Tai Lieu Ve Acetic Acid

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tai Lieu Ve Acetic Acid as PDF for free.

More details

  • Words: 10,944
  • Pages: 30
[email protected]

Hanoi University Of Technology

Common Name

ACETIC ACID

Manufactured by

GENERAL CHEMICAL

CAS Number Revised

12/01/1989

Source

Dolphin (DOL.031337)

A. B. C. D. E. F. G. H. I. J. K.

General Information First Aid Measures Hazards Information Precautions/Procedures Personal Protective Equipment Physical Data Reactivity Data Hazardous Ingredients (Mixtures Only) Environmental References Additional Information

GENERAL CHEMICAL PRODUCT SAFETY DATA SHEET

ACETIC ACID

http://www4.ucmsds.com/site/scripts/emailmsds.asp?Name=ACETIC %20ACID&Mfg=GENERAL %20CHEMICAL&Date=12%2f01%2f1989&CAS=&Num=DOL.031337 ------A.

GENERAL INFORMATION------

TRADE NAME (COMMON NAME): (X) C.A.S. NO 64-19-7 (OF ACETIC ACID)

ACETIC ACID (VARIOUS GRADES)

(N/A) GENERAL PRODUCT CODE #:

CHEMICAL NAME AND/OR SYNONYM: FORMULA:

ACETIC ACID AQUEOUS SOLUTION

CH3COOH + H2O

MOLECULAR WEIGHT:

60.05 (ACETIC ACID)

ADDRESS (NO., STREET. CITY. STATE AND ZIP CODE) GENERAL CHEMICAL CORP 90 EAST HALSEY ROAD PARSIPPANY, N.J. 07054 Tai lieu tu Internet

12/1/2009

Trang 1

[email protected] CONTACT:

Hanoi University Of Technology

MANAGER OF PRODUCT SAFETY

PHONE NUMBER:

(201) 515-1840

LAST ISSUE DATE: SEPT. 1986 CURRENT ISSUE DATE: DECEMBER, 1989 ------B.

FIRST AID MEASURES------

EMERGENCY PHONE NUMBER (800) 631-8050 CALL A PHYSICIAN AT ONCE. INHALATION: REMOVE TO FRESH AIR. IF NOT BREATHING, GIVE ARTIFICIAL RESPIRATION, PREFERABLY MOUTH-TO-MOUTH. IF BREATHING IS DIFFICULT, GIVE OXYGEN IF QUALIFIED OPERATOR IS AVAILABLE. INGESTION: DO NOT INDUCE VOMITING. GIVE TAP WATER, MILK (2-3 GLASSES), MILK OF MAGNESIA OR EGG WHITES BEATEN WITH WATER. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. SKIN: IMMEDIATELY FLUSH WITH PLENTY OF WATER FOR 15 MINUTES, WHILE REMOVING CONTAMINATED CLOTHING. WASH CLOTHING BEFORE REUSE. EYES: IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. IF IRRITATION PERSISTS, FLUSH AN ADDITIONAL 15 MINUTES. SEEK MEDICAL ASSISTANCE FOR INHALATION, INGESTION AND IRRITATION. ------C.

HAZARDS INFORMATION------

HEALTH INHALATION: VAPOR CAUSES IRRITATION OF EYES, NOSE AND THROAT; CAN AFFECT RESPIRATORY RESPONSE, CAUSE COUGHING AND CHEST PAINS. TCLO, HUMAN = 816 PPM/3M. LC50 MOUSE = 5620 PPM/1 HR. INGESTION: SEVERE PAIN IN MOUTH, GULLET, STOMACH; POSSIBLE CIRCULATORY COLLAPSE, UREMIA AND DEATH (HUMAN). LD50 (ORAL-RAT) = 3310 MG/KG. SKIN: CONCENTRATED SOLUTION CAUSES SEVERE BURNS IF NOT PROMPTLY WASHED OFF. VAPOR MAY BLACKEN SKIN AND EXPOSED TEETH. DILUTE SOLUTIONS MAY CAUSE DERMATITIS IN SOME SENSITIVE INDIVIDUALS. LD50 (SKIN-RABBIT) = 1060 MG/KG. Tai lieu tu Internet

12/1/2009

Trang 2

[email protected]

Hanoi University Of Technology

EYES: CAUSES SEVERE BURNS. MAY CAUSE PERMANENT CORNEAL INJURY, WHICH MAY BE FOLLOWED BY BLINDNESS. HIGH VAPOR CONCENTRATIONS MAY RESULT IN CONJUNCTIVITIS. PERMISSIBLE CONCENTRATION: (SEE SECTION J) OSHA/TWA: 10 PPM ACGIH/TLV: 10 PPM

AIR

BIOLOGICAL: NONE ESTABLISHED

UNUSUAL CHRONIC TOXICITY: IRRITATION BRONCHITIS, EROSION OF THE TEETH.

OF

RESPIRATORY

TRACT,

CHRONIC

FIRE AND EXPLOSION FLASH POINT: 40 DEG. C (N/A) OPEN CUP (X) CLOSED CUP AUTOIGNITION TEMPERATURE: .426 - .465 DEG C FLAMMABLE LIMITS IN AIR (% BY VOL.)

LOWER - 5.4

UPPER - 16.0

UNUSUAL FIRE AND EXPLOSION HAZARDS: SEE HAZARDOUS DECOMPOSITION PRODUCTS, SECTION G. GIVES OFF FLAMMABLE VAPOR ABOVE ITS FLASH POINT (104 DEG. F). IT IS DANGEROUS IN CONTACT WITH CHROMATIC ACID, SODIUM PEROXIDE, NITRIC ACID OR OTHER OXIDIZING MATERIALS.

------D.

PRECAUTIONS/PROCEDURES------

FIRE EXTINGUISHING CHEMICAL

AGENTS

RECOMMENDED

WATER

SPRAY,

FOAM,

CO2

OR

DRY

FIRE EXTINGUISHING AGENTS TO AVOID: WATER IN A SOLID STREAM WILL SCATTER AND SPREAD FIRE. USE WATER SPRAY. SPECIAL FIRE FIGHTING PRECAUTIONS: USE WATER SPRAY TO COOL CONTAINERS EXPOSED TO FIRE AND TO PROTECT THOSE INVOLVED IN FIRE-FIGHTING. INVOLVED PERSONNEL SHOULD WEAR SELF-CONTAINED BREATHING APPARATUS AND EYE PROTECTION AND FULL PROTECTIVE CLOTHING, AS NEEDED. WATER MAY BE USED TO DILUTE SPILLED MATERIAL, TO REDUCE FLAMMABILITY AND TO DISSIPATE IRRITATING VAPORS EVOLVING FROM THE FIRE. VENTILATION: PROVIDE ADEQUATE VENTILATION TO MEET TLV/TWA REQUIREMENTS. LOCAL EXHAUST: FROM FLOOR AND LOW SPACES. Tai lieu tu Internet

12/1/2009

Trang 3

[email protected]

Hanoi University Of Technology

MECHANICAL (GENERAL): FLOOR-MOUNTED FAN OR BLOWER. MATERIAL SHOULD PREFERABLY BE USED IN AN EXHAUSTED HOOD. EQUIPMENT SHOULD BE EXPLOSIONPROOF AND EXHAUST DUCTS SHOULD BE ACID-RESISTANT. NORMAL HANDLING AVOID BREATHING VAPORS. AVOID LIQUID OR VAPOR CONTACT WITH EYES, SKIN OR CLOTHING. USE WITH ADEQUATE VENTILATION. KEEP AWAY FROM HEAT, SPARKS AND OPEN FLAME (ALSO, ELECTRICAL EQUIPMENT AND WIRING). WEAR PERSONAL PROTECTIVE EQUIPMENT AS NEEDED. STORAGE STORE IN CLOSED CONTAINERS IN A WELL-VENTILATED AREA. OUTDOORS OR DETACHED STORAGE IS PREFERRED. KEEP AWAY FROM OXIDIZING AGENTS AND COMBUSTIBLE MATERIALS. KEEP ABOVE ITS FREEZING POINT (62 DEG. F) TO AVOID RUPTURE OF CARBOYS AND GLASS CONTAINERS DUE TO EXPANSION UPON SOLIDIFICATION. IF FROZEN, THAW BY CAREFULLY MOVING CONTAINER TO WARM AREA. SPILL OR LEAK (ALWAYS WEAR PERSONAL PROTECTIVE EQUIPMENT - SECTION E) PROVIDE ADEQUATE VENTILATION. CLEAN-UP PERSONNEL SHOULD WEAR SELFCONTAINED BREATHING APPARATUS AND PERSONAL PROTECTIVE EQUIPMENT TO PREVENT LIQUID CONTACT. USE WATER SPRAY TO DISPENSE VAPORS AND PROTECT INVOLVED PERSONNEL AND TO REDUCE FLAMMABILITY. ELIMINATE IGNITION SOURCES. SMALL SPILLS CAN BE NEUTRALIZED WITH SODA ASH OR SODIUM BICARBONATE. LARGE SPILLS SHOULD BE CONTAINED AND COLLECTED IN COVERED CONTAINERS, IF POSSIBLE; THEN LABELED FOR EVENTUAL WASTE DISPOSAL. SPECIAL: PRECAUTIONS/PROCEDURES/LABEL INSTRUCTIONS SIGNAL WORD - DANGER! WEAR-DILUTED ACID CAN REACT WITH METALS TO PRODUCE HYDROGEN GAS. LABEL INSTRUCTIONS READ: CAUSES SEVERE BURNS. MAY BE FATAL IF SWALLOWED. HARMFUL IF INHALED. COMBUSTIBLE. POISON.

------E.

