Organic Chemistry

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Organic Chemistry as PDF for free.

More details

  • Words: 3,686
  • Pages: 15
download : www.artikel-software.com chapter 0 students guide to succcess in organic chemistry 0.1 what is organic chemistry? 4 0.2 organic chemistry in the everyday world 9 0.3 organic chemists are people, too 11 0.4 learning to think like a chemist 14 0.5 developing study methods for success 15 key ideas from chapter 0 18 chapter 1 atoms, orbitals, and bonds 1.1 the periodic table 21 1.2 atomic structure 22 1.3 energy levels and atomic orbitals 23 1.4 how electrons fill orbitals 27 1.5 bond formation 28 1.6 molecular orbitals 30 1.7 orbital hybridization 35 1.8 multiple bonding 46 1.9 drawing lewis structures 49 1.10 polar covalent bonds 54 1.11 inductive effects on bond polarity 57 1.12 formal charges 58 1.13 resonance 60 key ideas from chapter 1 66 chapter 2 introduction to organic nomenclature and functional groups 2.1 drawing organic structures 73 2.2 alkanes 77 2.3 structural isomerism 77 2.4 iupac nomenclature 79 2.5 naming alkanes 80 2.6 naming cycloalkanes 87 2.7 naming complex alkyl groups 91 2.8 functional groups 97 2.9 naming alkenes and alkynes 100 2.10 naming alkenes, part ii 108 2.11 arenes 109 2.12 organohalogens 113 2.13 using molecular formulas 115 key ideas from chapter 2 117 chapter 3 molecular conformations 3.1 representing three-dimensional molecules in two dimensions 125 3.2 dihedral angles 127 3.3 the conformations of ethane 129 3.4 conformational analysis of butane 131 3.5 angle strain in cycloalkanes 134 3.6 conformations of cyclohexane 136 3.7 conformational inversion of cyclohexane 142 3.8 conformational analysis of monosubstituted

cyclohexanes 143 3.9 naming stereoisomers 147 3.10 conformational analysis of disubstituted cyclohexanes 149 special topic � computer modeling 155 3.11 conformations of other cycloalkanes 157 3.12 naming polycyclic ring systems 159 3.13 polycyclic ring systems 164 sidebar - higher polycyclic structures 166 key ideas from chapter 3 168 chapter 4 physical properties of organic compounds 4.1 phases of matter 175 sidebar - liquid crystals 178 4.2 melting points 179 4.3 boiling points 183 4.4 solubility 190 sidebar - surfactants 194 4.5 density 197 key ideas from chapter 4 199 chapter 5 acid-base theory 5.1 acids and bases 209 5.2 acid and base strength 215 5.3 hard and soft acids and bases 222 5.4 organic acids and bases 226 5.5 relative acidity and basicity 231 5.6 substituent effects on acidity and basicity 235 key ideas from chapter 5 238 chapter 6 reaction mechanisms an overview of organic chemistry 6.1 chemical equilibria and rates 246 6.2 equilibrium thermodynamics 250 6.3 reaction kinetics 253 6.4 reaction profiles and mechanisms 255 6.5 why reactions occur 260 6.6 organic reaction terminology 264 6.7 classification of reagents in organic reactions 270 6.8 writing reaction mechanisms 270 6.9 substitution reactions 278 6.10 addition reactions 281 6.11 elimination reactions 284 key ideas from chapter 6 287 chapter 7 nucleophilic additions to the carbonyl group 7.1 naming carbon�oxygen double bonds 299 7.2 reactivity of the carbonyl group 304 7.3 guide for learning organic reactions 307 7.4 the cyanohydrin reaction 309 7.5 addition of water and alcohols 311 7.6 reaction with nitrogen nucleophiles 320 sidebar - biochemical transamination 325

