String Trio #4

  • Uploaded by: Jeff Harrington
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View String Trio #4 as PDF for free.

More details

  • Words: 8,777
  • Pages: 28
Tetra-Mnemosyne IV for String Trio q = 90 Allegro pesante con moto

Violin

     p

  

          

Viola

p

Violoncello



 

Vla.

    

  

Vc.

    mp

5

Vln.

Vla.

     mf

Vc.

 

  mp

   mf

   p

3

Vln.



mp



   

    



                        

   



 



          

                              mf

 



   

         

           

7

 



     

 



 

       

           

                   f              Vc.      f

 Vln.    f  Vla.  

by Jeffrey Harrington

  

  

      

  

         

© 1998 Jeffrey Harrington, All Rights Reserved



2 9

 Vln.    Vla.    Vc.

  

    



  

  

         

11

13

Vc.

Vln.

Vla.

Vc.



 

15   

    

     

      

                      

    Vln.            Vla.                   Vc.   Vln.       Vla. 

    

 

     

  

  

3

    

    

                 

   

   

   

  

  



  

  



                     



 





   

 

          

 



  



 



                       

 



 

 

17

Vln.

 

Vla.

Vc.

Vln.



19    

 

Vla.

Vc.

 



 

 

Vln.

Vla.

 



     

  

 



 

  



3

 





                





 



  

 

 

 

  







                    

21

   

 

 

 



  

   



 

 

 

   

   

                  Vc.    



   3

23

 Vln.             sf                    Vla.       sf                Vc.                 sf 



4 25

  

        sf                  Vla.   sf             Vc.                sf 

Vln.

27

 Vln.         Vla.    Vc.

 

  



        



  

  









                         29

Vln.

Vla.

      

  Vc.   31

  

 

  



 

 



  





                    

 poco agitato Vln.                     Vla.   

                     

 

               Vc.           

5 33

 Vln.                       Vla.    Vc.





 

                      sf                    sf  

 

         

sf

36

Vln.



Vla.

Vc.





                                                           

39

Vln.

q = 62

rit.

                            



 



poco misterioso

     p

 

Vla.

poco misterioso

                        p

Vc.







        

 p

6 42

Vln.



  

Vla.







     

                       

sempre p

 



 3

sempre p

       

poco misterioso Vc.









 



sempre p

                                     45

Vln.

      

Vla.

3

Vc.



 

    48

Vln.

3



 

3

   



     

Vla.

Vc.

3



                     3



3

3

   

3

  



 

                  poco a poco cresc. 

         

  

poco a poco cresc.



 

poco a poco cresc.

    



Vln.

Vla.

Vc.

  

                             

50



   



   



 



 

7

   





     

                                  52

Vln.

f

                       Vla.   f p              Vc.          p f p

     55

Vln.

        

Vla.

Vc.





            

57

 



 

      

  

         



           

 Vln.      Vla.  

    

 

                    Vc.    

 



        



 

mp

  

mp

  

mp





  

  

    



      

8 Vln.

59      

Vla.

Vc.



                                                   

61

Vln.

            

    

 



 



 

   

   Vla.                          Vc.   

mf

 63    Vln.    Vla.       Vc. 

mf

65

Vln.

 



 



        

        

 

mf

  



  

  

  

    



  

       

    

     

  



       

           

   

             Vc. 

Vla.

 



         

 

        

  

   

 

poco a poco pesante

poco a poco pesante

poco a poco pesante

   





    

q = 90 (primo tempo)

                   Vln.               f                      Vla.      67

accel.

9

    

f

Vc.





 

 

 

 

 

 

 

 

  f

     

espressivo        Vln.            f pesante e ritmico 6 6  6 6                        Vla.         f pesante e ritmico          Vc.                      70

f

Vln.

72    



Vla.

Vc.







 



 







  

6 6                                   6

6

            Vln.  6  6   6   6              Vla.               Vc.        74               Vln.  10

73



Vla.

Vc.





75

Vln.