PERSONAL PROTECTIVE EQUIPMENT------

RESPIRATORY PROTECTION WHERE VAPORS ARE BELOW 500 PPM, USE A CHEMICAL CARTRIDGE, ORGANIC VAPOR RESPIRATOR WITH FULL FACEPIECE OR A SELF-CONTAINED BREATHING APPARATUS WITH FULL FACEPIECE, NIOSH-APPROVED. VAPORS TO 1000 PPM REQUIRE AN AIRSUPPLIED RESPIRATOR WITH FULL FACEPIECE, APPROVED BY NIOSH. ESCAPE CONDITIONS CALL FOR NIOSH-APPROVED GAS MASK WITH ORGANIC VAPOR CANISTER OR SELF-CONTAINED BREATHING APPARATUS.

Tai lieu tu Internet

12/1/2009

Trang 4

[email protected]

Hanoi University Of Technology

EYES AND FACE FOR MATERIAL HANDLED NORMALLY IN CLOSED VENTILATED SYSTEM, WEAR SAFETY GLASSES WITH NONPERFORATED SIDE SHIELDS. FOR LEAK, SPILL OR OTHER EMERGENCY, WEAR CHEMICAL SAFETY GOGGLES OR FULL FACE SHIELD TO GUARD AGAINST SPLASHING. DO NOT WEAR CONTACT LENSES UNDER THESE CONDITIONS. HANDS, ARMS, AND BODY WEAR IMPERVIOUS GLOVES (RUBBER OR NEOPRENE) AND RUBBER APRON. IN CASE OF LEAK, SPILL OR EMERGENCY SITUATIONS WITH POSSIBILITY OF CONTACT WITH THE MATERIAL, ADD FULL IMPERVIOUS CLOTHING. OTHER CLOTHING AND EQUIPMENT RUBBER BOOTS, DEPENDING ON CONDITIONS. EYEWASH STATIONS AND SAFETY SHOWERS SHOULD BE PROVIDED IN AREAS OF USE OR HANDLING. PROVIDE PROTECTIVE CARRIERS FOR HANDLING MATERIAL IN GLASS BOTTLES.

------F.

PHYSICAL DATA------

MATERIAL IS (AT NORMAL CONDITIONS): (N/A) _____________ APPEARANCE AND ODOR: RESEMBLING VINEGAR.

(X) LIQUID

(N/A) SOLID

(N/A) GAS

CLEAR, COLORLESS LIQUID WITH A SOUR, PUNGENT ODOR

BOILING POINT:

117.9 DEG. C (OF 100% ACETIC ACID) MELTING POINT: 16.7 DEG. C SPECIFIC GRAVITY (H2O=1): VAPOR DENSITY (AIR=1):

(LIQUID)

1.05

2.07

SOLUBILITY IN WATER (% BY WEIGHT):

COMPLETE

pH: (AQUEOUS SOLUTIONS) 2.4 @ 1.0M 2.9 @ 0.1M 3.4 @ 0.01M VAPOR PRESSURE (mm Hg AT 20 DEG. C) (X)

(PSIG) (N/A) :

11.4

EVAPORATION RATE (BUTYL ACETATE =1) (N/A) (ETHER =1)(X) 11.0 (BUTYL ACETATE=1): 0.97 % VOLATILES BY VOLUME (AT 20 DEG. C): Tai lieu tu Internet

100

12/1/2009

Trang 5

[email protected]

------G.

Hanoi University Of Technology

REACTIVITY DATA------

STABILITY (N/A) UNSTABLE

CONDITIONS TO AVOID NONE.

(X) STABLE

INCOMPATIBILITY (MATERIALS TO AVOID) STRONG OXIDIZING AGENTS, HYDROXIDES, AMINES, OXIDES, CARBONATES. AVOID CONTAMINATION WITH ACETALDEHYDE, CHROMIC ACID AND ALKALIES. HAZARDOUS DECOMPOSITION PRODUCTS WE CARBON MONOXIDE AND/OR CARBON DIOXIDE

WOULD

HAZARDOUS POLYMERIZATION (N/A) MAY OCCUR (X) WILL NOT OCCUR

EXPECT

BURNING

TO

PRODUCE

CONDITIONS TO AVOID NONE.

------H. HAZARDOUS INGREDIENTS (MIXTURES ONLY)------

MATERIAL OR COMPONENT/C.A.S. #

WT. %

HAZARD DATA (SEE SECT. J)

NOT APPLICABLE * = PROPRIETARY - TRADE SECRET

------I. ENVIRONMENTAL------

OCTANOL/WATER PARTITION COEFFICIENT:

-0.17

DEGRADABILITY/AQUATIC TOXICITY: BOD5 (G/G): 0.34 - 0.88 STD. DILUTION/SEWAGE SEED AQUATIC TOXICITY RATING: TLM96:100-10 PPM (TLM96=LETHAL CONCENTRATION (50% KILL)96 DAYS) 40 CFR 116-117 EPA HAZARDOUS SUBSTANCE ? (CLEAN WATER ACT SECT 311)

Tai lieu tu Internet

IF SO, REPORTABLE QUANTITY 5000 (N/A) (OF 100% ACETIC ACID) NO

#

(X) YES

12/1/2009

Trang 6

[email protected]

Hanoi University Of Technology

WASTE DISPOSAL METHODS (DISPOSER MUST COMPLY WITH FEDERAL STATE AND LOCAL DISPOSAL OR DISCHARGE LAWS) TREATMENT OR DISPOSAL OF WASTE GENERATED BY USE OF THIS PRODUCT SHOULD BE REVIEWED IN TERMS OF APPLICABLE FEDERAL, STATE AND LOCAL LAWS AND REGULATIONS. USERS ARE ADVISED TO CONSULT WITH APPROPRIATE REGULATORY AGENCIES BEFORE DISCHARGING, TREATMENT OR DISPOSING OF THIS MATERIAL. WHERE PERMITTED UNDER ABOVE-MENTIONED REGULATIONS, WASTE MATERIAL CAN BE INCINERATED IN A FURNACE (SUPPLEMENTARY FUEL MAY BE NECESSARY FOR BURNING); OR NEUTRALIZED WASTE DISPOSED OF IN AN APPROVED CHEMICAL WASTES LANDFILL. 40 CFR 261 RCRA STATUS OF UNUSED MATERIAL IF DISCARDED: NOT A "HAZARDOUS WASTE". HAZARDOUS WASTE NUMBER NA

(IF APPLICABLE):

------J. REFERENCES------

PERMISSIBLE CONCENTRATION REFERENCES TWA: OSHA REGULATIONS, 29 CFR 1910 (1982), "Z LIST". TLV: ACGIH 1987-88 LIST, "THRESHOLD LIMIT VALUES FOR CHEMICAL SUBSTANCES..." NIOSH REGISTRY (RTECS), 1981-82, ACCESSION NO. AF1225000, "ACETIC ACID". DOT CLASSIFICATION: CORROSIVE MATERIAL 49 CFR 173 REGULATORY STANDARDS:

D.O.T. HAZARDOUS MATERIALS TABLE: 49 CFR 172.101

I.D. NO.: UN2790 GENERAL MERCK INDEX 10TH ED., 1983 VERSCHUEREN: "HANDBOOK OF ENVIRONMENTAL DATA INORGANIC CHEMICALS", 2ND ED., 1983, VAN NOSTRAND REINHOLD. U.S. COAST GUARD: CHRIS MANUAL, ENTRY: "ACETIC ACID" TECHNICAL GUIDE NO. 6, "HANDBOOK OF ORGANIC INDUSTRIAL SOLVENTS", 5TH ED., 1980, ALLIANCE OF AMERICAN INSURERS, 20 N. WACKER DRIVE, CHICAGO, IL 60606. EMERGENCY ACTION GUIDES, ASSOCIATION OF AMERICAN RAILROADS, WASHINGTON, DC (1984). FIRE HAZARDS: NFPA MANUAL 49, "HAZARDOUS CHEMICALS DATA", 8TH ED. (1984).

Tai lieu tu Internet

12/1/2009

Trang 7

[email protected]

Hanoi University Of Technology

------K. ADDITIONAL INFORMATION------

FOR MANUFACTURING USE ONLY NOT FOR FOOD OR DRUG USE. THIS PRODUCT SAFETY DATA SHEET IS OFFERED SOLELY FOR YOUR INFORMATION, CONSIDERATION AND INVESTIGATION. GENERAL CHEMICAL CORP PROVIDES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ASSUMES NO RESPONSIBILITY FOR THE ACCURACY OR COMPLETENESS OF THE DATA CONTAINED HEREIN. CC124-366(11/84)

ND = NOT DETERMINED

NA

= NOT APPLICABLE

THE END! Wednesday, March 18, 2009.

http://www.tcvn.gov.vn/web_pub_pri/magazine/index.php? p=smallsubcategory_cms&cid=&parent=113&sid=118

