Kimia Organik 1. 2. 3. 4. 5.
Structure and Bonding review (11/11) Classes of Organic Compounds (11/11) Aliphatic Hydrocarbons (11/11) Aromatic Hydrocarbons (18/11) Chemistry of the Functional Groups (25/119/12): • • •
6.
Alcohol & Ethers Aldehyde & Ketones Carboxylic Acids & derivates
Chemical Analysis and Instrumentation (an Introduction) (16-23/12)
Introduction Organic chemistry is the chemistry of the compounds of carbon. Inorganic Chemistry: the chemistry of the other ~100 elements. Carbon can form more compounds due to its ability to form not only single, double or triple C-C bonds, but also to link up with each other in chains and ring structures. Over 13 million synthetic and natural organic compounds are known – significantly greater than so known inorganic compounds Organic chemicals, those from living organisms (animal, vegetable) were complex and contained C, H, and often N and/or O. Inorganic chemicals (mineral) were simpler, could contain a variety of elements, but only rarely carbon, except for carbonates. covalent bonding - sharing electrons - most common bonding in organic compounds
1
How to handle variety nomenclature - clear methods for naming structures and reactions structures - organized by functional groups reactions - organized by reaction types (what happens?) reactions - organized by reaction mechanisms (how does it happen?)
Classes of organic compounds distinguished according to functional groups they contain a functional group is a group of atoms that is largely responsible for the chemical behavior of the parent molecule all organic compounds are derived from hydrocarbons because they are made up of only H and C
2
Classes of organic compounds Hydrocarbons
Aromatic
Aliphatic
Alkanes
Cycloalkanes
Alkenes
Alkynes
aliphatic hydrocarbons do not contain benzene group/ring aromatic hydrocarbons contain one or more benzene rings
Structure and Bonding review
3
Resonance more than one possible Lewis structure for a compound What's the best Lewis structure? follow the octet rule electronegativity determines the best place to locate charges carbon monoxide (CO) nitromethane (CH3NO2)
Resonance structure If one can draw more than one reasonable Lewis structure for a molecule, then that molecule is a hybrid of the structures which may be drawn. Each contributing Lewis structure is a resonance or canonical structure.
4
Resonance Rules 1. All nuclei must be in the same location in every resonance structure; they cannot move. 2. Each resonance structure must have the same number of unpaired electrons (eg, 0, 1, 2, etc.).
Molecular Geometry From Lewis Structures – electron pair repulsion model
Count the number of "electron groups" around the atom. Each unshared pair counts as one group, as does each bond whether single or multiple. If there is more than one resonance structure, use the one with the greater number of bonds attached to the atom in question.
5
sp sp2 sp3
Functional Groups characteristic arrangement of atoms that define a family of compounds R represents generic carbon group alcohols: R-O-H ethers: R-O-R carbonyl group ( C=O ) aldehydes: RCHO ketones: R2CO
carboxyl group ( COO )
6
Polar Bonds to Carbon C-C bonds are nonpolar C-H bonds are generally considered nonpolar C-X bonds are polarized with carbon d+ for X = F, Cl, Br, I, O, S, N C-M bonds are polarized with carbon dfor M = metals
Writing Organic Structures Lewis structures - all electrons shown Kekule structures - show bonds as lines - lone pairs sometimes omitted line structures - omit lone pairs - omit hydrogens on carbons - omit carbons (assumed to be at the end of every bond)
7
3-Dimensional Structures dotted-line / wedge ball-and-stick space-filling
Visualizing chemical structures name (common or systematic) condensed formula (as usually typed out) Lewis structure (all atoms and bonds shown) line structure (omit hydrogens, assume carbons at vertices) 3-D structure (show bond orientations) ball-and-stick structure (like a molecular model you could make) space-filling model (approximates full size of electron distribution)
8
Metana, CH4
Cari penggambaran struktur bensen dan penisilin
Alkanes (alkana) general formula: Cn H2n+2 , n=1,2, ….. only single covalent bonds are present also known as saturated hydrocarbons because they contain the maximum number of hydrogen atoms that can bond with the number of carbon atoms present Carbons are sp3 hybridized. Bonds are σ-bonds. C-C bonds ~ 1.54Å; C-H bonds ~ 1.10Å. Bond angles ~ 109o.