7.7 reaction with hydride nucleophiles 326 7.8 carbon nucleophiles 331 synthesis of triphenylmethanol 336 7.9 organic synthesis 339 7.10 the wittig reaction 342 synthesis of methylene-4-tert-butylcyclohexane 344 key ideas from chapter 7 348 chapter 8-a reaction summary i a summary of the reactions learned in chapters 7-8 chapter 8 nucleophilic substitution on the carbonyl group 8.1 the acyl transfer mechanism 360 8.2 water and alcohol nucleophiles 362 synthesis of isoamyl acetate (banana oil) 366 8.3 halide and carboxylic acid nucleophiles 372 sidebar - aspirin and acetaminophen 376 8.4 reaction with nitrogen nucleophiles 381 8.5 reaction with the hydride nucleophile 384 8.6 carbon nucleophiles 392 8.7 nitriles 401 8.8 the baeyer-villiger oxidation 406 synthesis of caprolactone 409 8.9 solving mechanistic problems 410 key ideas from chapter 8 414 chapter 9 infrared spectroscopy and mass spectrometry 9.1 electromagnetic radiation and spectroscopy 431 9.2 molecular vibrations in infrared spectroscopy 434 9.3 introduction to interpreting infrared spectra 436 9.4 hydrogen bonded to sp3 hybrid atoms 439 9.5 hydrogen bonded to sp2 and sp hybrid atoms 443 9.6 carbon�heteroatom bonds 448 9.7 other bonds 452 9.8 interpreting infrared spectra, part 2 456 9.9 mass spectrometry 459 9.10 the molecular ion 463 key ideas from chapter 9 467 chapter 10 nuclear magnetic resonance 10.1 theory of nuclear magnetic resonance 475 10.2 shielding 478 10.3 chemical shift and molecular structure 480 10.4 interpreting proton nmr spectra 484 10.5 spin-spin splitting 491 10.6 integration signals in an nmr spectrum 501 10.7 analyzing an nmr spectrum 503 sidebar � magnetic resonance imaging 511 10.8 strategy for solving spectral problems 513 key ideas from chapter 10 519

chirality 11.1 symmetry and asymmetry 532 11.2 nomenclature of stereocenters 538 11.3 properties of asymmetric molecules 544 sidebar - chiral recognition 544 11.4 optical isomerism 546 11.5 fisher projections 549 11.6 molecules with two stereocenters 553 11.7 resolution of enantiomers 558 11.8 stereocenters other than carbon 561 key ideas from chapter 11 564 chapter 12 aliphatic nucleophilic substitution 12.1 naming single bonded heteroatom functional groups 579 12.2 comparing nucleophilic substitution reaction mechanisms 586 12.3 the sn1 and sn2 reaction mechanisms 588 12.4 stereochemistry of nucleophilic substitutions 592 12.5 the substrate 595 12.6 nucleophiles and leaving groups 601 12.7 common nucleophiles 606 12.8 the reaction medium 607 12.9 sn1 versus sn2 613 12.10 halide nucleophiles 613 synthesis of 1-bromobutane 616 12.11 oxygen nucleophiles 620 12.12 nitrogen nucleophiles 625 synthesis of 2,5-diaminoadipic acid 628 12.13 carbon nucleophiles 631 12.14 neighboring group participation 634 special topic - sn1 vs. sn2 637 key ideas from chapter 12 641 chapter 13 elimination reactions 13.1 the elimination mechanisms 658 13.2 stereochemistry of eliminations 660 13.3 direction of elimination 663 13.4 e1 vs. e2 670 13.5 elimination vs. substitution 671 13.6 summary of elimination and substitution 673 13.7 e & z nomenclature 677 13.8 elimination of organohalogens 678 13.9 dehydration of alcohols 682 synthesis of cyclohexene 685 13.10 pinacol rearrangement 686 13.11 hofmann elimination 691 13.12 oxidation of alcohols 694 synthesis of citronellal 697 key ideas from chapter 13 698 chapter 14 electrophilic addition to unsaturated carbons 14.1 addition reaction mechanisms 713 14.2 direction and stereochemistry of addition