 



   

6

  



 



    

6

  



 



6

   



 

    

6

 



  

6  6   6   6            Vla.             Vc.        76             Vln.  6  6 6 6                 Vla.            Vc.       





 

  



11 77

Vln.

  







  















6 6                  Vla.               Vc.        78                    Vln.       6 6  6 ff    6                     Vla.                  ff             Vc.                   ff 80           Vln.        meno f               Vla.                    meno f                Vc.             



82

Vln.

6

6

meno f

    f

 

 

   Vla.     f     Vc.     f



 



 



                  

  





    







  



        

  



12 84

Vln.

    

Vla.

Vc.





   

 



        









  

 

 



                   



  



  





         

    



  



86 6 6              Vln.                 p sf ff mf                       Vla.              sf mf p ff                   Vc.                sf mf ff

89

Vln.

Vla.

  

 

     

6

6

                                   

        Vc.   p





       





 

13

poco agitato

91

6

6

6

6

6

6

                                    sempre p

 Vln.      sf  Vla.      sf   Vc.    

   

sf









93

Vln.

6 6 6 6 6 6 6 6      

p

Vla.

Vc.

 

  







p







  

     



 







 







  

     









 

 

p 95

Vln.

6 6 6                 

Vla.

Vc.

 

  







  



Vla.

  

  

   Vc. 

 

  f

f

f



           

97

Vln.







 



  

     





  



 

         sf         sf               sf 

   

 



 

 



 



  

  



 

           

14 6 6 6 6                                   Vln.                            Vla.                     Vc.        

99

      101

Vln.

  

Vla.

Vc.







      molto agitato

6

     



6

 

6

 

6



6

  



6



                          

             103

Vln.

  

Vla.

Vc.







6

     



6

 

6

 

6



6

  



6



                           

                          Vln.           6 6 6 6 ff                         Vla. 105

ff

                   Vc.               ff

15

    107

Vln.



 

  

Vla.

   Vc.  109

Vln.

Vla.

Vc.









              

     



     



 





 

 



 

 

  

 







           

      6

     



6

 

6

 

6



6

  



6



                          

                             Vla.                           Vc.            111

Vln.

   

Vln.

  

113

Vla.

Vc.



   



  





 

 





 





                                           

16

       115

Vln.

6

sempre ff

Vla.

Vc.



  





sempre ff





6

6

        

sempre ff 117

Vln.

        piu f



Vla.

 

    

piu f Vc.





  



6

 



6

 

6



6

  



6



                                                       

   

  

 



     

piu f

                   Vln.              6 6                         Vla.                            Vc.  119

                                 Vln.  6 6 6 6                       Vla. 121

Vc.



 

   

 

  

 

        

17

                Vln.              6 6                          Vla.  123

Vc.



 



 

 

  

   

 

  

125         Vln.  6 6 6 6 6 piu f  6            Vla.        

Vc.

Vln.



    

127     



 

  



  

      

   

Vla.

Vc.

 



piu f





piu f

        

       

  

    



   



   







  

  

 



                                        Vln.      6 6 6 6   6                Vla.             Vc.                       129

18

    Vln.  6 6 6            Vla.      

    

131

Vc.







  



 



             6

6

    

6







6

   





          Vln.   6 6 6 6 6 6 6                              Vla.         133

Vc.



 

  

   

  







   





          Vln.   6 6 6 6 6 6 6                               Vla.       135

Vc.







  

  

 

  

137

Vln.



Vla.

Vc.





  

           

meno f

meno f



meno f

  

   



 

espressivo 6 6 6 6       

 

 



 

 6

 

6

  

6

6

    

Vln.

139   



Vla.

Vc.





 

6

 

6

 

   

Vla.

Vc.

Vln.



Vc.

 



Vc.

6

6

 



6

 

    

 



6

6

 



 

6

6

  

6

 

6

6

  

  

 



6

6

     



 

6

6

      

 

                          6



  





6

6





        meno f             

   

Vla.

 

  

 

144

Vln.



143   

Vla.



   



  

141

Vln.