9
CH4, methane (metana) the simplest alkane natural product of the anaerobic bacterial decomposition of vegetable matter under water --- marsh gas Termites are a natural source of methane by digestively breaking down cellulose (from wood) – estimated 170 million tons production annually Sewage treatment processes also produced methane Commercially obtained from natural gas
Natural gas is a mixture of methane, ethane, and small amount of propane The structure of methane, ethane and propane are straightforward – there is only one way to join C atoms Butane, C4H10 has 2 possible bonding schemes Æ structural isomers n-butane and isobutane
10
isomers Structural isomer: molecules that have the same molecular formula but different structures in the alkane series, as the number of C atoms increases, the number of structural isomers increases rapidly butane – 2 isomers; decane (C10H22) – 75 isomers and C30H62 has over than 4x108 isomers Tentukan berapa isomer struktur pentana, C5H12 dan gambar strukturnya
The first 10 Straight-Chain Alkanes name
formula
Metana Etana Propana Butana Pentana Heksana Heptana Oktana Nonana Dekana
CH4 CH3 - CH3 CH3 – CH2 - CH3 CH3 – (CH2)2 - CH3 CH3 – CH2 - CH3 CH3 – CH2 - CH3 CH3 – CH2 - CH3 CH3 – CH2 - CH3 CH3 – CH2 - CH3 CH3 – CH2 - CH3
number of C 1 2 3 4 5 6 7 8 9 10
BP MP o (oC) ( C) -182,5 -161,6 -183,3 -88,6 -189,7 -42,1 -138,3 -0,5 -129,8 36,1 -95,3 68,7 -90,6 98,4 -56,8 125,7 -53,5 150,8 -29,7 174,0
11
Alkane nomenclature based on recommendation of the International Union of Pure and Applied Chemistry (IUPAC)
1. 2. 3. 4. 5. 6. 7.
Nama utama berdasarkan rantai karbon terpanjang Rantai alkana kekurangan 1 atom H disebut gugus alkil, rantai cabang disebut gugus alkil Jika 1 atau lebih atom H diganti gugus lain, nama senyawa harus menunjukkan lokasi atom C tempat penggantian tersebut Pemberian nomer atom C rantai karbon terpanjang sedemikian rupa sehingga memberikan nomer lebih kecil untuk semua atom C bercabang Jika ada lebih dari 1 cabang alkil yang sama digunakan awalan di-, tri-,tetra-, … mengikuti nama alkil. Jika ada 2 cabang alkil berbeda, diberi nama sesuai gugus alkil diawali dengan nomer atom C posisi cabang tersebut Penamaan dengan cabang unsur mengikuti aturan nomer 6
Common alkyl groups Nama
Rumus
Metil
- CH3
Etil
- CH2 - CH3
n-propil
- CH2 - CH2 - CH3
- CH2 – CH2 - CH2 - CH3 n-butil CH3 Isopropil -C-H
t-butil
CH3 - C – CH3 CH3
12
Functional groups Gugus fungsional
Nama
- NH2
Amino
-F
Fluoro
-Cl
Kloro
-Br
Bromo
-I
Iodo
- NO2
Nitro
- CH = CH2
Vinil
Beri nama senyawa berikut sesuai IUPAC CH3
CH3
CH3 – C – CH2 – CH – CH2 – CH3 CH3
Gambarkan struktur senyawa 2,2dimetil-3-etilpentana
13
Aliphatic hydrocarbon • alkanes • cycloalkanes • alkenes • alkynes
Struktur proyeksi Newman proyeksi Sawhorse
14
Reaksi kimia alkana • Pembakaran 0 – sangat eksotermis CH 4( g ) + 2O2( g ) → CO2( g ) + 2 H 2 O(l ) ∆H = −890,4kJ
2C 2 H 6 ( g ) + 7O2 ( g ) → 4CO2( g ) + 6 H 2 O(l ) ∆H 0 = −3119kJ
• Halogenasi alkana Æ alkil halida – substitusi 1 atau lebih atom H oleh atom halogen
panas RH + X 2 ⎯UV ⎯/⎯ ⎯→ RX + HX
CH 4 ( g ) + Cl 2 ( g ) → CH 3 Cl ( g ) + HCl ( g ) metil klorida
Jika tersedia gas klor berlebih:
• campuran gas metana CH 3Cl ( g ) + Cl 2( g ) → CH 2 Cl 2 (l ) + HCl ( g ) dan klor dipanaskan di metilen klorida atas 100 oC atau diiradiasi CH Cl + Cl 2 2(g) 2 ( g ) → CH Cl 3 ( l ) + HCl ( g ) cahaya dengan λ tertentu kloroform
Apakah nama sistematik (sesuai aturan penamaan) untuk metil klorida, metilen klorida dan kloroform?