Tạp chí - Ấn phẩm thông tin Các số năm 2005 -> Số 3 năm 2005

Góp ý về thông số amoniac trong khi thực hiện TCVN 5945:1995 đối với công nghiệp chế biến cao su thiên nhiên ở Việt Nam TS Nguyễn Ngọc Bích Trưởng phòng Nghiên cứu -Viện Nghiên cứu Cao su Việt Nam LTS: Tiêu chuẩn nhà nước về môi trường (TCMT) đang được áp dụng vào các hoạt động kiểm soát và ngăn ngừa ô nhiễm ở nước ta phù hợp với nguyên tắc quản lý môi trường chủ yếu hiện nay là “Mệnh lệnh và Kiểm soát”, theo đó, tiêu chuẩn môi trường được cưỡng chế áp dụng để tuân thủ với qui định các chính sách và mục tiêu quản lý môi trường. Từ khi Luật Bảo vệ Môi trường được ban hành (1994), đến nay đã có hơn 350 TCVN về môi trường đã được Bộ Khoa học Công nghệ và Môi trường (trước đây) nay là Bộ Khoa học và Công nghệ ban hành và đang là một trong các công cụ áp dụng quan trọng cho công tác quản lý môi trường ở nước ta. Tuy nhiên, sau 10 năm áp dụng thực tế cũng đã cho thấy, một số tiêu chuẩn còn có nội dung bất cập hoặc chưa đáp ứng được đầy đủ cho công tác quản lý môi trường trong giai đoạn công nghiệp hoá, hiện đại hoá hiện nay. Mặt khác, các chính sách quản lý vĩ mô của Nhà nước cũng đã được bổ sung và sửa đổi do kinh tế phát triển nhanh, thành phần sở hữu đa dạng hơn, qui mô của các dự án ngày một lớn hơn. Vì vậy, hiện nay Tổng cục Tiêu chuẩn Đo lường Chất lượng (TCĐLCL) đang tiến hành soát xét, sửa đổi, bổ sung 11 TCMT cho phù hợp vớibối cảnh và những yêu cầu mới. Bài viết sau đây của TS. Nguyễn Ngọc Bích từ một phần nội dung kết quả của chương trình khảo sát quản lý kỹ thuật trong xử lý nước thải (XLNT) của Tổng Công ty Cao su Việt Nam do Viện Nghiên cứu Cao su Việt Tai lieu tu Internet

12/1/2009

Trang 8

[email protected]

Hanoi University Of Technology

Nam phối hợp với Ban Quản lý Kỹ thuật (Tổng Công ty Cao su), nêu lên một số kinh nghiệm khi áp dụng TCVN 5945-1995 và đề xuất phương hướng để chỉnh sửa tiêu chuẩn này. Xử lý nước thải (XLNT) trong ngành chế biến cao su thiên nhiên hiện nay được tiến hành dựa trên Tiêu chuẩn Việt Nam TCVN 5945:1995 - Nước thải Công nghiệp - Tiêu chuẩn thải. Từ đầu những năm 1990, Tổng Công ty Cao su Việt Nam đã chú trọng đầu tư vào công tác xử lý nước thải (XLNT) tại các nhà máy chế biến cao su. Cho đến nay, trên tổng số 37 nhà máy chế biến cao su thuộc Tổng Công ty hiện đang hoạt động trên toàn quốc, có 26 nhà máy đã được trang bị hệ thống XLNT, với tổng kinh phí đầu tư ước tính trên 80 tỷ đồng. Tuy nhiên, sản lượng chế biến của các nhà máy thuộc Tổng Công ty Cao su Việt Nam là khoảng 250 ngàn tấn/năm và của các nhà máy ngoài Tổng Công ty là khoảng 120 ngàn tấn/ năm (số liệu cuối năm 2003). Với sản lượng đó, ngành chế biến cao su thiên nhiên Việt Nam hằng năm thải vào môi trường khoảng mười triệu mét khối nước thải có hàm lượng chất ô nhiễm hữu cơ và chất dinh dưỡng thuộc loại cao. Khối lượng nước thải này đang tăng lên hằng năm và dự kiến sẽ còn tăng trong những năm sắp tới song hành theo sự phát triển của các diện tích trồng cao su ngoài quốc doanh. 1. Đặc tính ô nhiễm của nước thải chế biến cao su 1.1. Phương pháp chế biến cao su và nguồn gốc nước thải Trong quá trình chế biến cao su khối, mủ cao su tiếp nhận tại nhà máy được khuấy trộn đều trong một bể chứa, rồi được pha loãng và để lắng trong một thời gian. Mủ cao su đã pha loãng sau đó được chuyển sang các mương và được cho thêm axit (axit formic hoặc axit axêtic). Dưới tác dụng của axit, mủ cao su đông lại thành khối, tách khỏi phần dung dịch còn lại (gọi là serum). Các khối cao su sau đó được gia công cơ học bằng máy cán kéo, máy cán crepe, và máy cán băm hoặc máy cán cắt. Qua đó, khối cao su đông tụ giảm dần kích thước để cuối cùng thành các hạt cốm có kích thước khoảng 3-5 mm và được sấy khô, ép thành khối. Tương tự như các công nghiệp chế biến sản phẩm từ nông nghiệp khác, ngành chế biến cao su tạo ra nước thải chủ yếu là từ khâu rửa nguyên liệu. Trong chế biến cao su rắn, nước thải xuất hiện từ 3 công đoạn: (A) khuấy trộn và pha loãng, (B) đánh đông mủ, và (C) gia công cơ học và được tóm tắt như lưu đồ ở hình 1. Thải ra từ bể khuấy trộn là nước rửa bể và dụng cụ, trong nước rửa này có chứa một ít mủ cao su còn sót lại. Nước thải từ các mương đánh đông, vì nó chứa phần lớn là serum đã được tách ra khỏi mủ cao su trong quá trình đông tụ của mủ. Nước thải từ công đoạn gia công cơ học cũng có bản chất tương tự như nước thải từ mương đánh đông, nhưng loãng hơn. Đây là nước rửa được phun vào khối cao su nhằm loại bỏ serum cũng như các chất bẩn trong quá trình gia công trên các máy.

Tai lieu tu Internet

12/1/2009

Trang 9

[email protected]

Hanoi University Of Technology

Tính trung bình, sản xuất một tấn thành phẩm (quy theo lượng khô) cao su khối hoặc cao su tờ từ mủ nước thải ra khoảng 25 m3 nước thải. Nếu sản xuất cao su khối từ mủ đông tạp thì khối lượng đó là khoảng 35 m3/tấn và sản xuất mủ ly tâm thì khối lượng nước thải là khoảng 18 m3/tấn. 2.2. Đặc tính ô nhiễm của nước thải chế biến cao su Bảng 1 dưới đây trình bày các giá trị trung bình của các chỉ tiêu đặc trưng cho tính chất gây ô nhiễm của nước thải ngành chế biến cao su thiên nhiên theo chủng loại sản phẩm của nó. Chỉ tiêu ô nhiễm COD, mg/l BOD, mg/l Tổng nitơ , mg/l Tai lieu tutheo Internet Amoniac N, mg/l Chất rắn lơ lửng, mg/l pH

Chủng loại sản phẩm Cao su khối từCao su khối từCao suMủ mủ nước mủ đông tờ tâm 3540 2720 4350 6212 2020 1594 2514 4010 95 48 150 565 12/1/2009 75 40 110 426 114 67 80 122 5.2 5.9 5.1 4.2

Bảng 1. Đặc tính ô nhiễm của ly nước thải ngành chế biến cao su Nước thải chế biến cao su thường có pH trong khoảng 4,2Trang 10

[email protected]

Hanoi University Of Technology

5,2 do việc sử dụng axit để làm đông tụ mủ cao su. Đối với mủ skim, đôi khi nước thải có pH rất thấp (đến pH = 1). Đối với cao su khối được chế biến từ nguyên liệu đông tụ tự nhiên thì nước thải có pH cao hơn (khoảng pH = 6) và tính axit của nó chủ yếu là do các axit béo bay hơi, kết quả của sự phân hủy sinh học các lipid và phospholipid xảy ra trong khi tồn trữ nguyên liệu. Hơn 90% chất rắn trong nước thải chế biến cao su là chất rắn bay hơi, chứng tỏ bản chất hữu cơ của chúng. Phần lớn chất rắn này là những hạt cao su còn sót lại sau quá trình đông tụ. Hàm lượng nitơ hữu cơ trong nước thải chế biến cao su thường không cao lắm và có nguồn gốc từ các protein trong mủ cao su. Trong khi đó, hàm lượng nitơ ở dạng amoniac là rất cao, do việc sử dụng amoniac để chống đông tụ mủ cao su trong quá trình thu hoạch, vận chuyển và tồn trữ mủ, đặc biệt là trong chế biến mủ ly tâm. Tóm lại, nước thải chế biến cao su có tính chất gây ô nhiễm khá nặng, do chất ô nhiễm hữu cơ và chất dinh dưỡng thực vật. 2. Nguồn gốc các chất gây ô nhiễm trong nước thải chế biến cao su 2.1. Chất làm tiêu hao ôxy Các chất làm tiêu hao ôxy trong nước thải chế biến cao su hầu hết có nguồn gốc từ mủ nước. Trong mủ nước có khoảng 4,3% là các chất hữu cơ không phải là cao su. Các chất hữu cơ này gồm chủ yếu là các protein, các hyđrat cacbon và các chất béo. Ngoài ra, amoniac và các axit hữu cơ hoặc vô cơ thêm vào trong quá trình bảo quản và chế biến mủ cũng góp phần chủ yếu làm tăng khối lượng các chất làm tiêu hao ôxy trong nước thải. 2.2. Chất dinh dưỡng thực vật Do mủ cao su có chứa protein và do việc sử dụng amoniac NH3 để bảo quản mủ nước trước khi chế biến, chất dinh dưỡng thực vật chủ yếu có mặt trong nước thải chế biến cao su là nitơ. Hai dạng chủ yếu của nitơ trong nước thải là amoniac và nitơ hữu cơ, mà nitơ hữu cơ sau khi bị phân hủy cũng cho ra amoniac. Bảng 2. Nguồn gốc chất gây ô nhiễm nước trong nước thải chế biến cao su Thành phần

Trung bình

Nguồn gốc

Các protein Các lipid và phospholipid Các carbohydrate NH3 Các axit hữu cơ và vô cơ Các axit béo và axit amin tự do

% w/w nguyên liệu 1,8 0,95 0,9 0,15 0,15 0,22

Nguyên liệu Nguyên liệu Nguyên liệu Chế biến Chế biến Nguyên liệu

3. Tình hình áp dụng công nghệ xử lý nước thải trong ngành chế biến cao su

Tai lieu tu Internet

12/1/2009

Trang 11

[email protected]

