50 A 0.2 10 I1 = = 25 A 0.4

E2

El-Sharkawi@University of Washington

I1 Iload

A2

V1

S B = V1 I1 = 600 × 25 = 15 kVA

A1

N2

B1

I2

V2

B2

45

VARIC: Variable Auto-Transformer Z

Is

N3 Y

V1

N1

N2

Sliding terminal

I1

Iload I2

V2

El-Sharkawi@University of Washington

46

Output Voltage Vload

N2 = Vs N1 + N 2

Z Is

N3 Y

At Y

Vload

Sliding terminal

I1 N1

N1 + N 2 = Vs = Vs N1 + N 2

Iload

V1 N2

I2

V2

At Z

Vload

N1 + N 2 + N 3 = Vs N1 + N 2 El-Sharkawi@University of Washington

47

Three-Phase Transformer

El-Sharkawi@University of Washington

48

3-phase transformer

El-Sharkawi@University of Washington

49

3-phase transformer Y-Y connection. Also known as star-star connection A

a

N1

N2

c

Van N1 = VAN N2

N

b C Vac = VAC

B 3 Van N1 = N2 3 V AN

El-Sharkawi@University of Washington

o Ve ni L f o oit a R

l o Ves a h P f o oit a R

n

50

3-phase transformer (∆ -∆ ) A

a

N2

N1

c

B

b

oit a R

C

Vac N1 = VAC N2

El-Sharkawi@University of Washington

51

3-phase transformer (Y-∆ ) Also known as star-delta connection a

Ves a h P f o oit a R

n

c

Van N1 = VAC N2

N2

B

b

C

Vac 3 Van = = VAC VAC El-Sharkawi@University of Washington

3 N1 N2

tl o Ve ni L f o oit a R

N1

A

52

3-phase transformer bank (Y∆ ) a V AB N2 = Van N1

Vab

Van

N1

N2

A

VAB

B

b

V AB V AB = = Vab 3 Van

N2 3 N1

N1

N2

C

c N1 El-Sharkawi@University of Washington

N2 53

El-Sharkawi@University of Washington

54

Ratings of Ideal 3-phase Transformer Apparent Power (3-phase) 100 MVA, 13.8/138 KV Primary Voltage line-to-line

Secondary Voltage line-to-line

El-Sharkawi@University of Washington

55

Example • Three single-phase transformers are used to form a threephase transformer bank. Each single-phase transformer is rated at 10 kVA, 13.8 KV/240 V. One side of the transformer bank is connected to a three-phase, 13.8 kV transmission line. The other side of the transformer is connected to a three-phase residential load of 415.7V, 9kVA at 0.8 power factor lagging. Determine the connection of the transformer bank, the voltage ratio of the transformer bank, and the line current of the bank at the 13.8 kV side El-Sharkawi@University of Washington

56

Solution • Secondary voltage (Low voltage side) should be in Y to provide the needed residential voltage 415.7 = 240 V 3

• The high voltage side must be Delta-connection – The line-to-line voltage of the supply is 13.8 kV. Same as the transformer rating of the primary. – If the primary is connected in Y, the voltage of the load would be lower than 240 V. El-Sharkawi@University of Washington

57

Solution

Van = 240 V

A

VAB = 13.8 kV

N1

N2

B

Van

a Vab

b N1

N2

C

c     El-Sharkawi@University of Washington

58

VAB VAB = = Vab 3 Van

Solution 13,800 3 240

Phase current of the load

I2 =

9000 3 240

Van = 240 V

A

VAB = 13.8 kV

N1

Van V ab

B

b N1

= 12.5 A

N2

a

N2

C

c

Phase current of the Transformer primary

N2 240 I1 = I 2 = 12.5 = 0.2174 A N1 13,800

Line Current in primary

I A = 3 I1 = 0.377 A

El-Sharkawi@University of Washington

59

Actual Transformer • Windings:

i2

i1

– Resistance – Inductance

e1

+ _

N1

N2

+ _

e2

• Core: – Eddy Current – Hysteresis

El-Sharkawi@University of Washington

60

Windings Impedance R1

X1

N1

R2

X2

N2

Ideal Transformer El-Sharkawi@University of Washington

61

Core Hysteresis i

B

+ e _

N H

B= f

( ∫ e dt )