Alkil halida • Kloroform – cairan volatil untuk anastesi – toksik thd ginjal, hati dan jantung Æ dilarang
• Karbon tetraklorida – cairan pembersih Æ noda minyak pada kain – toksik
• Metilen klorida – solven untuk de-kafeinasi kopi dan pembersih cat
• Klorofluoro karbon
15
Sikloalkana • Definisi: alkana yang rantai karbon dihubungkan sebagai suatu cincin • Rumus umum: CnH2n, n= 3,4,….. • Yang paling sederhana adalah siklopropana • Merupakan kandungan kimia senyawa kolesterol, testosteron, dan progesteron • Mempunyai 2 geometri berbeda – chair – boat
cortisone (a steroid) chrysanthemic acid penarik serangga
strain pada sikloalkana sudut dalam poligon = 180(n-2)/n, n jumlah sisi poligon (von Baeyer)
in fact, prediksi Baeyer BENAR untuk cincin 3 dan 4 yang mempunyai energi stabilisasi lebih tinggi daripada cincin 5 atau 6 TETAPI geometri cincin >5 bukanlah PLANAR,sudut dalam C>5 mendekati sudut ideal tetrahedral, 109o Æ C5 dan C6 banyak ditemui secara natural
C5 C6
C8
16
Penamaan sikloalkana
metil siklopentana
1 siklo propil butana
17
Penamaan sikloalkana
NOT
1,3 dimetil sikloheksana
1,5 dimetil sikloheksana
alkena • disebut juga olefin • mempunyai sekurang-kurangnya 1 ikatan rangkap C=C • Rumus umum Cn H2n n=2,3,4,…… • Alkena paling sederhana : C2H4 (etilen atau etena) • Ada di alam cukup banyak
18
alkena di alam • etilen Æ gas yang berperan dalam proses kematangan buah • α-pinena Æ komponen utama terpentin • β-karoten Æ pigmen oranye pemberi warna wortel, sumber vit A dan memberi perlindungan terhadap penyakit kanker
α-pinena β-karoten etilen
Tata nama nama senyawa menunjukkan posisi ikatan rangkap C=C alkena nama senyawa induk/utama berakhiran dengan –ena
• • • nama senyawa induk/utama ditentukan berdasarkan rantai C terpanjang • angka pada nama alkena menyatakan atom C bernomer paling rendah pada rantai yang mengandung ikatan rangkap C=C • nama harus menyatakan isomer geometriknya jika ada • penamaan sikloalkena mengikuti alkena dengan penomeran atom C sedemikian rupa sehingga ikatan rangkap terletak diantara C1 dan C2, dan gugus fungsi/substituen pertama berada pada posisi nomer C paling kecil 1,4-sikloheksadiena
CH3 CH3
H H
4-metil-cis-2-heksena
H
1,5-dimetil-siklopentena
C=C
C-CH2-CH3
C=C H
CH3
C-CH2-CH3 CH3
4-metil-trans-2-heksena
1-metil-sikloheksena
19
Beberapa penamaan karena faktor sejarah, namun diterima oleh IUPAC: • etena Æ etilen • lihat tabel
Reaksi pada alkena • Preparasi alkena Æ Cracking – dekomposisi termal senyawa hidrokarbon rantai panjang menjadi senyawa-senyawa yang lebih kecil (rantai pendek)