Hanoi University Of Technology

Các công nghệ XLNT đang được áp dụng trong ngành chế biến cao su có thể được chia thành 3 nhóm như dưới đây: (a) Nhóm các công nghệ được nước ngoàithiết kế Thuộc nhóm này có 2 hệ thống công nghệ do Mardec Engineering Sdn. Bhd. (Malaysia) thiết kế, hệ thống này gồm [Bể gạn mủ - Hồ kỵ khí - Hồ tùy nghi - Hồ lắng] và hệ thống [Bể gạn mủ - Hồ kỵ khí - Hồ sục khí Hồ lắng]. Các hệ thống công nghệ này đã được nghiên cứu ứng dụng trong XLNT ngành chế biến cao su của Viện Nghiên cứu Cao su Malaysia (RRIM) vào những năm 1970 và đã được RRIM khuyến cáo áp dụng ở Malaysia vào những năm 1980... Một hệ thống công nghệ khác do DAMIFA Ltd. (Pháp) phát triển, là hệ thống gồm [Bể gạn mủ - Bể tuyển nổi - Bể thổi khí - Bể lắng - Bể lọc sinh học]. Hệ thống này chưa được nghiên cứu ứng dụng trong ngành chế biến cao su. (b) Nhóm các công nghệ từkết quả nghiên cứu ứng dụng trong nước Chỉ có một hệ thống công nghệ đã được nghiên cứu trong nước nhằm mục đích ứng dụng vào XLNT ngành chế biến cao su, là hệ thống gồm [Bể gạn mủ - Bể UASB - Hồ sục khí - Hồ Tùy nghi]. Nghiên cứu này đã được thực hiện vào đầu những năm 1990 do Trung tâm Nước và Môi trường (CEFINEA) kết hợp với Viện Nghiên cứu cao su Việt Nam thực hiện. (c) Nhóm các công nghệ được các đơn vị trong nước thiết kế Nhóm các công nghệ này được các đơn vị trong nước tự thiết kế và đã áp dụng để XLNT cho một số lĩnh vực công nghiệp khác nhưng chưa được nghiên cứu ứng dụng trong ngành chế biến cao su. Nhóm này chủ yếu là các hệ thống công nghệ sinh học không bao gồm công đoạn xử lý kỵ khí. (Còn nữa) ©2000 Directorate for Standards and Quality. All rights reserved. Hoang Quoc Viet -Cau Giay-Ha noi. Tel: (04)7562608 - Fax:(04)8361556 Contact us : [email protected] THE END! Thursday, March 19, 2009

http://www.vinachem.com.vn/ViewXBP.asp?CateXBPID=1 Tạp chí Công nghiệp Hoá chất (Số 11/Năm 2003)

Khả năng sản xuất axit axetic bằng quy trình một bước

Tai lieu tu Internet

12/1/2009

Trang 12

[email protected]

Hanoi University Of Technology

Nhà khoa học Periana và nhóm nghiên cứu tại Đại học Nam California (Mỹ) mới đây đã phát triển quy trình xúc tác một bước chọn lọc để chuyển hóa hai phân tử metan thành axit axetic, với hiệu suất đạt 10%. Đây là một phương pháp hoàn toàn mới, tuy hiện tại nó chưa đạt đến mức hoàn thiện để có thể áp dụng rộng rãi ở quy mô công nghiệp, nhưng các nhà khoa học tin rằng họ có thể cải tiến nó. Sự chuyển hóa metan một cách trực tiếp và một bước như vậy để thành axit axetic sẽ ít tốn kém hơn so với những quy trình nhiều bước hiện nay. Axit axetic là một hóa chất công nghiệp quan trọng, thường được sản xuất từ metan hoặc than theo quy trình ba bước, đòi hỏi phải có nhiệt độ phản ứng đến 900oC. Cho đến nay, các nhà nghiên cứu đã thông báo về một số phương pháp trực tiếp hơn để sản xuất axit axetic, nhưng chưa phương pháp nào trong số đó đạt đến mức có thể áp dụng công nghiệp. Trong số những phương pháp đã được thông báo về công nghệ chuyển hóa metan thành axit axetic, quy trình mới của các nhà khoa học Mỹ có đặc điểm độc đáo là cả hai nguyên tử cacbon của sản phẩm đều được lấy ra từ metan trong một bước phản ứng. Quy trình chuyển hóa mới được tiến hành ở nhiệt độ 180oC, sử dụng axit sunfuric làm dung môi và chất oxy hóa, và PdSO4 làm xúc tác dạng tan. Periana cho rằng cơ chế phản ứng bao gồm sự kích hoạt liên kết C-H của metan bởi chất xúc tác để tạo thành gốc phân tử Pd-CH 3, gốc phân tử này phản ứng với gốc phân tử có chứa CO là dẫn xuất từ phân tử metan thứ hai. Năm 1998, Periana và đồng nghiệp của ông đã thông báo về một hệ thống trên cơ sở platin (II) có thể chuyển hóa metan thành metanol với hiệu suất trên 70%. Với phát hiện mới của mình, họ hy vọng sẽ thiết kế lại hệ thống đó để nó sẽ sản xuất axit axetic thay cho metanol. LÊ VÂN Theo C & EN, 8/2003

THE END! Thursday, March 19, 2009

http://www.vinachem.com.vn/ViewXBP.asp?CateXBPID=1 Tạp chí Công nghiệp Hoá chất (Số 12/Năm 2002)

Nội dung

Khả năng sản xuất axit axetic công nghiệp ở nước ta Axít axetic (công thức hóa học: CH3COOH) là hóa chất thông dụng được sử dụng trong nhiều ngành công nghiệp để sản xuất: chất dẻo, sợi tổng hợp, phim ảnh, thực phẩm, hóa dược, các loại dung môi v.v... Tổng công suất sản xuất axit axetic toàn cầu hàng năm là 8 triệu tấn. Trên thế giới các nhà khoa học đã nghiên cứu và công bố tới 150 patent về tổng hợp axit axetic. Axit axetic có thể được tổng hợp từ rượn metylic, rượu etylic, từ khí thiên nhiên Tạp chí Công nghiệp Hoá hay khí tổng hợp... chất Từ những năm 1990, một số cơ quan nghiên cứu khoa học ở nước ta đã nghiên cứu sản xuất axit axetic công nghiệp. Ở Viện (Số 12/Năm 2002) Hóa học Công nghiệp, cố giáo sư tiến sĩ Hồ Quý Đạo đã chỉ đạo 1. Quy trình sản xuất TiO2 hiệu quả cao cho những nhà máy thực hiện đề tài nghiên cứu sử dụng rượu etylic để sản xuất axit

Tai lieu tu Internet

12/1/2009

Trang 13

[email protected] quy mô nhỏ 2. Thử nghiệm oxy hoá SO2 với xúc tác hạt nhỏ 3. Định hướng phát triển Ngành Cao su qua công tác thị trường 4. Bàn về mô hình Công ty mẹ - Công ty con 5. Công ty Supe phôt phat và Hoá chất Lâm Thao đơn vị xây dựng tốt đời sống văn hoá cơ sở 6. Công ty Supe phốt phát và Hoá chất Lâm Thao: Đầu tư xây dựng dây chuyền sản xuất NPK công suất 150.000 T/năm tại chi nhánh Hải Dương 7. Chế tạo phiên bản "vòng" cho các polyme truyền thống 8. Hội nghị tổng kết 2 năm xây dựng đời sống văn hoá trong công nhân viên chức, lao động ngành công nghiệp (2000-2001) 9. Hiện trạng bảo hộ quyền tác giả ở Việt Nam 10. Khả năng sản xuất axit axetic công nghiệp ở nước ta 11. Môi trường trong thế kỷ 21 12. Một vài suy nghĩ về hướng phát triển Ngành Nhựa (chất dẻo) Việt Nam trong tương lai 13. Nguồn năng lượng mới cho xe hơi 14. Quá trình refoming mới để chuyển hoá các phần tử sinh khối thành hyđro 15. Tác động của thuốc trừ sâu gốc lân hữu cơ ở người tại khu vực ngoại thành TP.Hồ Chí Minh 16. Tình hình sức khỏe của công nhân tiếp xúc với Amian ở Việt Nam 17. Tình hình sức nghe của công nhân khi tiếp xúc với dung môi hữu cơ ở một số cơ sở sản xuất 18. Tiềm năng một số loại quặng và khoáng sản ở Việt Nam 19. Vai trò của quan hệ xã hội đối với thành công của doanh nghiệp

Tai lieu tu Internet

Hanoi University Of Technology axetic. Một số cơ quan nghiên cứu khoa học khác như Viện Hóa học thuộc Trung tâm Khoa học Tự nhiên và Công nghệ Quốc gia, khoa Hóa thuộc trường Đại học Tổng hợp Hà Nội cũng đã quan tâm đến đề tài này. Nhưng do nhiều nguyên nhân mà các kết quả nghiên cứu vẫn chưa được áp dụng trong sản xuất công nghiệp. Vào năm 1996, Sở Công nghiệp tỉnh Quảng Ngãi đã lập báo cáo khả thi dự án xây dựng nhà máy sản xuất axit axetic công nghiệp có công suất 1.500 - 2.000 tấn/năm, sử dụng nguyên liệu là rượn etylic sản xuất từ rỉ đường, là một sản phẩm phụ của nhà máy đường. Tuy nhiên cho tới nay dự án này vẫn chưa được thực hiện. Cho đến nay, gần như toàn bộ nhu cầu axit axetic ở nước ta đều phải đáp ứng bằng con đường nhập khẩu. Trước tình hình mới, cơ hội phát triển cho ngành công nghiệp hóa chất đã được mở ra, chúng ta có thể lại phải tính toán lại bài toán cũ: sản xuất axit axetic công nghiệp, đặc biệt khi một số cơ sở hóa dầu (như khu lọc dầu Dung Quất) đang được triển khai hay có kế hoạch xây dựng. Các cơ sở khai thác khí tự nhiên đã đi vào hoạt động. Người ta cũng có dự định sẽ xây dựng một nhà máy sản xuất rượu metylic với công suất lớn. Như vậy, các nguồn nguyên liệu rẻ và dồi dào để sản xuất axit axetic đã và sẽ có sẵn. Nếu chúng ta đặt một nhà máy sản xuất axit axetic tại khu lọc dầu Dung Quất thì rất tiện lợi vì được dùng chung các cơ sở phục vụ với những nhà máy hóa chất khác sẽ được xây dựng ở đây. VŨ THÁI

12/1/2009

Trang 14

[email protected]

Hanoi University Of Technology

THE END! Thursday, March 19, 2009

Abstract Acetic acid is a global product. About 55% of total production capacity for acetic acid is now outside the United States, Western Europe and Japan, with the majority in Asia. Vinyl acetate monomer is the largest end use for acetic acid in China, the United States, Western Europe and Japan.