19

meno f



meno f

6

 







  

                       

6

 



6





6

6







20 145

Vln.



Vla.

Vc.

                   

   





6

146

Vln.







   

 











 

6

6







    

 

149

   

  

 

       

Vla.

Vc.

  



6

                         

Vla.

Vln.





 

                    p

6

Vc.



6

               6 6 6 6                         

147

Vln.



6

    

   

Vla.

Vc.

6





                      





 

   

   

   

         

   p

           p

         





 

  

                

   



                                           

21

151

Vln.

   

Vla.

Vc.





     

153

Vln.

   





 



   





  



    

Vla.

Vc.

   

   





155

Vln.

  

                                     

Vla.

Vc.



  

  

rit.



poco dim.

 

   

    

      

        

          



poco dim.



           

                                poco dim.

158

Vln.

Vla.

Vc.

       



                 

         

 

                   

    



  



    

22 160

Vln.

  

Vla.

Vc.





accel.

 

     

 

                   mf

            

162

      

3         

     

mf

 

a tempo q = 90



 





           f  3                         Vla.                  f                       Vc.             

Vln.

f

   

                                    Vla.                               Vc.           164

Vln.

  

166

 Vln.              Vla.              Vc.    

 







 



  



   

                 

 

3

  

 



 



168

Vln.

  

    

Vla.

Vc.







 3                         piu f                              

    

    

     



 

     





     



170

Vln.

 



23

 

  

      

piu f

     

 

 

      

   

 

 

     

 3                             Vla.                              Vc.       172

Vln.



piu f



         3            Vla.                         Vc.     

Vla.

Vc.

      

    3             

                                    

174

Vln.

  









    



  



 



  





 



24 Vln.

   

      

178

Vln.

  



 

  

       

       

                                  p





3

 p

    

180

Vln.

 



 

Vla.

Vc.

   

3 3                                      

Vla.

Vc.

           

176   

    

 

  



 

 



  



3 3 3 3                                 Vla.            cresc.                        Vc.              3  cresc.

182

Vln.



    sfz                                    

Vla.

Vc.



 





f

  f

  

 



 





    



 



25 184

Vln.

   

 

                  3

Vla.

Vc.





3

3

3

3

3

3

3

3

3

3



 

                        3 3 3 3 3 3 3 3                            

  Vln.    3 3 3 3                           Vla. 

3

            

           

186

Vc.

3

188                                          Vln.  poco a poco cresc.                                    Vla.            

poco a poco cresc.

                     3

Vc.



3

3

3

3

3

3

3

poco a poco cresc.

190                                   Vln.                                      Vla.            

                           Vc.  3

3

3

3

3

3

3

3

26

                    Vln.     ff           Vla.           ff             Vc.         192

ff

    194

  





espressivo

 

  

  

   

                                   

 



                               Vla.           p                      Vc.                 

Vln.

 

p

p

196

Vln.

Vla.

Vc.

  

 

                 

        198

sf

   sf        sf

   

        

  

  

 

  

                    

                       Vla.                                 Vc.              

Vln.

   

 

 

  

 

 

         

27 200

Vln.

Vla.

   

  

 



 

 

   

 

  

 

 

piu f



 



 



 

  



  

  

                 Vc.                          piu f

piu f

202

Vln.

Vla.

  

  

 

 



 

 



  





 

  

  

 



  





                                     Vc.           204

Vln.

Vla.

  

  

 

 



 

 



  





 

  

  

 



     

   



                       Vc.                 206

   

p                  Vc.        

          f

Vla.

  

 

 



 



  

  

       p f           

Vln.

  



28 208

Vln.

        f p          

         p    f               p                          f f

  

Vla.

p

Vc.



 

    

210

Vln.

    

Vla.

      

                 ff                

  

                             Vc.          ff ff

212

Vln.

        

 

Vla.

Vc.



 

214

Vln.

   

  

 

 



  





          

 





                                  

 



  



 



     





  sfz

    sfz                     Vc.      

Vla.

 



  

sfz

  

Related Documents


More Documents from "Jeff Harrington"