• Reaksi adisi (reaksi 2 senyawa untuk menghasilkan 1 produk tunggal) – hidrogenasi – halogenasi
Preparasi alkena • via termal cracking gas alam (alkana C1C4) dan gasolin rantai lurus (C4-C8)
20
Halogenasi dan hidrogenasi • HALOGENASI Æ aturan Markovnikov C2H4 + HX Æ CH3CH2X
etilena + Br2 Æ 1,2 dibromo etana
C2H4 + X2 Æ CH2X – CH2X
propilena + HBr Æ 2-bromo propana dan atau 1-bromo propana
hidrogenasi
21
TINGKAT STABILITAS: tetrasubstituted > tri-substituted > di- substituted > mono-substituted
isomer geometri alkenes rotasi metil di sekitar C-C Æ free, tidak demikian dengan di sekitar C=C Î sehingga struktur yang diperoleh tidak bersifat mudah interkonversi tanpa pemutusan ikatan kemungkinan terbentuknya isomer geometri
NO
ikatan π putus sementara supaya rotasi C-C dimungkinkan Æ energi barier ≥ energi ikatan π ~268 kJ/mol
YES
22
stabilitas isomer geometri alkena Cl Cl • cis diklor etilen
µ= 1,89 D
C=C H
H Cl
H C=C
• trans-diklor etilen
H
Cl
BP = 60,3 oC µ= 0 D BP = 47,5 oC
I. Aliphatic hydrocarbon – alkynes II. Aromatic hydrocarbon
23
Alkynes = Alkuna • Hydrocarbons that contain a C-C triple bond • Paling sederhana, asetilen H-C≡C-H • The triple bond consists of an sp-sp s-bond and two pbonds. • The remaining sp orbital on each carbon is oriented 180o from the former sp orbital and forms a s-bond with another atom.
Bonding
24
Reactions of alkynes • Reduction to an alkene – Geometrical isomerism possible for product, except when alkyne is terminal (has triple bond at end). Each of these reactions is stereoselective in that each yields predominantly one stereoisomer of two or more possible ones.
• Reduction to an alkane
• Addition of Halogens
25
• Additions of Hydrogen Halides
Hydration of alkynes tautomerism
• Usually the equilibrium favors the ketone (or CH3 - CHO, when the alkyne is acetylene) Æan acid - base equilibrium; -OH is a stronger acid than -CH3. • Structural isomers which exist in equilibrium with each other are called tautomers. • The particular type of tautomerism shown above is keto - enol tautomerism.
26
Acidity of Alkynes – Alkynes in Synthesis — • In general, it is possible to convert a terminal alkyne to an anion by removing the terminal hydrogen Æusually accomplished by using a base which is stronger than an acetylide anion:
• The acetylide anion can be used in synthesis, to make larger molecules, by reacting it with alkyl halides in a substitution reaction:
• Example problem 1 – • Synthesize 2-hexyne from starting materials which do not contain more than 3 carbons.