The acetic acid manufactured intentionally is termed virgin acid; that recovered from other processing is termed recovered, although it is often of equal quality to virgin acid if properly purified. Recovered acetic acid represents a major source of acetic acid. This recovered acid can usually be substituted for virgin production in many processes. The following pie chart shows world consumption of acetic acid: About 33% of global acetic acid consumption is for vinyl acetate monomer (VAM) production. VAM capacity is expected to increase significantly in the next few years, with acetic acid growth tied largely to vinyl acetate monomer manufacture in Asia. About 20% of acetic acid is used for terephthalic acid (TPA) production. TPA is used primarily for the manufacture of polyethylene terephthalate (PET) solid-state resins, fibers and films. Acetic acid use for acetate esters production accounts for about 15% of total global acetic acid demand. Acetate esters are used mainly as solvents for inks, paints and coatings. Acetic acid use for acetic anhydride production also accounts for nearly 15% of total global acetic consumption. Acetic anhydride is used mainly for cellulose acetate flake production. Regionally, the shift of the acetic acid market to Asia will continue. Asia is expected to dominate the acetic acid market and to account for over 57% of acetic acid consumption in 2011. China alone will account for 32% of global acetic acid consumption by 2011. The United States is expected to remain a major player, accounting for an estimated 19% of demand in 2011. Copyright © 2009 SRI Consulting. All rights reserved. THE END Thursday, March 19, 2009!

http://www.au.fjfdi.com/en/cn/project.asp?diqu=30&yuyan=en Annual Production of two hundred thousand tons of acetate project Classification:( Petrochemistry Industry ) Region:( QuanZhou ) Time Collected:( 2008-9-6 ) 1.Overview Acetate is a clear colorless liquid, with a nauseating odor. At low temperatures, acetate crystallize into glacial acetic acid. At room temperature, acetate turns into a clear transparent liquid. Its melting point is 16.7oC, and it has a boiling point of 118 oC with relative densities of 1.053 (16.67oC, liquid) and 1.226 (16.60oC, solid). It's soluble in water, alcohol, glycerol, ether and carbon tetrachloride but not soluble in carbon disulfide. When it solidifies, it expands and may rupture its container. It is an explosion hazard when vaporized at a minimum rate of 5.4 % of the air. Acetic acid is an organic carboxylic acid, which is an important organic compound. Its main purpose in industry is to produce vinyl acetate, acetic anhydride, cellulose acetate. Acetic acid Tai lieu tu Internet

12/1/2009

Trang 15

[email protected]

Hanoi University Of Technology

esters, terephthalic acid, monochloroacetic acid and acetic acid salts, etc. 2.Market Demand Forecast Acetate is mainly consumed as vinyl acetate, terephthalic acid, acetic anhydride and acetic acid esters and among other things, with the largest consumer being vinyl acetate, it accounts for 42.4% of the world's total consumption of acetic acid.The consumption of PTA, acetate, acetic anhydride respectively account for 17.9%, 16.5% and 12.9% of the world's total consumption of acetic acid. Technology used to create acetate like methanol carbonylation has gradually increased, while ethanol process techniques have gradually been fading. It is estimated that by 2010 the world growing consumption will reach 10.8 million tons, with an in crease in average annual consumption rate of about 3.4%. The rapid growth in consumption is mainly in the field of PTA solvent, vinyl acetate and acetic acid ester, etc.. In 2010-2015, the world's demand for acetic acid will continue to maintain a 2-3 percent growth rate; by 2015 the demand will reach 12 million tons. By the end of 2005, China's production capacity of acetic acid was nearly 1.8 million tons / year, output was 1.3697 million tons. One methanol carbonylation synthesis output 859 thousand tons, accounting for 62.8% of acetic acid output; acetaldehyde law ethylene production was 327.5 thousand tons, accounting for an acetic acid output of 23.9%; acetaldehyde law ethanol production was 182,300 tons, accounting for an acetic acid output of 13.3%. In 2005-2010 China's projected acetate average annual consumption growth rate will be 6.8%, in 2010 it is expected that demand will be 2.412 million tons, of which terephthalic acid will be the fastest growing area, In 20052010, the average annual growth rate will be as highas 15.6%. Other areas of vinyl acetate / polyvinyl alcohol and acetic anhydride / cellulose acetate will see faster growth, In 2005-2010, the average annual demand growth rate for both will be 5.8%. Ammonia demand will decrease from 2005-2010 at a rate of -4.7 % annually. In 2010-2015, China's acetic acid is projected to maintain at a 6% economic growth rate, by 2015 the demand will reach 3.2 million tons. 3.Production Technology Plan After decades of industrial development, currently the world's acetate industrial technology consists of four routes: light hydrocarbon liquid phase oxidation, acetaldehyde oxidation method, the direct oxidation of ethylene, methanol carbonylation synthesis. Practical operations of carbonylation acetic acid synthesis have obvious competitive advantages. Petrochemical products in the domestic and international market are in a slump, the majority of acetic acid ethylene acetate has high production prices. This project recommends the methanol carbonylation synthesis method. 4.Major Raw Materials Consumed Item Number Product Name Unit Consumption Rate Annual Consumption methanol t 0.55 110000 CO Nm3 478 95600000 5.Investment Opportunities A project for the annual production of 200 thousand tons of acetate requires an investment of approximately 942 million RMB, of this 850 million RMB will be construction cost. This will yield an annual income of 800 million RMB, an annual expense of 509.2 million RMB, an annual tax of 290.8 million RMB, an annual profit margin of 217.6 million RMB, a tax rate of 30.9%, and a profit margin rate of 23.1%. This yields a profit after 7.8 years. 6.Above project cooperative method: Joint Venture, Wholly Owned 7.Contact Information: Quangang District Contact Person: Tai lieu tu Internet

12/1/2009

Trang 16

[email protected]

Hanoi University Of Technology

Contact: Zhuang Biyu Unit: Quangang District Petrochemical Industrial Zone Construction and Development Co. Ltd. Telephone :0595 - 27728269 13808529689 Fax: 0595-27728270 E-mail: [email protected] Hui'an County Contact Person: Contact: Liao Guowen Unit: Hui'an County Development and Reform Bureau Telephone :0595 - 87396181 87382181 Fax :0595 - 87391177 E-mail: [email protected] Fax: 0595-87391177 E-mail: [email protected] THE END Thursday, March 19, 2009

http://www.cdc.gov/niosh/

Acetic acid

CAS

CH3COOH

RTECS

64-19-7

AF1225000

Synonyms & Trade Names

DOT ID & Guide

Acetic acid (aqueous), Ethanoic acid, Glacial acetic acid (pure compound), 2790 153 (10-80% acid) Methanecarboxylic acid [Note: Can be found in concentrations of 5-8% in 2789 132 (>80% acid) vinegar.] NIOSH REL: TWA 10 ppm (25 mg/m3) ST 15 ppm (37 mg/m3) Exposure OSHA PEL: TWA 10 ppm (25 mg/m3) Limits

IDLH

Conversion

50 ppm See: 64197

1 ppm = 2.46 mg/m3

Physical Description Colorless liquid or crystals with a sour, vinegar-like odor. [Note: Pure compound is a solid below 62°F. Often used in an aqueous solution.] Tai lieu tu Internet

12/1/2009

Trang 17

[email protected]

Hanoi University Of Technology

MW: 60.1 BP: 244°F FRZ: 62°F VP: 11 mmHg IP: 10.66 eV Fl.P: 103°F UEL(200°F): 19.9% LEL: 4.0% Class II Combustible Liquid: Fl.P. at or above 100°F and below 140°F.

Sol: Miscible Sp.Gr: 1.05

Incompatibilities & Reactivities Strong oxidizers (especially chromic acid, sodium peroxide & nitric acid), strong caustics [Note: Corrosive to metals.]

