Thermo3-models-final - Copy.docx

  • Uploaded by: qwerasdf
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Thermo3-models-final - Copy.docx as PDF for free.

More details

  • Words: 1,078
  • Pages: 5
CHE 411N Phase and Equilibria of Mixtures TTh 9:00 โ€“ 10:30

D e p a r t m e n t o f Chemical Engineering

Term/Academic Year: First Semester of AY 2018-2019

Talamban, Cebu City, Philippines 6000

๐‘ฎ๐’†๐’™ expression

Name of Model

Redlich-Kister Expansion

๐‘’๐‘ฅ

= ๐‘ฅ1 ๐‘ฅ2 [๐ด + ๐ต (๐‘ฅ1 โˆ’ ๐‘ฅ2 ) + ๐ถ (๐‘ฅ1 โˆ’ ๐‘ฅ2 )2 + โ‹ฏ ] ๐‘…๐‘‡๐‘™๐‘›๐›พ1 = ๐ด๐‘ฅ22 ๐‘…๐‘‡๐‘™๐‘›๐›พ2 = ๐ด๐‘ฅ12

Where Aโ‰ 0 B, C, D, โ€ฆ = 0

Applicability The Redlich-Kister expansion is used for the representation of excess thermodynamic properties. The number of terms retained in this expansion depends on the shape of the Gex curve as a function of composition.

๐บ ๐‘’๐‘ฅ = ๐‘ฅ1 ๐‘ฅ2 [๐ด + ๐ต (๐‘ฅ1 โˆ’ ๐‘ฅ2 ) + ๐ถ (๐‘ฅ1 โˆ’ ๐‘ฅ2 )2 + โ‹ฏ ]

๐บ One-Constant Margules

Activity Coefficient Expression

The one-constant Margules equation provides a satisfactory representation for activity coefficient behavior only for liquid mixtures containing constituents of similar size, shape, and chemical nature

๐บ ๐‘’๐‘ฅ = ๐ด๐‘ฅ1 ๐‘ฅ2 .

๐บ ๐‘’๐‘ฅ = ๐‘ฅ1 ๐‘ฅ2 [๐ด + ๐ต (๐‘ฅ1 โˆ’ ๐‘ฅ2 ) + ๐ถ (๐‘ฅ1 โˆ’ ๐‘ฅ2 )2 + โ‹ฏ ] Two-Constant Margules

Where A, B โ‰  0 C, D, โ€ฆ = 0 ๐บ ๐‘’๐‘ฅ = ๐‘ฅ1 ๐‘ฅ2 [๐ด + ๐ต (๐‘ฅ1 โˆ’ ๐‘ฅ2 )]

Wohl Expansion

๐บ ๐‘’๐‘ฅ ๐‘…๐‘‡(๐‘ฅ1 ๐‘ž1 + ๐‘ฅ2 ๐‘ž2 ) = 2๐‘Ž12 ๐‘ง1 ๐‘ง2 + 3๐‘Ž112 ๐‘ง12 ๐‘ง2 + 3๐‘Ž122 ๐‘ง1 ๐‘ง22 + 4๐‘Ž1112 ๐‘ง13 ๐‘ง2 + 4๐‘Ž1222 ๐‘ง1 ๐‘ง23 + 6๐‘Ž1122 ๐‘ง12 ๐‘ง22 + โ‹ฏ Where zi = volume fractions of species i ๐‘ง๐‘– =

๐‘ฅ๐‘– ๐‘ž๐‘– ๐‘ฅ1 ๐‘ž1 + ๐‘ฅ2 ๐‘ž2

๐‘…๐‘‡๐‘™๐‘›๐›พ1 = ๐›ผ1 ๐‘ฅ22 + ๐›ฝ1 ๐‘ฅ23 ๐‘…๐‘‡๐‘™๐‘›๐›พ2 = ๐›ผ2 ๐‘ฅ12 + ๐›ฝ2 ๐‘ฅ13

For more complicated systems (mixtures of dissimilar molecults), the excess Gibbs energy of a general mixture will not be a symmetric function of the mole fraction, and the activity coefficients of the two species in a mixture should not be expected to be mirror images.

Where ๐›ผ๐‘– = ๐ด + 3(โˆ’1)๐‘–+1 ๐ต ๐›ฝ๐‘– = 4(โˆ’1)๐‘– ๐ต

Similar to the Redlich-Kister expansion, the Wohl expansion is one that is modeled after the Virial expansion for gaseous mixtures.