reactions 715 14.3 addition of hydrogen halides 718 14.4 addition of water and alcohols 722 14.5 hydroboration-oxidation 726 synthesis of (-)-isopinocampheol 730 14.6 electrophilic addition of halogens 732 14.7 addition of hydrogen 736 14.8 dihydroxylation reactions 742 14.9 addition of carbenes 745 synthesis of 7,7-dichlorobicyclo[4.1.0]heptane 749 14.10 oxidation of alkenes 750 key ideas from chapter 14 754 chapter 15 organic synthesis 15.1 synthesis design and strategy 771 15.2 principles of retrosynthetic analysis 774 15.3 protecting groups 778 synthesis of the ethylene glycol acetal of cyclohexanone 781 15.4 lithium dialkylcuprate reagents 781 synthesis of trans-stilbene 784 15.5 a synthetic example 786 15.6 synthesis of difunctional compounds 790 key ideas from chapter 15 795 chapter 16 conjugation and resonance 16.1 naming compounds with multiple functional groups 812 16.2 conjugated dienes 816 16.3 the allyl group and resonance 823 16.4 conjugate addition reactions 826 special topic - ultraviolet spectroscopy 829 16.5 double bonds conjugated with carbonyl groups 832 sidebar - the chemistry of vision 834 16.6 the diels-alder reaction 837 synthesis of cis-norbornene-5,6-endo-dicarboxylic anhydride 841 16.7 orbital symmetry and the diels-alder reaction 844 16.8 synthesis with the diels-alder reaction 847 key ideas from chapter 16 852 chapter 17 aromaticity 17.1 benzene 868 sidebar - diamond, graphite, and buckyballs 872 17.2 the stability of benzene 874 17.3 molecular orbitals in benzene 876 17.4 the molecular orbitals of cyclobutadiene 879 17.5 aromaticity 880 17.6 h�ckel's rule 882 17.7 aromatic ions 887 17.8 naming benzene derivatives 891 17.9 aromatic heterocyclic compounds 895 17.10 polynuclear aromatic hydrocarbons 898

17.11 the benzyl group 900 key ideas from chapter 17 901 chapter 18 aromatic substitution reactions 18.1 mechanism of aromatic electrophilic substitution 914 18.2 the nitration of benzene 917 18.3 halogenation and sulfonation of benzene 920 18.4 friedel-crafts alkylation and acylation 924 18.5 effects of monosubstituted arenes on substitution 928 18.6 rate effects with monosubstituted arenes 932 18.7 classification of substituents 935 18.8 friedel-crafts acylation 943 synthesis of o-benzoylbenzoic acid 947 18.9 multiple substituent effects 948 18.10 substitution on polycyclic arenes 951 18.11 diazotization 954 synthesis of methyl orange 957 sidebar - sulfa drugs 958 18.12 other diazonium salt reactions 961 18.13 nucleophilic aromatic substitution 963 18.14 benzyne 965 synthesis of trypticene 968 18.15 synthesis examples 969 key ideas from chapter 18 975 chapter 19 a substitution on carbonyl compounds 19.1 keto-enol tautomerism 997 19.2 enols and enolate ions 999 19.3 the mechanism of a substitution 1002 19.4 a halogenations 1003 synthesis of 2-bromocholestanone 1005 19.5 alkylation of enolate ions 1009 19.6 stabilized enolate ions 1012 sidebar - barbiturates 1020 19.7 enamine reaction 1023 synthesis of 2-acetylcyclohexanone 1026 19.8 silyl enol ethers 1027 19.9 1,3-dithianes 1030 key ideas from chapter 19 1033 chapter 20 carbonyl condensation reactions 20.1 the carbonyl condensation mechanism 1052 20.2 carbonyl condensation vs a substitution 1054 sidebar - borodin and aldehydes 1056 20.3 mixed aldol condensations 1057 20.4 intramolecular aldol condensations 1061 synthesis of 1,5-diphenyl-1,4-pentadien-3-one 1063 20.5 the claisen condensation 1064 sidebar - biochemical carbonyl condensation reactions 1067 20.6 the dieckmann cyclization 1071 20.7 the michael addition reaction 1072 20.8 the robinson annulation reaction 1076 synthesis of 4,4-dimethyl-2-cyclohexen-2-one 1079 20.9 carbonyl condensations in synthesis 1080 key ideas from chapter 20 1084