Measurement Methods NIOSH 1603; OSHA ID186SG See: NMAM or OSHA Methods

Personal Protection & Sanitation (See protection codes) Skin: Prevent skin contact (>10%) Eyes: Prevent eye contact Wash skin: When contaminated (>10%) Remove: When wet or contaminated (>10%) Change: No recommendation Provide: Eyewash (>5%), Quick drench (>50%)

First Aid (See procedures) Eye: Irrigate immediately Skin: Water flush immediately Breathing: Respiratory support Swallow: Medical attention immediately

Respirator Recommendations NIOSH/OSHA Up to 50 ppm: (APF = 25) Any supplied-air respirator operated in a continuous-flow mode£ (APF = 25) Any powered, air-purifying respirator with organic vapor cartridge(s)£ (APF = 50) Any chemical cartridge respirator with a full facepiece and organic vapor cartridge(s) (APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister (APF = 50) Any self-contained breathing apparatus with a full facepiece (APF = 50) Any supplied-air respirator with a full facepiece Emergency or planned entry into unknown concentrations or IDLH conditions: (APF = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressuredemand or other positive-pressure mode (APF = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus Escape: (APF = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister/Any appropriate escape-type, self-contained breathing apparatus Important additional information about respirator selection

Exposure Routes inhalation, skin and/or eye contact Tai lieu tu Internet

12/1/2009

Trang 18

[email protected]

Hanoi University Of Technology

Symptoms Irritation eyes, skin, nose, throat; eye, skin burns; skin sensitization; dental erosion; black skin, hyperkeratosis; conjunctivitis, lacrimation (discharge of tears); pharyngeal edema, chronic bronchitis

Target Organs Eyes, skin, respiratory system, teeth NIOSH Home | NIOSH Search | Site Index | Topic List | Contact Us http://www.cdc.gov/niosh/srchpage.html; http://www.cdc.gov/niosh/ THE END

http://community.h2vn.com/index.php? PHPSESSID=14f06d816d9c8f06c94ef6ed88a20b89&topic=1782.msg19430#msg1943 0

http://community.h2vn.com/index.php/topic,1781.msg19429.html#msg19429 Chapter:01 Introduction Organometallic chemistry, which involves metal complexes containing direct metal-to-carbon bonds, has grown since the early 1950s at an almost exponential rate, mostly owing to the development of an impressive array of highly sophisticated apparatus of which in particular NMR and single-crystal X-ray equipments have been invaluable.1 Theoretical studies of the bonding in metal compounds and of the course of reaction pathways have not only contributed to new knowledge, but also to the purposeful design of complexes and their-use-in-stoichiometric-and-catalytic-reactions. Although fortunate surprises do occur frequently, our theoretical knowledge has increased to a level where we have a deep insight into the steric and electronic properties of ligands and of their complexes. Therefore, we are now, to a certain extent, able to design ligands and to control reactions occurring on metal centers-in-complexes. As this thesis is concerned with the preparation and properties of new transition-metal complexes containing new multifunctional ligands involved in the carbonylation of methanol, we will discuss in this introduction some historical aspects of carbonylation reactions and some recent developments in the carbonylation of methanol. Finally, we will present the scope and the aims of this thesis. 1.1Historical-Aspects-of-Carbonylation-Reactions Homogeneous carbonylation catalysis is concerned with the transition-metal-assisted addition of carbon monoxide to organic compounds and involves a carbon-carbon coupling process to give higher molecular weight carbonyl-containing products. Carbonylation chemistry was pioneered by Otto Roelen (Ruhrchemie) and Walther Reppe (IG Farben, later BASF) in the late 1930s.2 Since then it has developed into the highest volume and most important industrial process based on homogeneous catalysis. Tai lieu tu Internet

12/1/2009

Trang 19

[email protected]

Hanoi University Of Technology

The first thirty years of industrial carbonylation catalysis implied the use of simple metal carbonyl catalysts, high reaction temperatures and pressures, and only low product selectivities. Significant cost advantages resulted from the use of carbon monoxide (derived from natural gas) and of low-priced methanol (from synthesis gas) as feedstocks. A first methanol-to-acetic acid carbonylation process was commercialized in 1960 by BASF. It used an iodide-promoted cobalt catalyst, and required very high pressures (600 atm) as well as high temperatures (230°C), but gave acetic acid in ca. 90% selectivity.2 The situation changed in the mid-sixties with the discovery that organophosphine-substituted rhodium and palladium complexes are active catalysts for carbonylation reactions under milder reaction conditions. The serendipitous discovery of Rh(PPh3)3Cl by Osborn and Wilkinson,3,4 which was used as a catalyst for the hydroformylation of alkenes but also for the hydrogenation of alkenes,5 has stimulated a tremendous amount-of-fundamental-and-applied-research-in-this-area. 1.2-Recents-Developments-in-the-Carbonylation-of-Methanol A major advance came in 1966 with the discovery of rhodium-iodide catalysts for the carbonylation of methanol by Monsanto, which led to the start-up of the first commercial unit in 1970. The advantages over the cobalt-catalyzed BASF process consist in significantly milder conditions (30-60 atm pressure and 150200°C), allowing substantial savings in construction costs and hence in capital expenditure, and in higher selectivity for acetic acid, making further savings on both running and capital costs. The disadvantage of using rhodium, a costly precious metal, is counter-balanced by lower operating costs, especially as milder reaction conditions decrease the corrosion risk due to the aggressive reaction medium (acetic acid, iodic acid).6 In 1986, the ownership of the Monsanto technology was acquired by BP Chemicals who further developed the process and licensed it around the world. In 1996, a new catalytic process for the carbonylation of methanol to acetic acid named CativaTM was announced by BP Chemicals; this process is based on a catalyst system composed of iridium complexes with ruthenium activators.6 1.3-Scope-and-Aims-of-this-Work The research of our group has focused on the build-up of metal clusters, in particular, mixed-metal carbonyl clusters for the carbonylation of methanol. The cluster anions [Ru3Ir(CO)13]- and [Os3Ir(CO)13]-, which were prepared for this process, are indeed catalytically active, but unstable under the reaction conditions, which has been confirmed by the isolation of the fragmentation products Ir4(CO)12 and [N(PPh3)2][M(CO)3I3]-(M=Ru,Os).7-9 In this context, we were interested in the behavior of other types of complexes stabilized by multifunctional ligands. Therefore, it was the aim of this thesis to synthesize new multifunctional ligands, to study their coordination properties and to exploit their catalytic potential for the carbonylation of methanol. Chapter:02 The-Catalytic-Carbonylation-of-Methanol: State-of-the-Art Carbonylation catalysis encompasses a large and important area of chemistry. The majority of carbonylation reactions is carried out in homogeneous phase, because homogeneous catalysts generally give higher rates and selectivities than heterogeneous systems. Apart from the carbonylation of methanol, we can quote other catalytic carbonylation reactions: The hydroformylation of olefins to give aldehydes and alcohols, which is the most important homogeneous catalytic process on the industrial scale,2 the synthesis of ketones from olefins and the synthesis of lactones and lactams from olefins or halide-containing alcohols.10 The production of carboxylic acids, carboxylic esters and acyl halides from methanol is the second most important industrial homogeneous catalytic Tai lieu tu Internet

12/1/2009

Trang 20

[email protected]

Hanoi University Of Technology

process.11,12 2.1-Chemicals-from-Methanol-and-Carbon-Monoxide Methanol is a versatile, readily available C1 compound obtained from synthesis gas. Large-scale industrial methanol production from CO/H2 started up in 1925 by BASF using a ZnO/Cr2O3 catalyst.13,6 At present, methanol still is produced almost exclusively from synthesis gas (a mixture of H2, CO and some CO2) in a gas-phase reaction over copper-based catalysts such as Cu/ZnO/Al2O3 or Cu/ZnO/Cr2O3 at temperatures ranging from 200 to 270°C and pressures from 50 to 100 bar, according to Eq. 1. The present methanol production capacity has been reported to be 21 million tons/years, while the actual demand is only in the range of 12 million tons/years.6 This overcapacity is mainly due to the set-up of new plants, where surplus natural gas is available at a very low price.14 The ready supply as well as the low raw material costs will keep the price of methanol down in the near future. This will stimulate the demand of methanol and will help to introduce new methanol-based processes for motor fuels as well as for basic organic chemicals.15 The present industrial uses of methanol include the production of formaldehyde, methyl esters, methyl amines and methyl halides. In addition, methanol and its derivatives find an increasing interest as substrates for carbonylation and dehydration reactions, which are summarized in Scheme 1. Scheme 1: Summary of industrial methanol conversion reactions Some of these processes have already been used for the commercialization of acetic acid, acetic anhydride, or methyl formate. In addition there is a variety of carbon monoxide-based reactions which convert methanol mainly into C2 oxygenated compounds. These can potentially replace ethylene-based routes, e.g. in the case of ethanol, acetaldehyde, vinyl acetate, and ethylene glycol. With methanol from cheap natural gas becoming available in the near future, these processes, although uneconomic today, might become industrially attractive. 2.2 The Transition Metal Catalyzed Carbonylation of Methanol While the base-catalyzed carbonylation of methanol yields methyl formate, a versatile intermediate for formic acid and formamide synthesis, the transition metal catalyzed carbonylation of methanol involves C-C coupling, giving acetic acid derivatives as C2 oxygenates. Figure 1: Use of acetic acid As shown in Figure 1, acetic acid is used primarily as a raw material for vinyl acetate monomer (VAM) and acetic anhydride synthesis, and as a solvent for purified terephthalic acid (PTA) production.16 Acetic acid is an important industrial commodity chemical, with a world demand of about 6 million tons per year and many industrial uses. Novel acetic acid processes and catalysts have been introduced, commercialized, and improved continuously since the 1950s. The objective of the development of new acetic acid processes has been to reduce raw material consumption, energy requirements, and investment costs. At present, industrial processes for the production of acetic acid are dominated by methanol carbonylation and the oxidation of acetaldehyde or of hydrocarbons such as ethylene, n-butane, and naphtha. Table 1: Industrial routes to acetic acid Method Catalyst Conditions Yield Methanol Carbonylation Rhodium orIridium complexes 180-220 °C 30-40 bar 99% Tai lieu tu Internet

12/1/2009

Trang 21

[email protected]