Van Laar Equations

๐บ ๐‘’๐‘ฅ ๐‘…๐‘‡(๐‘ฅ1 ๐‘ž1 + ๐‘ฅ2 ๐‘ž2 ) = 2๐‘Ž12 ๐‘ง1 ๐‘ง2 + 3๐‘Ž112 ๐‘ง12 ๐‘ง2 + 3๐‘Ž122 ๐‘ง1 ๐‘ง22 + 4๐‘Ž1112 ๐‘ง13 ๐‘ง2 + 4๐‘Ž1222 ๐‘ง1 ๐‘ง23 + 6๐‘Ž1122 ๐‘ง12 ๐‘ง22 + โ‹ฏ Where a12 โ‰  0 a112, a122, โ€ฆ = 0

Wilson Equation

๐บ ๐‘’๐‘ฅ = 2๐‘Ž12 ๐‘ง1 ๐‘ง2 (๐‘ฅ1 ๐‘ž1 + ๐‘ฅ2 ๐‘ž2 ) ๐‘…๐‘‡

๐บ ๐‘’๐‘ฅ = โˆ’๐‘ฅ1 ln(๐‘ฅ1 + ๐‘ฅ2 ฮ›12 ) โˆ’ ๐‘ฅ2 ln(๐‘ฅ2 ๐‘…๐‘‡ + ๐‘ฅ1 ฮ›21 )

๐‘™๐‘›๐›พ1 =

๐›ผ ๐›ผ๐‘ฅ [1 + ๐‘ฅ1 ]2 ๐›ฝ 2

๐‘™๐‘›๐›พ2 =

๐›ฝ ๐›ฝ๐‘ฅ [1 + ๐›ผ ๐‘ฅ2 ]2 1

The liquid-phase activity coefficients for the Wohl expansion can be obtained by taking the appropriate derivatives. They are frequently used to correlate activity coefficient data.

Where ฮฑ = 2q1a12 ฮฒ = 2q2a12

๐‘™๐‘›๐›พ1 = โˆ’ ln(๐‘ฅ1 + ๐‘ฅ2 ฮ›12 ) ฮ›12 + ๐‘ฅ2 [ ๐‘ฅ1 + ๐‘ฅ2 ฮ›12 ฮ› 21 โˆ’ ] ๐‘ฅ1 ฮ›21 + ๐‘ฅ2 ๐‘™๐‘›๐›พ2 = โˆ’ ln(๐‘ฅ2 + ๐‘ฅ1 ฮ› 21 ) ฮ›12 โˆ’ ๐‘ฅ1 [ ๐‘ฅ1 + ๐‘ฅ2 ฮ›12 ฮ› 21 โˆ’ ] ๐‘ฅ1 ฮ›21 + ๐‘ฅ2

The ratio of species 1 to species 2 molecules in the vicinity of any molecule is the same as the ratio of their mole fractions. A different class of excess Gibbs energy models can be formulated by assuming that the ratio of species 1 to 2 molecules surrounding any molecule also depends on the differences in size and energies of interaction of the chosen molecule with both species. Thus, around each molecule there is a local composition that differs with the bulk composition

NRTL (NonRandom Two Liquid) Model of Renon and Prausnitz

๐บ ๐‘’๐‘ฅ ๐œ21 ๐บ21 ๐œ12 ๐บ12 = ๐‘ฅ1 ๐‘ฅ2 ( โˆ’ ) ๐‘…๐‘‡ ๐‘ฅ1 + ๐‘ฅ2 G21 ๐‘ฅ2 + ๐‘ฅ1 G12

๐‘™๐‘›๐›พ1

2 ๐บ21 = ) ๐‘ฅ1 + ๐‘ฅ2 G21 ๐œ12 ๐บ12 + ] (๐‘ฅ2 + ๐‘ฅ1 ๐บ12 )2

๐‘ฅ22 [๐œ21 (

๐‘™๐‘›๐›พ2

Flory-Huggins Equation

ฮ”๐‘š๐‘–๐‘ฅ ๐‘† = โˆ’๐‘…(๐‘ฅ1 ๐‘™๐‘›๐œ™1 + ๐‘ฅ2 ๐‘™๐‘›๐œ™2 ) ๐‘† ๐‘’๐‘ฅ = ฮ”๐‘š๐‘–๐‘ฅ ๐‘† โˆ’ ฮ”๐‘š๐‘–๐‘ฅ ๐‘† ๐ผ๐‘€ ฮ”๐‘š๐‘–๐‘ฅ ๐ป = ๐ป ๐‘’๐‘ฅ = ๐œ’๐‘…๐‘‡(๐‘ฅ1 + ๐‘š๐‘ฅ2 )๐œ™1 ๐œ™2 where ฯ‡ is an adjustable parameter known as the Flory interaction parameter

๐บ ๐‘’๐‘ฅ ๐ป ๐‘’๐‘ฅ โˆ’ ๐‘‡๐‘† ๐‘’๐‘ฅ = ๐‘…๐‘‡ ๐‘…๐‘‡ ๐บ ๐‘’๐‘ฅ ๐œ™1 ๐œ™2 = [๐‘ฅ1 ๐‘™๐‘› + ๐‘ฅ2 ๐‘™๐‘› ] + ๐œ’(๐‘ฅ1 ๐‘…๐‘‡ ๐‘ฅ1 ๐‘ฅ2 + ๐‘š๐‘ฅ2 )๐œ™1 ๐œ™2

