CHE 411N Phase and Equilibria of Mixtures TTh 9:00 โ 10:30
D e p a r t m e n t o f Chemical Engineering
Term/Academic Year: First Semester of AY 2018-2019
Talamban, Cebu City, Philippines 6000
๐ฎ๐๐ expression
Name of Model
Redlich-Kister Expansion
๐๐ฅ
= ๐ฅ1 ๐ฅ2 [๐ด + ๐ต (๐ฅ1 โ ๐ฅ2 ) + ๐ถ (๐ฅ1 โ ๐ฅ2 )2 + โฏ ] ๐
๐๐๐๐พ1 = ๐ด๐ฅ22 ๐
๐๐๐๐พ2 = ๐ด๐ฅ12
Where Aโ 0 B, C, D, โฆ = 0
Applicability The Redlich-Kister expansion is used for the representation of excess thermodynamic properties. The number of terms retained in this expansion depends on the shape of the Gex curve as a function of composition.
๐บ ๐๐ฅ = ๐ฅ1 ๐ฅ2 [๐ด + ๐ต (๐ฅ1 โ ๐ฅ2 ) + ๐ถ (๐ฅ1 โ ๐ฅ2 )2 + โฏ ]
๐บ One-Constant Margules
Activity Coefficient Expression
The one-constant Margules equation provides a satisfactory representation for activity coefficient behavior only for liquid mixtures containing constituents of similar size, shape, and chemical nature
๐บ ๐๐ฅ = ๐ด๐ฅ1 ๐ฅ2 .
๐บ ๐๐ฅ = ๐ฅ1 ๐ฅ2 [๐ด + ๐ต (๐ฅ1 โ ๐ฅ2 ) + ๐ถ (๐ฅ1 โ ๐ฅ2 )2 + โฏ ] Two-Constant Margules
Where A, B โ 0 C, D, โฆ = 0 ๐บ ๐๐ฅ = ๐ฅ1 ๐ฅ2 [๐ด + ๐ต (๐ฅ1 โ ๐ฅ2 )]
Wohl Expansion
๐บ ๐๐ฅ ๐
๐(๐ฅ1 ๐1 + ๐ฅ2 ๐2 ) = 2๐12 ๐ง1 ๐ง2 + 3๐112 ๐ง12 ๐ง2 + 3๐122 ๐ง1 ๐ง22 + 4๐1112 ๐ง13 ๐ง2 + 4๐1222 ๐ง1 ๐ง23 + 6๐1122 ๐ง12 ๐ง22 + โฏ Where zi = volume fractions of species i ๐ง๐ =
๐ฅ๐ ๐๐ ๐ฅ1 ๐1 + ๐ฅ2 ๐2
๐
๐๐๐๐พ1 = ๐ผ1 ๐ฅ22 + ๐ฝ1 ๐ฅ23 ๐
๐๐๐๐พ2 = ๐ผ2 ๐ฅ12 + ๐ฝ2 ๐ฅ13
For more complicated systems (mixtures of dissimilar molecults), the excess Gibbs energy of a general mixture will not be a symmetric function of the mole fraction, and the activity coefficients of the two species in a mixture should not be expected to be mirror images.
Where ๐ผ๐ = ๐ด + 3(โ1)๐+1 ๐ต ๐ฝ๐ = 4(โ1)๐ ๐ต
Similar to the Redlich-Kister expansion, the Wohl expansion is one that is modeled after the Virial expansion for gaseous mixtures.
Van Laar Equations
๐บ ๐๐ฅ ๐
๐(๐ฅ1 ๐1 + ๐ฅ2 ๐2 ) = 2๐12 ๐ง1 ๐ง2 + 3๐112 ๐ง12 ๐ง2 + 3๐122 ๐ง1 ๐ง22 + 4๐1112 ๐ง13 ๐ง2 + 4๐1222 ๐ง1 ๐ง23 + 6๐1122 ๐ง12 ๐ง22 + โฏ Where a12 โ 0 a112, a122, โฆ = 0
Wilson Equation
๐บ ๐๐ฅ = 2๐12 ๐ง1 ๐ง2 (๐ฅ1 ๐1 + ๐ฅ2 ๐2 ) ๐
๐
๐บ ๐๐ฅ = โ๐ฅ1 ln(๐ฅ1 + ๐ฅ2 ฮ12 ) โ ๐ฅ2 ln(๐ฅ2 ๐
๐ + ๐ฅ1 ฮ21 )
๐๐๐พ1 =
๐ผ ๐ผ๐ฅ [1 + ๐ฅ1 ]2 ๐ฝ 2
๐๐๐พ2 =
๐ฝ ๐ฝ๐ฅ [1 + ๐ผ ๐ฅ2 ]2 1
The liquid-phase activity coefficients for the Wohl expansion can be obtained by taking the appropriate derivatives. They are frequently used to correlate activity coefficient data.