Hanoi University Of Technology

Acetaldehyde Oxidation Manganese or cobalt acetate 50-60 °C1 bar 95% Ethylene Direct Oxidation Palladium/copper/heteropolyacid 150-160 °C 80 bar 87% Hydrocarbon Oxidation Manganese or cobalt acetate 150-230 °C 50-60 bar 50% (n-butane) 40% (naphtha) Originally, acetic acid was produced by aerobic fermentation of ethanol, which is still the major process for the production of vinegar. The first major commercial process for the production of synthetic acetic acid was based on the oxidation of acetaldehyde. In an early process for the conversion of acetylene to acetaldehyde, introduced in 1916 in Germany and used in China until recently, an organo-mercury compound was used as the catalyst. The toxicity of the mercury catalyst resulted in significant environmental pollution, and consequently, the process was essentially replaced by alternative routes. As the petrochemical industry developed in the 1950s, the raw material for the production of acetaldehyde shifted from acetylene to ethylene. Other processes for the production of acetic acid, introduced in the 1950s and 1960s, were based on the oxidation of n-butane or naphtha. The major producers of acetic acid via direct oxidation of hydrocarbons were Celanese (via n-butane) and BP (via naphtha). However, these reactions also produce significant amounts of oxidation by-products, and their separation can be very complex and expensive.17-20 Figure 2: Acetic acid process routes Nowadays, approximately 60 per cent of the total world acetic acid manufacturing capacity is covered by the carbonylation of methanol. From the industrial point of view, one of the major achievements of applied homogeneous catalysis has been the introduction of methanol-to-acetic-acid processes via the carbonylation of methanol, which are not only highly selective, but also allow the use of methanol as a cheaper feedstock as compared to ethylene. The carbonylation of methanol is catalysed by Group VIII transition metal complexes, especially by rhodium, iridium, cobalt, and nickel.21-25 All methanol carbonylation processes need iodine compounds as essential co-catalysts, the reaction proceeding via methyl iodide, which alkylates the transition metal involved. Apart from acetic acid, the carbonylation of methanol (Eq. 2) gives also rise to the formation of methyl acetate, according to Eq. 3. In some carbonylation processes (CativaTM), methyl acetate is also used as a solvent. The cobalt-catalysed BASF process was introduced in the late 1950s, and the rhodium-based Monsanto process followed in the early seventies. As it is evident from Table 2,26-28 rhodium catalysts operate at very mild conditions and with very high selectivities, as compared to cobalt or nickel catalysts. It is therefore not surprising that most commercial plants now use the rhodium-based Monsanto process. Meanwhile, the worldwide capacity for acetic acid from methanol is well over 1 000 000 tons/years and is expected to increase further.16 Table 2: Acetic acid production by carbonylation of methanol Catalyst Temperature (°C) Pressure (bar) Selectivity (%) Rh2O3/HI 175 1-15 99 Co(OAc)2/CoI2 250 680 90 Ni(CO)4/MeI/LiOH 180 70 84 Typical side reactions of the methanol carbonylation to acetic acid (Eq. 2) are the formation of methyl acetate, methyl formate, dimethyl ether and the water-gas shift reaction, the formation of methyl acetate (Eq. 3) being the most important one. These reactions are equilibria, which can be controlled by reaction conditions, catalyst metals, ligands, promoters, and solvents. 2.2.1 Cobalt Catalysts Cobalt catalysts were used in the classical BASF process. The lower activity of Co catalysts as compared Tai lieu tu Internet

12/1/2009

Trang 22

[email protected]

Hanoi University Of Technology

to rhodium catalysts requires a high catalyst concentration of about 0.1 M. The selectivity reaches 90%, based on methanol. By-products are methane, acetaldehyde, ethanol and ethers. HCo(CO)4 is supposed to be the active species, and it is formed according to Eq. 4 and 5.27 The assumption of hydrido cobalt carbonyl as the active species is in agreement with the observation that small amounts of H2 enhance the catalytic activity. The mechanism proposed is shown in Scheme 2.27 Scheme 2: Catalytic cycle of the cobalt-catalyzed methanol carbonylation (BASF process) The role of iodine is not restricted to the formation of alkyl iodides, which act as alkylating agents, but also includes the cleavage of the acyl intermediate via the formation of acetyl iodide.29 Given that, in this process, the rate depends on the carbon monoxide pressure, high pressures of 600-700 bar are required for good conversion. Slightly lower pressures are possible in the presence of Ru, Ir, Pd, Pt, or Cu salts as activators.30,31 Cobalt catalysts can also be used for the carbonylation of higher alcohols, such as benzyl alcohol.32 2.2.2 Nickel Catalysts Nickel carbonyl, as well as a variety of nickel compounds, is also catalytically active for the carbonylation of methanol in the presence of iodine. Ni(CO)4 is formed from NiI2 according to Eq. 6.33 The hydrogen iodide formed in Eq. 6 is used to transform the alcohol into an alkyl halide, which adds oxidatively to nickel, as described in Scheme 3.34 The resulting acetyl iodide is hydrolyzed either by water or alcohols. Usually nickel catalysts require rather high pressure and temperature conditions.35 However, with high methyl iodide concentrations, carbonylation occurs already under milder conditions.28 If the molar ratio of CH3I to CH3OH is at least 1 : 10, pressures as low as 35 bar can be applied at 150°C, using Ni(OAc)2 • 4H2O and Ph4Sn as catalyst system.36 Vapor phase carbonylation of methanol using supported nickel metal catalysts has also been reported.37 The activity of nickel catalyst systems can be increased, and the volatility of nickel carbonyl compounds can be lowered by the introduction of stabilizers such as phosphines, alkali metals, tin, and molybdenum.3842 The active catalysts are thought to be Ni(0) complexes. In the case of phosphine-containing nickel catalysts, 14-electron species such as Ni(PR3)2 are considered as catalysts, in addition to Ni(CO)4 observed in all cases; the concentration of the latter species is reduced by strongly coordinating ligands or enhanced by weakly coordinating ligands.42 Scheme 3: Catalytic cycle of the nickel-catalyzed methanol carbonylation Recent work on nickel catalyst systems shows that reaction rates and selectivities can approach those achieved in the rhodium catalyst system. Although nickel catalysts have the advantage of being much cheaper than rhodium and are easy to stabilize at low water concentrations, no commercialization has been achieved to date, since Ni(CO)4 is a very toxic and volatile compound. Mọi người hãy vào xem và hãy đọc xem nhé! Chao moi nguoi!MInh muon gioi thieu so qua axit axetic. Minh tim duoc tren mang. Moi nguoi co the xem chi tiet hay co the copy tuy y theo dia chi sau! http://www.unige.ch/cyberdocuments/unine/theses2002/ThomasC/these_body.html. Ngoai ra minh con co ca mot dia chuong trinh goi gon cua bo sach gom gan 40 tap noi ve tinh hoa hoc, vat

Tai lieu tu Internet

12/1/2009

Trang 23

[email protected]

Hanoi University Of Technology

ly, ung dung cung nhu cac phuong phap san xuat cua hau het cac hop chat huu co do.Xem them chi tiet tai trang web sau: http://www.mrw.interscience.wiley.com/emrw/9783527306732/home THE END.

http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/_ic sc03/icsc0363.pdf International Occupational Safety and Health Information Centre

ACETIC ACID

ICSC: 0363 October 1997

Glacial acetic acid Ethanoic acid Ethylic acid Methanecarboxylic acid CAS No: 64-19-7 RTECS No: AF1225000 UN No: 2789 (>80%) EC No: 607-002-00-6

TYPES OF HAZARD / EXPOSURE

FIRE

EXPLOSION

C2H4O2 / CH3COOH Molecular mass: 60.1

ACUTE HAZARDS / SYMPTOMS

NO open flames, NO Powder, alcohol-resistant foam, sparks, and NO smoking. water spray, carbon dioxide.

Above 39°C explosive vapour/air mixtures may be formed.

Above 39°C use a closed In case of fire: keep drums, etc., cool system, ventilation, and by spraying with water. explosion-proof electrical equipment.

AVOID ALL CONTACT! Sore throat. Cough. Burning sensation. Headache. Dizziness. Shortness of breath. Laboured breathing. Symptoms may be delayed (see Notes).

Ventilation, local exhaust, Fresh air, rest. Half-upright position. or breathing protection. Refer for medical attention.

Pain. Redness. Blisters. Skin burns.

Protective gloves. Protective clothing.

Skin

Eyes

FIRST AID / FIRE FIGHTING

Flammable.

EXPOSURE Inhalation

PREVENTION

Remove contaminated clothes. Rinse and then wash skin with water and soap. Rinse skin with plenty of water or shower. Refer for medical attention.

Redness. Pain. Severe deep burns. Loss Face shield or eye First rinse with plenty of water for of vision. protection in combination several minutes (remove contact with breathing protection. lenses if easily possible), then take to a doctor.

Tai lieu tu Internet

12/1/2009

Trang 24

[email protected]

Ingestion

Hanoi University Of Technology

Abdominal pain. Burning sensation. Diarrhoea. Shock or collapse. Sore throat. Vomiting.

Do not eat, drink, or smoke during work.

SPILLAGE DISPOSAL

Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Refer for medical attention.

PACKAGING & LABELLING

Collect leaking liquid in sealable containers. Cautiously neutralize spilled liquid with sodium carbonate only under the responsibility of an expert. Wash away remainder with plenty of water. Personal protection: chemical protection suit including self-contained breathing apparatus.

C Symbol R: 10-35 S: (1/2-)23-26-45 Note: B UN Hazard Class: 8 UN Subsidiary Risks: 3 UN Pack Group: II

EMERGENCY RESPONSE

Do not transport with food and feedstuffs.

SAFE STORAGE

Transport Emergency Card: TEC (R)-80GCF1-II NFPA Code: H2; F2; R0

Fireproof. Separated from food and feedstuffs. See Chemical Dangers. Keep in a well-ventilated room.

