ONE-SCHOOL.NET Differentiation Exercise II Sum and Difference Rule
5. y = 2 x −
y =u±v u and v are functions in x dy du dv = ± dx dx dx
2 x
Example y = 2 x3 + 5 x 2 dy = 2(3) x 2 + 5(2) x = 6 x 2 + 10 x dx Exercise 1 dy Find of the following dx 1. y = 3 x 2 − x
6. y =
2 2 x− 2 5 x
7. y =
3 1 − 5 3 5x x
2. y = 120 x 3 − 21x + 2
2
2 3. y = −3 x 3 − x − 1 3
4. y = 9 x 4 − 12 x 3 − 2
1
ONE-SCHOOL.NET 8. y =
Chain Rule
3x3 1 − 2 2 2x
y = un
u and v are functions in x
dy dy du = × dx du dx
Example y = (2 x 2 + 3)5 u = 2 x 2 + 3, y = u5 ,
therefore
therefore
du = 4x dx
dy = 5u 4 du
dy dy du = × dx du dx = 5u 4 × 4 x = 5(2 x 2 + 3) 4 × 4 x = 20 x(2 x 2 + 3) 4
9. y =
3x3 − 2 x + 4 x
Or differentiate directly y = (2 x 2 + 3)5 dy = 5(2 x 2 + 3) 4 × 4 x = 20 x(2 x 2 + 3) 4 dx Exercise 2 Differentiate the following equation upon x. 1. y = (2 x + 3)3
10. y =
5 x3 − 7 x + 4 2x2
2. y = (2 x 2 + 3x + 3) 2
2
ONE-SCHOOL.NET 2 3. y = ( + 3x 3 )3 x
6. y =
1 2x + 3
5 2 3 + ) x 2 x3
7. y =
5 (5 x + 3x) 2
8. y =
6 4(7 x + 3 x − 4) 2
4. y = (
5. y = 3(4 x + 3 x ) 4
2 4
3
3
2
ONE-SCHOOL.NET 9. y =
Product Rule
2 −(2 x − 7) 2
2
y = uv u and v are functions in x dy du dv =v +u dx dx dx Example y = (2 x + 3)(3 x 3 − 2 x 2 − x) u = 2x + 3 v = 3x3 − 2 x 2 − x du dv =2 = 9 x2 − 4x − 1 dx dx dy du dv =v +u dx dx dx 3 2 =(3x − 2 x − x)(2) + (2 x + 3)(9 x 2 − 4 x − 1) Or differentiate directly y = (2 x + 3)(3 x 3 − 2 x 2 − x) dy = (3 x 3 − 2 x 2 − x)(2) + (2 x + 3)(9 x 2 − 4 x − 1) dx
10. y =
Exercise 3 Find f’(x) of the following equation 1. f ( x) = x 2 (2 x + 3)3
−3 3 8(9 x + 21x)8
4
ONE-SCHOOL.NET 2.
f ( x) = x 5 (2 x 3 + 3 x) 2
5.
f ( x) = (7 x + 6) 2 (3x 2 − 12) 4
3.
f ( x) =
x (5 x + 3 x 2 ) −3 5
6.
f ( x) = (5 x + 1)3 x 4
4.
f ( x) = ( x 2 − 12 x)(5 x + 11) 2
5
ONE-SCHOOL.NET Quotient Rule
u y= v
u and v are functions in x
2. y =
2 x2 − 2 3x − 1
3. y =
2x 2 x − 3x
du dv v −u dy = dx 2 dx dx v Example x2 y= 2x +1 u = x2 v = 2x +1 du dv = 2x =2 dx dx du dv v −u dy = dx 2 dx dx v dy (2 x + 1)(2 x) − x 2 (2) = dx (2 x + 1) 2 =
4 x2 + 2 x − 2 x2 2 x2 + 2 x = (2 x + 1) 2 (2 x + 1) 2
Or differentiate directly x2 y= 2x +1 dy (2 x + 1)(2 x) − x 2 (2) = (2 x + 1) 2 dx =
4 x2 + 2 x − 2 x2 2 x2 + 2 x = (2 x + 1) 2 (2 x + 1) 2
Exercise 4 Find the first derivative of the following equation x +1 1. y = x −1
6
3
ONE-SCHOOL.NET 4. y =
5. y =
x +1 3x − 3x 2
1 − 2x 2( x 3 − 3)
7
6. y =
2 − 3x 5( x 2 − 3x)
7. y =
( x − 1)3 2 − 3x
ONE-SCHOOL.NET 8. y =
2x2 + 3 (3x − 12) 2
9. y =
7x +1 5 − 2 x + 12 4 x + 1
10. y = (
8
x 3 ) 2x −1