H = f (i)

El-Sharkawi@University of Washington

62

∫e

i

El-Sharkawi@University of Washington

63

i

Core Model Let e = Emax sin ωt

e

Emax ∫ e dt = − ω cos ωt

e Emax i= = sin ωt R R El-Sharkawi@University of Washington

R ∫e

i

64

i

Core Model Let

e

e = Emax sin ωt Emax ∫ e dt = − ω cos ωt

di e=L dt 1 Emax i = ∫ e dt = − cos ωt L ωL El-Sharkawi@University of Washington

Xl ∫e

i

65

i e

R

Xl

∫e

∫e

i

El-Sharkawi@University of Washington

i

66

Equivalent Circuit ' 2

N1 N2

R2

Io

I1 Ro

Xo

E1 N1 V1 = ≠ E2 N 2 V2

E1

E2

X2

I2

V2

' I2

N2 I1 = ≠ I2 N1 I2

El-Sharkawi@University of Washington

67

load

R1

V1

I

X1

Referred impedance

V1

I

X1

R1

' 2

N1 N2

R2

Io

I1 Ro

Xo

E1

E2

X2

I2

V2

N1 N1 [ E1 = E2 = I 2 ( R2 + jX 2 ) + V2 ] N2 N2 El-Sharkawi@University of Washington

68

Referred impedance

V1

I

X1

R1

' 2

N1 N2

R2

Io

I1 Ro

Xo

E1

E2

X2

I2

V2

 N1 N1  ' N1 ( R2 + jX 2 ) + V2  E1 = E2 = I 2 N2 N2  N2  El-Sharkawi@University of Washington

69

 N1 N1  ' N1 ( R2 + jX 2 ) + V2  E1 = E2 = I 2 N2 N2  N2  2

Define: R'2 =

 N1  N1  ( R2 + jX 2 ) + E1 = I  V2 N2  N2  ' 2

2

 N1    R2  N2  2

 N1    X 2  N2  ' N1 V2 = V2 N2 X '2 =

Then:

(

)

E1 = I 2' R2' + jX 2' + V2' El-Sharkawi@University of Washington

70

Equivalent Circuit Referred to Source Side

X1

R1

Ro

R2

N1 N2 E1

Xo

R'2

Io

I1 Ro

Xo

E1

I 2'

El-Sharkawi@University of Washington

X2

I2

E2

X1

R1

V1

' 2

Io

I1

V1

I

E1 = I 2' ( R2' + jX 2' ) + V2'

V2 X '2

V2' 71

Practical Considerations '

X1

R1

V1

R2

Io

I1 Ro

' R1 << Ro >> R2 ' X 1 << X o >> X 2

Xo

E1

I

' 2

I1 =

V2'

' I2 + Io

' I 2 >> I o

El-Sharkawi@University of Washington

X '2

<< I1 72

X1

R1

V1

Io

I1 Ro R1

V1

X '2

R'2

I

' 2

V2'

Xo

X1

R'2

I1

X '2

I 2' Io

Ro

El-Sharkawi@University of Washington

Xo

V2'

73

R1

V1

Define:

X1

R'2

X '2

I 1 ≈ I '2

V2'

' Req = R1 + R2 ' X eq = X 1 + X 2 El-Sharkawi@University of Washington

74

Analysis of Transformer X eq

Req

' I1 ≈ I 2

V1

' V1 = V2

+

' I2

V2'

Z

( Req + jX eq )

El-Sharkawi@University of Washington

75

V2 N1 V = V2 N2 ' 2

Terminologies Load Voltage Load Voltage referred to Source side Impedance referred to Source side 2