IMPORTANT DATA Physical State; Appearance COLOURLESS LIQUID, WITH PUNGENT ODOUR.

Routes of exposure The substance can be absorbed into the body by inhalation of its vapour and by ingestion.

Chemical dangers The substance is a weak acid. Reacts violently with oxidants and bases. Attacks many metals forming flammable/explosive gas (hydrogen - see ICSC 0001). Attacks some forms of plastic, rubber and coatings.

Inhalation risk A harmful contamination of the air can be reached rather quickly on evaporation of this substance at 20°C.

Occupational exposure limits TLV: 10 ppm as TWA, 15 ppm as STEL; (ACGIH 2004). MAK: IIb (not established but data is available); (DFG 2004).

Effects of short-term exposure The substance and the vapour is corrosive to the eyes, the skin and the respiratory tract. Corrosive on ingestion. Inhalation of the vapor may cause lung oedema (see Notes). The effects may be delayed. Medical observation is indicated. Effects of long-term or repeated exposure Repeated or prolonged contact with skin may cause dermatitis. The substance may have effects on the gastrointestinal tract, resulting in digestive disorders including pyrosis and constipation.

PHYSICAL PROPERTIES

ENVIRONMENTAL DATA

Boiling point: 118°C Melting point: 16.7°C Relative density (water = 1): 1.05 Solubility in water: miscible Vapour pressure, kPa at 20°C: 1.5 Relative vapour density (air = 1): 2.1 Relative density of the vapour/air-mixture at 20°C (air = 1):

Tai lieu tu Internet

The substance is harmful to aquatic organisms.

12/1/2009

Trang 25

[email protected]

Hanoi University Of Technology

1.02 Flash point: 39°C c.c. Auto-ignition temperature: 427°C Explosive limits, vol% in air: 5.4-16 Octanol/water partition coefficient as log Pow: -0.31

NOTES The symptoms of lung oedema often do not become manifest until a few hours have passed and they are aggravated by physical effort. Rest and medical observation is therefore essential. Immediate administration of an appropriate inhalation therapy by a doctor or a person authorized by him/her, should be considered. Other UN numbers: UN 2790 acetic acid solution (10-80% acetic acid); UN hazard class 8. Card has been partly updated in October 2005. See sections Occupational Exposure Limits, Emergency Response.

IPCS

Prepared in the context of cooperation between the International Programme on Chemical Safety and the European Commission © IPCS 2004

International Programme on Chemical Safety LEGAL NOTICE

Neither the EC nor the IPCS nor any person acting on behalf of the EC or the IPCS is responsible for the use which might be made of this information.

THE END Thursday, March 19, 2009

http://goliath.ecnext.com/coms2/summary_01996103090_ITM Acetic acid demand and production continue to grow. Publication: China Chemical Reporter Format: Online Publication Date: 16-DEC-06 Delivery: Immediate Online Access Full Article Title: Acetic acid demand and production continue to grow.(MARKET REPORT: Organics) (Statistical table)(Statistical data) Ads by Google pKa measurement needed? Quickly analyze unknown samples Measure sample not impurities High Purity GC Reagents BSTFA + 1% TMCS, MTBSTFA MSTFA, HFBI and BSA from Pierce Ctric acid replacement? PURAC lactic acid: cost-effective, natural substitute for citric acid Ads by Google pKa measurement needed? Quickly analyze unknown samples Measure sample not impurities Tai lieu tu Internet

12/1/2009

Trang 26

[email protected]

Hanoi University Of Technology

High Purity GC Reagents BSTFA + 1% TMCS, MTBSTFA MSTFA, HFBI and BSA from Pierce Ctric acid replacement? PURAC lactic acid: cost-effective, natural substitute for citric acid Article Excerpt Acetic acid is an important organic chemical raw material. It is mainly used in the production of vinyl acetate, acetic anhydride, cellulose acetate, acetates, PTA (purified terephthalic acid) and chloroacetic acid. Its derivatives have reached several hundred varieties extensively used in of... View more below Read the FULL article now - Try Goliath Business News - FREE! You can view this article PLUS... • • • •

Over 5 million business articles Hundreds of the most trusted magazines, newswires, and journals (see list) Premium business information that is timely and relevant Unlimited Access Now for a Limited Time, try Goliath Business News - Free for 7 Days! Tell Me More Terms and Conditions

Purchase this article for $4.95

Buy Now

Get Goliath Business News for 1 year - Just $99 (Save 65%) Tell Me More Terms and Conditions Already a subscriber? Log in to view full article ...many sectors, including chemicals, light industry, textiles, pharmaceuticals, printing/dyeing, rubber, pesticides, photographic chemicals, electronics and food processing. The capacity acetic acid in the world was around 10.188 million t/a in 2005 and the output was 7.874 million tons. The main methods for acetic acid production around the world include the methanol carbonylation process, the acetaldehyde oxidation process and the butane liquid-phase oxidation process. Units using the methanol carbonylation process accounts for 75% of the world's total capacity. Asia has become the largest acetic acid production base in the world today. It is also the region with the most new acetic acid units constructed in recent years. The consumption of acetic acid in the world was around 7.874 million tons in 2005. Vinyl acetate was the largest consumer and the consumption accounted for 42.4% of the total. The consumption proportion in PTA, acetates and acetic anhydride was respectively 17.9%, 16.5% and 12.9%. It is expected that the production of acetic acid will increase at an average annual rate of 3% in the next 5 Tai lieu tu Internet

12/1/2009

Trang 27

[email protected]

Hanoi University Of Technology

years. Owing to the rapid demand growth of polyester, the output of PTA is expected to increase at an average annual rate of 8% in the next 5 years. The growth in demand for acetates is mainly promoted by the development of ethyl acetate and butyl acetate. Ethyl... NOTE: All illustrations and photos have been removed from this article. Read the FULL article now

More articles from China Chemical Reporter Quoted prices in Shanghai as of December 8th, 2006.(STATISTICS: Price)..., December 16, 2006

Looking for additional articles? Search our database of over 3 million articles. Looking for more in-depth information on this industry? Search our complete database of Industry & Market reports by text, subject, publication name or publication date. About Goliath Whether you're looking for sales prospects, competitive information, company analysis or best practices in managing your organization, Goliath can help you meet your business needs. Our extensive business information databases empower business professionals with both the breadth and depth of credible, authoritative information they need to support their business goals. Whether it be strategic planning, sales prospecting, company research or defining management best practices - Goliath is your leading source for accurate information.

Close You can enjoy Goliath Business News absolutely FREE for 7 days. At the completion of the 7-day trial, you will be charged $24.95 per month. You may cancel at any time. If you cancel before the trial period ends, you will not be charged. You may only sign up for this free trial once in a 90-day period. To cancel your membership, go to "My Account" and select "Cancel My Subscription". Complete the cancellation process and your account will not be charged. Close You will be charged $99 for unlimited access to Goliath Business News for one year. You may cancel at anytime. All purchases are non-refundable unless you cancel within the first 30 days. To cancel, go to "My Account" and select "Cancel My Subscription" to complete the cancellation process. At the end of the one year period, your account will automatically renew for a new year unless you cancel prior to your renewal date. Close You can enjoy Goliath Business News absolutely FREE for 7 days. At the completion of the 7-day trial, you will be charged $24.95 per month. You may cancel at any time. If you cancel before the trial period ends, you will not be charged. You may only sign up for this free trial once in a 90-day period. To cancel your membership, go to "My Account" and select "Cancel My Subscription". Complete the cancellation process and your account will not be charged. Tai lieu tu Internet

12/1/2009

Trang 28

[email protected]

Hanoi University Of Technology Close

You will be charged $99 for unlimited access to Goliath Business News for one year. You may cancel at anytime. All purchases are non-refundable unless you cancel within the first 30 days. To cancel, go to "My Account" and select "Cancel My Subscription" to complete the cancellation process. At the end of the one year period, your account will automatically renew for a new year unless you cancel prior to your renewal date. file:///I:/Java%20va%20Axitaxetic/Web/Acetic-acid-demand-and-production.html#abstract THE END Thursday, March 19, 2009

http://en.wikipedia.org/wiki/Acetic_acid •

International Chemical Safety Card 0363

• • • • • •

National Pollutant Inventory - Acetic acid fact sheet NIOSH Pocket Guide to Chemical Hazards Method for sampling and analysis 29 CFR 1910.1000, Table Z-1 (US Permissible exposure limits) Usage of acetic acid in Organic Syntheses Acetic acid pH and titration - freeware for data analysis, simulation and distribution diagram generation Calculation of vapor pressure, liquid density, dynamic liquid viscosity, surface tension of acetic acid

• v•d•e

Otologicals (S02) Chloramphenicol - Nitrofural - Boric acid - Aluminium acetotartrate - Clioquinol - Hydrogen Anti-infectives peroxide - Neomycin - Tetracycline - Chlorhexidine - Acetic acid - Polymyxin B - Rifamycin - Miconazole - Gentamicin CorticosteroidsHydrocortisone - Prednisolone - Dexamethasone - Betamethasone Other Lidocaine - Cocaine otologicals Retrieved from "http://en.wikipedia.org/wiki/Acetic_acid" Categories: Featured articles | Flavors | Acetates | Carboxylic acids | Household chemicals | Solvents | Oenology | Photographic chemicals | Cigarette additives • •

This page was last modified on 16 March 2009, at 21:22. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.

Tai lieu tu Internet

12/1/2009

Trang 29

[email protected] • • •

Hanoi University Of Technology

Privacy policy About Wikipedia Disclaimers

Tai lieu tu Internet

12/1/2009

Trang 30

Related Documents

Tai Lieu Ve Stack
December 2019 4
Acetic Acid
June 2020 15
Tai Lieu
November 2019 31
Tai Lieu
June 2020 15