Spm Addmath_integration Exercise

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Spm Addmath_integration Exercise as PDF for free.

More details

  • Words: 917
  • Pages: 9
ONE-SCHOOL.NET

Integration 3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

2. Find a. ∫ x 4 dx =

b.

∫ xdx =

c.

∫x

d.

∫ x 2 dx =

e.

∫ x 5 dx =

∫ adx = ax + C Example ∫ 2dx = 2 x + C

Exercise 3.1:

−2

dx =

1

1. Find a. ∫ 4dx

4

b.

∫120dx

c.

∫ −12dx

d.

Example 1 x −4 −5 dx = x dx = +C ∫ x5 ∫ −4

2

∫ 3 dx

∫x

g.

∫x

1 e. ∫ − dx 4

x n+1 ∫ x dx = n + 1 + C n

Example x3 1. ∫ x dx = + C 3 2

1

1

f.

3

1 7

dx =

dx =

ONE-SCHOOL.NET Example 3

c.

∫ −130 x

d.

∫ 4 x dx =

e.

∫ − 15 x dx =

f.

5x4 ∫ 9 dx =

g.

∫−

550

dx =

3

1 2

x2 2x 2 xdx = ∫ x dx = +C = +C 3 3 2





h.



i.

xdx =

3

2

x 3 dx =

7

6

ax n+1 ∫ ax dx = n + 1 + C n

Example 2 x4 x4 ∫ 2 x dx = 4 + C = 2 + C 3

3. Find a. ∫ 3x 5dx =

b.

∫ −7 x dx = 3

2

2 x5 dx = 7

ONE-SCHOOL.NET x −3 dx = h. ∫ 2

i.

1

3x −2 ∫ 5 dx =

l.

5 ∫ − 7 x 3 dx =

m.

4 − 34 ∫ 7 x dx =

1

j.

4x 2 ∫ 11 dx =

Example 2 2 −5 2 x −4 ∫ 3x5 dx = ∫ 3 x dx = 3 ( −4 ) + C 2 x −4 x −4 )+C = +C = ( 3 −4 −6 2

n.

∫x

o.

∫x

2

dx =

2

2x 3 k. ∫ dx = 3

3

7 3

dx =

ONE-SCHOOL.NET p.

−2

∫x

3

dx =

Example 1

2 xdx = ∫ 2 x 2 dx



3

3

2 2x 2 x2 = 2( ) + C = +C 3 3 2

q.

r.

s.

2

∫ 5x

5

3

5

6

∫2

u.

∫ −7

v.

∫3

w.



xdx =

dx =

∫ − 4x

∫ 7x

t.

7

x 3 dx =

dx =

dx =

4

2

xdx =

3xdx =

ONE-SCHOOL.NET x.



4x 5 dx =

∫ (u ± v)dx = ∫ udx ± ∫ vdx u and v are functions in x

Example 1. ∫ 3x 2 + 2 xdx = ∫ 3x 2 dx + ∫ 2 xdx

3x3 2 x 2 3 x3 2 x 2 = + +C = + +C 3 2 3 2 = x3 + x 2 + C

y.

z.





3

4

4. Find a. ∫ x3 + 2dx

6x 2 dx =

b.

∫x

c.

∫ 2x

d.

∫12 x

e.

∫2x

2xdx =

5

2

1

+ 2 xdx

− 5 x 3 + 1dx

2

7

− 8 x −3dx

3

+ 9 x8dx

ONE-SCHOOL.NET f.

1

∫x

3

+

2 dx x4

Example 2 ∫ ( x + 2)(3x + 1)dx = ∫ 3x + 7 x + 2dx = ∫ 3 x 2 dx + ∫ 7 xdx + ∫ 2dx 3x3 7 x 2 + + 2x + C 3 2 7 x2 = x3 + + 2x + C 2 =

g.

h.

1

∫ 2x

3

+

i.

∫ (2 x + 3) dx

j.

∫ x (5x + 3)dx

k.

∫ (3x + 1)( x

2

9 8 x dx 2

2

1 2 + x 9 ∫ 3x5 2 + 3dx

6

2

− 2)dx

ONE-SCHOOL.NET l.

∫ x( x

3

3 + )dx x

Example 3x3 + x 2 − x dx = ∫ 3 x 2 + x − 1dx ∫ x = ∫ 3 x 2 dx + ∫ xdx − ∫ 1dx 3x3 x 2 = + − x+C 3 2 2 x = x3 + − x + C 2

m.

n.

∫ (x

2

o.

x 2 − 3x ∫ x dx

p.

x5 − 3x3 + 5 ∫ x 2 dx

+ 5) 2 dx

∫ ( x + 1)( x

2

+ 3x − 2)dx

(2 x − 1) 2 dx q. ∫ x

7

ONE-SCHOOL.NET r.

3.2 Integration by Substitution

(2 x 3 − 2)( x + 5) dx ∫ x2

(ax + b) n+1 ∫ (ax + b) dx = a(n + 1) + C Example (3 x + 5) 4 3 ∫ (3x + 5) dx = 3(4) + C n

=

(3 x + 5) 4 +C 12

Exercise 3.2: 1. Find a. ∫ ( x − 1)5 dx

s.

( x 2 − 3x)( x + 5) dx ∫ x3

8

b.

∫ (5x − 9) dx

c.

∫ (12 x + 3) dx

3

7

ONE-SCHOOL.NET d.

∫ (2 x − 18)

e.

∫ (7 x + 6) 2 dx

−2

dx

i.



2 x + 5dx

j.



9 x − 4dx

5

1

f.

∫ (2 x − 3)

g.

∫ (5x + 7)

h.

∫ 3(9 x − 2)

2

dx

3

dx

2

2

5

dx

9

Related Documents