chapter 21 radical reactions 21.1 radical structure and stability 1093 21.2 halogenation of alkanes 1095 sidebar - atmospheric ozone depletion 1099 21.3 allylic bromination 1102 21.4 benzylic bromination 1105 synthesis of 1-bromo-1-phenylethane 1106 21.5 radical addition to alkenes 1107 21.6 radical oxidations 1112 21.7 radical reductions 1115 synthesis of 1-methoxy-1,4-cyclohexadiene 1121 special topic - electron spin resonance spectroscopy 1122 key ideas from chapter 21 1125 chapter 22 polymer chemistry 22.1 structural characteristics of polymers 1138 22.2 polymer nomenclature 1141 22.3 types of polymerization reactions 1144 22.4 chain-growth polymerization 1146 synthesis of poly(vinyl acetate) 1155 sidebar - natural rubber 1155 22.5 controlling stereochemistry in vinyl polymers 1157 22.6 nonvinyl chain-growth polymerization 1160 22.7 step-growth polymerization 1163 synthesis of poly(ethylene terephthalate) 1165 sidebar - plastic recycling 1167 22.8 copolymers 1169 sidebar - plasticizers 1172 22.9 cross-linked polymers 1173 key ideas from chapter 22 1178 chapter 24 carbohydrates 24.1 classification of carbohydrates 1250 24.2 monosaccharides 1253 24.3 cyclic forms of monosaccharides 1256 sidebar - the sweet taste 1260 24.4 reactions of monosaccharides 1263 24.5 oxidation and reduction reactions 1265 24.6 changing the chain length 1268 24.7 fischer proof of glucose structure 1271 24.8 glycolysis - i 1275 24.9 glycolysis - ii 1280 sidebar - arsenic poisoning 1285 24.10 glycoside formation 1286 24.11 disaccharides 1291 24.12 polysaccharides 1291 key ideas from chapter 24 1294 chapter 25 nucleic acids 25.1 nucleosides and nucleotides 1306 25.2 laboratory synthesis of nucleotides and nucleosides 1310 25.3 nucleic acids 1314 25.4 replication of dna 1317

sidebar - the polymerase chain reaction 1321 25.5 structure and biosynthesis of rna 1325 25.6 rna and peptide biosynthesis 1328 25.7 sequencing of dna 1332 25.8 laboratory nucleic acid synthesis 1337 sidebar - self replicating organic compounds 1343 key ideas from chapter 25 1345

download : www.artikel-software.com chapter 0 students guide to succcess in organic chemistry 0.1 what is organic chemistry? 4 0.2 organic chemistry in the everyday world 9 0.3 organic chemists are people, too 11 0.4 learning to think like a chemist 14 0.5 developing study methods for success 15 key ideas from chapter 0 18 chapter 1 atoms, orbitals, and bonds 1.1 the periodic table 21 1.2 atomic structure 22 1.3 energy levels and atomic orbitals 23 1.4 how electrons fill orbitals 27 1.5 bond formation 28 1.6 molecular orbitals 30 1.7 orbital hybridization 35 1.8 multiple bonding 46 1.9 drawing lewis structures 49 1.10 polar covalent bonds 54 1.11 inductive effects on bond polarity 57 1.12 formal charges 58 1.13 resonance 60 key ideas from chapter 1 66 chapter 2 introduction to organic nomenclature and functional groups 2.1 drawing organic structures 73 2.2 alkanes 77 2.3 structural isomerism 77 2.4 iupac nomenclature 79 2.5 naming alkanes 80 2.6 naming cycloalkanes 87 2.7 naming complex alkyl groups 91 2.8 functional groups 97 2.9 naming alkenes and alkynes 100 2.10 naming alkenes, part ii 108 2.11 arenes 109 2.12 organohalogens 113 2.13 using molecular formulas 115 key ideas from chapter 2 117 chapter 3

molecular conformations 3.1 representing three-dimensional molecules in two dimensions 125 3.2 dihedral angles 127 3.3 the conformations of ethane 129 3.4 conformational analysis of butane 131 3.5 angle strain in cycloalkanes 134 3.6 conformations of cyclohexane 136 3.7 conformational inversion of cyclohexane 142 3.8 conformational analysis of monosubstituted cyclohexanes 143 3.9 naming stereoisomers 147 3.10 conformational analysis of disubstituted cyclohexanes 149 special topic � computer modeling 155 3.11 conformations of other cycloalkanes 157 3.12 naming polycyclic ring systems 159 3.13 polycyclic ring systems 164 sidebar - higher polycyclic structures 166 key ideas from chapter 3 168 chapter 4 physical properties of organic compounds 4.1 phases of matter 175 sidebar - liquid crystals 178 4.2 melting points 179 4.3 boiling points 183 4.4 solubility 190 sidebar - surfactants 194 4.5 density 197 key ideas from chapter 4 199 chapter 5 acid-base theory 5.1 acids and bases 209 5.2 acid and base strength 215 5.3 hard and soft acids and bases 222 5.4 organic acids and bases 226 5.5 relative acidity and basicity 231 5.6 substituent effects on acidity and basicity 235 key ideas from chapter 5 238 chapter 6 reaction mechanisms an overview of organic chemistry 6.1 chemical equilibria and rates 246 6.2 equilibrium thermodynamics 250 6.3 reaction kinetics 253 6.4 reaction profiles and mechanisms 255 6.5 why reactions occur 260 6.6 organic reaction terminology 264 6.7 classification of reagents in organic reactions 270 6.8 writing reaction mechanisms 270 6.9 substitution reactions 278 6.10 addition reactions 281 6.11 elimination reactions 284 key ideas from chapter 6 287