Where ฮฑ = 2q1a12 ฮฒ = 2q2a12
๐๐๐พ1 = โ ln(๐ฅ1 + ๐ฅ2 ฮ12 ) ฮ12 + ๐ฅ2 [ ๐ฅ1 + ๐ฅ2 ฮ12 ฮ 21 โ ] ๐ฅ1 ฮ21 + ๐ฅ2 ๐๐๐พ2 = โ ln(๐ฅ2 + ๐ฅ1 ฮ 21 ) ฮ12 โ ๐ฅ1 [ ๐ฅ1 + ๐ฅ2 ฮ12 ฮ 21 โ ] ๐ฅ1 ฮ21 + ๐ฅ2
The ratio of species 1 to species 2 molecules in the vicinity of any molecule is the same as the ratio of their mole fractions. A different class of excess Gibbs energy models can be formulated by assuming that the ratio of species 1 to 2 molecules surrounding any molecule also depends on the differences in size and energies of interaction of the chosen molecule with both species. Thus, around each molecule there is a local composition that differs with the bulk composition
NRTL (NonRandom Two Liquid) Model of Renon and Prausnitz
๐บ ๐๐ฅ ๐21 ๐บ21 ๐12 ๐บ12 = ๐ฅ1 ๐ฅ2 ( โ ) ๐
๐ ๐ฅ1 + ๐ฅ2 G21 ๐ฅ2 + ๐ฅ1 G12
๐๐๐พ1
2 ๐บ21 = ) ๐ฅ1 + ๐ฅ2 G21 ๐12 ๐บ12 + ] (๐ฅ2 + ๐ฅ1 ๐บ12 )2
๐ฅ22 [๐21 (
๐๐๐พ2
Flory-Huggins Equation
ฮ๐๐๐ฅ ๐ = โ๐
(๐ฅ1 ๐๐๐1 + ๐ฅ2 ๐๐๐2 ) ๐ ๐๐ฅ = ฮ๐๐๐ฅ ๐ โ ฮ๐๐๐ฅ ๐ ๐ผ๐ ฮ๐๐๐ฅ ๐ป = ๐ป ๐๐ฅ = ๐๐
๐(๐ฅ1 + ๐๐ฅ2 )๐1 ๐2 where ฯ is an adjustable parameter known as the Flory interaction parameter
๐บ ๐๐ฅ ๐ป ๐๐ฅ โ ๐๐ ๐๐ฅ = ๐
๐ ๐
๐ ๐บ ๐๐ฅ ๐1 ๐2 = [๐ฅ1 ๐๐ + ๐ฅ2 ๐๐ ] + ๐(๐ฅ1 ๐
๐ ๐ฅ1 ๐ฅ2 + ๐๐ฅ2 )๐1 ๐2
2 ๐บ12 = ๐ฅ12 [๐12 ( ) ๐ฅ2 + ๐ฅ1 G12 ๐21 ๐บ21 + ] (๐ฅ1 + ๐ฅ2 ๐บ21 )2 ๐1 1 ๐๐๐พ1 = ๐๐ + (1 โ ) ๐2 ๐ฅ1 ๐ + ๐๐22
๐๐๐พ2 = ๐๐
๐2 โ (๐ โ 1)๐1 ๐ฅ2 + ๐๐๐12
The Flory and Huggins model is meant to apply to mixtures of molecules of very different sizes (including solutions of polymers).
UNIQUAC (Universal QuasiChemical) Model of Abrams and Prausnitz
๐บ ๐๐ฅ (๐๐๐๐๐๐๐๐ก๐๐๐๐๐) ๐
๐ = โ ๐ฅ๐ ๐๐ ๐
๐๐ ๐ฅ๐
๐ง ๐๐ + โ ๐ฅ๐ ๐๐ ๐๐ 2 ๐๐ ๐
๐บ ๐๐ฅ (๐๐๐ ๐๐๐ข๐๐) ๐
๐ = โ โ ๐ฅ๐ ๐๐ ln(โ ๐๐ ๐๐๐ ๐๐ ๐
๐
๐๐ ) ๐๐๐
Where ri = volume parameter for species i qi = surface area parameter for species i ฮธi = area fraction of species i ๐ฅ๐ ๐๐ = โ๐ ๐ฅ๐ ๐๐ ฮฆi = segment or volume fraction of species i ๐ฅ๐ ๐๐ = โ๐ ๐ฅ๐ ๐๐
UNIFAC (UNIQUAC Functional-Group Activity Coefficients) Model
๐บ ๐๐ฅ ๐บ ๐๐ฅ (๐๐๐๐๐๐๐๐ก๐๐๐๐๐) = ๐
๐ ๐
๐ ๐๐ฅ ๐บ (๐๐๐ ๐๐๐ข๐๐) + ๐
๐
๐๐๐พ๐ = ๐๐๐พ๐ (๐๐๐๐๐๐๐๐ก๐๐๐๐๐) + ๐๐๐พ๐ (๐๐๐ ๐๐๐ข๐๐)
This model is based on the statistical mechanical theory. It allows local compositions to result from both the size and energy differences between the molecules in the mixture.
๐๐๐พ๐ (๐๐๐๐๐๐๐๐ก๐๐๐๐๐) ๐๐ = ๐๐ ๐ฅ๐ ๐ง ๐๐ โ ๐๐ ๐๐ 2 ๐๐ + ๐๐ ๐๐ โ โ ๐ฅ๐ ๐๐ ๐ฅ๐ ๐
๐๐๐พ๐ (๐๐๐ ๐๐๐ข๐๐) = ๐๐ [1 = ln(โ ๐๐ ๐๐๐ ) โ โ ๐
๐
๐๐ ๐๐๐ ] โ๐ ๐๐ ๐๐๐
Where ๐๐ =
(๐๐ โ ๐๐ )๐ง โ (๐๐ โ 1) 2
(๐)
๐๐๐พ๐ (๐๐๐ ๐๐๐ข๐๐) = โ ๐ฃ๐ [๐๐ฮ๐ ๐
(๐)
โ ๐๐ฮ๐ ]
The UNIFAC method is used for the prediction of non-electrolyte activity in non-ideal mixtures. The correlation attempts to describe molecular interactions based on the functional groups attached to the molecule. This is done as to reduce the sheer number of binary interactions that would be needed to be measured for the prediction of the systemโs state.