Load Current

I2

Load current referred to Source side

N2 I = I2 N1 ' 2

El-Sharkawi@University of Washington

 N1   R2 R =   N2  ' 2

2

 N1   X 2 X =   N2  ' 2

76

Analysis of Transformer X eq

Req

' I1 ≈ I 2

V1

' V1 = V2

+

' I2

V2'

Z’

( Req + jX eq )

El-Sharkawi@University of Washington

77

Req

X eq

' I1 ≈ I 2

V1

V2'

Z’

' I 2 X eq

' I 2 Req

' I2

El-Sharkawi@University of Washington

78

Req

V1

X eq

' I1 ≈ I 2

V2'

Z

V1 = V2' + I 2' Req + j I 2' X eq

δ

θ

V1 I '2 Z eq

V2'

I '2 X eq

I '2 Req

' I2 El-Sharkawi@University of Washington

79

Ratings of Actual 3phase Transformer Apparent Power (3-phase) 100 MVA, 13.8/138 KV ' 2

V

V2

line-to-line

line-to-line

El-Sharkawi@University of Washington

80

Example A transformer has the following parameters:

N1 =10 N2 Req = R1 + R2' =1Ω;

Z l = 0.5∠30 Ω o

X eq = X 1 + X 2' =10Ω; Ro =1000Ω;

X 0 = 5000Ω

The rated voltage of the primary winding is 1000V. Compute the load voltage.

El-Sharkawi@University of Washington

81

Solution

' I1 ≈ I 2

2

 N1   = 50 Ω Z = Z L   N2  ' L

X eq

Req

V1

V2'

Z’

0 V 1000 ∠ 0 o 1 I 2' = = = 17 . 7 ∠ − 38 . 31 A ' o ( Req + j X eq ) + Z L (1+ j 10) + 50 ∠30

V = I Z = (17.7 ∠ − 38.31 ' 2

' 2

' L

o

) (50 ∠30 ) = 885 ∠ − 8.31 o

0

V

N2 1 V2 = V = 885 = 88.5 V N1 10 ' 2

El-Sharkawi@University of Washington

82

Req

V1

eq

' I1 ≈ I 2

Vno load − V full load VR ≡ V full load Measured at the load side

V2'

da o L

Voltage Regulation VR X

V1 − V2' VR ≡ ' V2

El-Sharkawi@University of Washington

83

Example Calculate the voltage regulation of the transformer in the previous problem.

Solution:

VR ≡

' V1 − V2 ' V2

7209.5 − 7200 VR = × 100 = 0.14 % 7200 El-Sharkawi@University of Washington

84

Efficiency

η

Xeq

Req

V1

Io

I1 Ro

Output Power Pout η = = Input Power Pin

Pin = Pout + Losses

I

Xo

Pcu =

' 2

( )

' 2 I2

V2'

Req

V12 Piron = Ro

Plosses = Pcu + Piron

Pout = V2' I '2 cos θ El-Sharkawi@University of Washington

85

Example A 10 kVA, 2300/230 V, single phase distribution transformer has the following parameters:

R1 = 5.8 Ω ; X 1 = X '2 = 12 Ω ; R'2 = 6.05 Ω Ro = 75.6 kΩ ; X o = 69.4 kΩ At full load and 0.8 power factor lagging, compute the efficiency of the transformer.

El-Sharkawi@University of Washington

86

Solution Pout = V2' I '2 cos θ = S cos θ = 10 × 0.8 = 8 kW ' I2

Pcu =

( )

' 2 I2

Piron

S

10 ,000 = = = 4.35 A ' 2300 V2

Req = ( 4.35 )2 × ( 5.8 + 6.05 ) = 224.23 W

( )

( V V 2300 ) = ≈ = = 70 W Ro Ro 75,600 2 1

' 2 2

2

Pout 8000 η = = × 100 = 96.45 % Pin 8000 + 224.23 + 70 El-Sharkawi@University of Washington

87

Related Documents

Transformer
June 2020 13
Transformer
May 2020 16
Transformer
May 2020 25
Transformer
April 2020 22
Transformer
June 2020 13
Transformer
May 2020 22

More Documents from "raj"