2 ๐บ12 = ๐‘ฅ12 [๐œ12 ( ) ๐‘ฅ2 + ๐‘ฅ1 G12 ๐œ21 ๐บ21 + ] (๐‘ฅ1 + ๐‘ฅ2 ๐บ21 )2 ๐œ™1 1 ๐‘™๐‘›๐›พ1 = ๐‘™๐‘› + (1 โˆ’ ) ๐œ™2 ๐‘ฅ1 ๐‘š + ๐œ’๐œ™22

๐‘™๐‘›๐›พ2 = ๐‘™๐‘›

๐œ™2 โˆ’ (๐‘š โˆ’ 1)๐œ™1 ๐‘ฅ2 + ๐‘š๐œ’๐œ™12

The Flory and Huggins model is meant to apply to mixtures of molecules of very different sizes (including solutions of polymers).

UNIQUAC (Universal QuasiChemical) Model of Abrams and Prausnitz

๐บ ๐‘’๐‘ฅ (๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™) ๐‘…๐‘‡ = โˆ‘ ๐‘ฅ๐‘– ๐‘™๐‘› ๐‘–

๐œ™๐‘– ๐‘ฅ๐‘–

๐‘ง ๐œƒ๐‘– + โˆ‘ ๐‘ฅ๐‘– ๐‘ž๐‘– ๐‘™๐‘› 2 ๐œ™๐‘– ๐‘–

๐บ ๐‘’๐‘ฅ (๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™) ๐‘…๐‘‡ = โˆ’ โˆ‘ ๐‘ฅ๐‘– ๐‘ž๐‘– ln(โˆ‘ ๐œƒ๐‘— ๐œ๐‘—๐‘– ๐‘™๐‘› ๐‘–

๐‘—

๐œƒ๐‘– ) ๐œ™๐‘—๐‘–

Where ri = volume parameter for species i qi = surface area parameter for species i ฮธi = area fraction of species i ๐‘ฅ๐‘– ๐‘ž๐‘– = โˆ‘๐‘— ๐‘ฅ๐‘— ๐‘ž๐‘— ฮฆi = segment or volume fraction of species i ๐‘ฅ๐‘– ๐‘Ÿ๐‘– = โˆ‘๐‘— ๐‘ฅ๐‘— ๐‘Ÿ๐‘—

UNIFAC (UNIQUAC Functional-Group Activity Coefficients) Model

๐บ ๐‘’๐‘ฅ ๐บ ๐‘’๐‘ฅ (๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™) = ๐‘…๐‘‡ ๐‘…๐‘‡ ๐‘’๐‘ฅ ๐บ (๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™) + ๐‘…๐‘‡

๐‘™๐‘›๐›พ๐‘– = ๐‘™๐‘›๐›พ๐‘– (๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™) + ๐‘™๐‘›๐›พ๐‘– (๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™)

This model is based on the statistical mechanical theory. It allows local compositions to result from both the size and energy differences between the molecules in the mixture.

๐‘™๐‘›๐›พ๐‘– (๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘œ๐‘Ÿ๐‘–๐‘Ž๐‘™) ๐œ™๐‘– = ๐‘™๐‘› ๐‘ฅ๐‘– ๐‘ง ๐œƒ๐‘– โˆ’ ๐‘ž๐‘– ๐‘™๐‘› 2 ๐œ™๐‘– + ๐‘™๐‘– ๐œ™๐‘– โˆ’ โˆ‘ ๐‘ฅ๐‘— ๐‘™๐‘— ๐‘ฅ๐‘– ๐‘—

๐‘™๐‘›๐›พ๐‘– (๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™) = ๐‘ž๐‘– [1 = ln(โˆ‘ ๐œƒ๐‘— ๐œ๐‘—๐‘– ) โˆ’ โˆ‘ ๐‘—

๐‘—

๐œƒ๐‘— ๐œ๐‘–๐‘— ] โˆ‘๐‘˜ ๐œƒ๐‘˜ ๐œ๐‘˜๐‘—

Where ๐‘™๐‘– =

(๐‘Ÿ๐‘– โˆ’ ๐‘ž๐‘– )๐‘ง โˆ’ (๐‘Ÿ๐‘– โˆ’ 1) 2

(๐‘–)

๐‘™๐‘›๐›พ๐‘– (๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™) = โˆ‘ ๐‘ฃ๐‘˜ [๐‘™๐‘›ฮ“๐‘˜ ๐‘˜

(๐‘–)

โˆ’ ๐‘™๐‘›ฮ“๐‘˜ ]

The UNIFAC method is used for the prediction of non-electrolyte activity in non-ideal mixtures. The correlation attempts to describe molecular interactions based on the functional groups attached to the molecule. This is done as to reduce the sheer number of binary interactions that would be needed to be measured for the prediction of the systemโ€™s state.

More Documents from "qwerasdf"