27
Tatanama • mengikuti aturan seperti pada alkana dan alkena, akhiran –una • posisi ikatan rangkap tiga dinyatakan oleh atom C pertama di dekat ikatan • penomeran atom C rantai utama sedemikian rupa sehingga nomer C ikatan rangkap sekecil mungkin
6-metil-3-oktuna
Tatanama • Jika ada lebih dari 1 ikatan rangkap 3 Æ diuna, triuna, dst. • Senyawa dengan 2 macam ikatan rangkap Æ enuna – penomeran C dimulai dari ujung C plg dekat sembarang ikatan rangkap; double bonds nomernya lebih rendah drpd triple bonds
4-metil-7-nonen-1-una 1-hepten-6-una
28
Ring structures Æ aromatic rings • when carbons are arranged at the corners of a hexagon with a hydrogen bonded to each carbon and alternating double bonds between carbons • the most basic ring structure is benzene (C6H6) • H- substituted by functional groups Æ variety different molecules • hydrocarbons based on the benzene ring Æ arenes – eg. benzene, toluene, naphtalene
• 1825, Michael Faraday isolated a new hydrocarbon from illuminating gas, which he called “bicarburet of hydrogen.” • 1834, Eilhardt Mitscherlich of the University of Berlin prepared the same substance by heating benzoic acid with lime and found it to be a hydrocarbon having the empirical formula CnHn.
benzin
29
• Many trees exude resinous materials called balsams when cuts are made in their bark Æ some are fragrant – exotic oil • Gum benzoin is a balsam obtained from a tree that grows in Java and Sumatra. • “Benzoin” is a word derived from the French equivalent, benjoin, which in turn comes from the Arabic luban jawi, meaning “incense from Java.” • Benzoic acid is itself odorless but can easily be isolated from gum benzoin. • Compounds related to benzene were obtained from similar plant extracts. – tolu tree Æ tolu balsam; 1840 found that distillation of tolu balsam Æ methyl derivative of benzene called toluene
Benzene • Benzene is very unreactive – • It gives substitution and not addition products
– only one monobromination product of benzene was ever obtained Æ all the hydrogen atoms of benzene are equivalent. • Substitution of one hydrogen by bromine gives the same product as substitution of any of the other hydrogens.
– • It combines only with very reactive (usually cationic) electrophiles WHY ????
30
• 3 premises of August Kekulé (1866) 1. Benzene is C6H6. 2. All the hydrogens of benzene are equivalent. 3. The structural theory requires that there be four bonds to each carbon. • Kekulé advanced: Four bonds to each carbon could be accommodated by a system of alternating single & double bonds with one hydrogen on each carbon. • low reactivity of benzene and its derivatives reflects their special stability. • Kekulé was wrong: Benzene is not cyclohexatriene, nor is it a pair of rapidly equilibrating cyclohexatriene isomers. • 20 centuries later Ænew electronic theory explaining the stability of benzene’s ring
Teori Resonansi Struktur Bensena
• The two Kekulé structures for benzene have the same arrangement of atoms, but differ in the placement of electrons -- they are resonance forms, and neither one by itself correctly describes the bonding in the actual molecule. • As a hybrid of the two Kekulé structures, benzene is often represented by a hexagon containing an inscribed circle – suggested firstly by Britain chemist: Sir Robert Robinson Æ aromatic sextet: sextet”—the six delocalized electrons of the three double bonds. • Robinson’s symbol is a convenient time-saving shorthand device, but Kekulé-type formulas are better for chemical reaction
31
• Both Kekulé structures of benzene are of equal energy, and one of the principles of resonance theory is that stabilization is greatest when the contributing structures are of similar energy. • Cyclic conjugation in benzene, then, leads to a greater stabilization than is observed in noncyclic conjugated trienes. • How much greater that stabilization is can be estimated from heats of hydrogenation.
Hydrogenation of arenes in the presence of nickel requires high temperatures (100– 200°C) and pressures (100 atm).
1,3 sikloheksadiena
sikloheksena
32
Properties of Aromatic Compounds — • Cyclic and each atom in the ring is a π-center (uses a p atomic orbital to form π -type bonds), ie, sp2 or sp. • Ring is flat or nearly so • High degree of unsaturation but resistant to addition reactions – generally undergo electrophilic substitution (an electrophilic reagent replaces a hydrogen [usually] attached to the ring). • Unusually stable. • π -Electrons delocalized above and below plane of ring.
aromatic heterocycles 1997
1938 1887
antipirin – mengurangi demam
sulfapiridin – antibiotik 1970s viagra– drug for male impotence treatment
obat anti-ulcer
kina – obat malaria
33
• p409 Carey
34