chapter 7 nucleophilic additions to the carbonyl group 7.1 naming carbon�oxygen double bonds 299 7.2 reactivity of the carbonyl group 304 7.3 guide for learning organic reactions 307 7.4 the cyanohydrin reaction 309 7.5 addition of water and alcohols 311 7.6 reaction with nitrogen nucleophiles 320 sidebar - biochemical transamination 325 7.7 reaction with hydride nucleophiles 326 7.8 carbon nucleophiles 331 synthesis of triphenylmethanol 336 7.9 organic synthesis 339 7.10 the wittig reaction 342 synthesis of methylene-4-tert-butylcyclohexane 344 key ideas from chapter 7 348 chapter 8-a reaction summary i a summary of the reactions learned in chapters 7-8 chapter 8 nucleophilic substitution on the carbonyl group 8.1 the acyl transfer mechanism 360 8.2 water and alcohol nucleophiles 362 synthesis of isoamyl acetate (banana oil) 366 8.3 halide and carboxylic acid nucleophiles 372 sidebar - aspirin and acetaminophen 376 8.4 reaction with nitrogen nucleophiles 381 8.5 reaction with the hydride nucleophile 384 8.6 carbon nucleophiles 392 8.7 nitriles 401 8.8 the baeyer-villiger oxidation 406 synthesis of caprolactone 409 8.9 solving mechanistic problems 410 key ideas from chapter 8 414 chapter 9 infrared spectroscopy and mass spectrometry 9.1 electromagnetic radiation and spectroscopy 431 9.2 molecular vibrations in infrared spectroscopy 434 9.3 introduction to interpreting infrared spectra 436 9.4 hydrogen bonded to sp3 hybrid atoms 439 9.5 hydrogen bonded to sp2 and sp hybrid atoms 443 9.6 carbon�heteroatom bonds 448 9.7 other bonds 452 9.8 interpreting infrared spectra, part 2 456 9.9 mass spectrometry 459 9.10 the molecular ion 463 key ideas from chapter 9 467 chapter 10 nuclear magnetic resonance 10.1 theory of nuclear magnetic resonance 475

10.2 shielding 478 10.3 chemical shift and molecular structure 480 10.4 interpreting proton nmr spectra 484 10.5 spin-spin splitting 491 10.6 integration signals in an nmr spectrum 501 10.7 analyzing an nmr spectrum 503 sidebar � magnetic resonance imaging 511 10.8 strategy for solving spectral problems 513 key ideas from chapter 10 519 chirality 11.1 symmetry and asymmetry 532 11.2 nomenclature of stereocenters 538 11.3 properties of asymmetric molecules 544 sidebar - chiral recognition 544 11.4 optical isomerism 546 11.5 fisher projections 549 11.6 molecules with two stereocenters 553 11.7 resolution of enantiomers 558 11.8 stereocenters other than carbon 561 key ideas from chapter 11 564 chapter 12 aliphatic nucleophilic substitution 12.1 naming single bonded heteroatom functional groups 579 12.2 comparing nucleophilic substitution reaction mechanisms 586 12.3 the sn1 and sn2 reaction mechanisms 588 12.4 stereochemistry of nucleophilic substitutions 592 12.5 the substrate 595 12.6 nucleophiles and leaving groups 601 12.7 common nucleophiles 606 12.8 the reaction medium 607 12.9 sn1 versus sn2 613 12.10 halide nucleophiles 613 synthesis of 1-bromobutane 616 12.11 oxygen nucleophiles 620 12.12 nitrogen nucleophiles 625 synthesis of 2,5-diaminoadipic acid 628 12.13 carbon nucleophiles 631 12.14 neighboring group participation 634 special topic - sn1 vs. sn2 637 key ideas from chapter 12 641 chapter 13 elimination reactions 13.1 the elimination mechanisms 658 13.2 stereochemistry of eliminations 660 13.3 direction of elimination 663 13.4 e1 vs. e2 670 13.5 elimination vs. substitution 671 13.6 summary of elimination and substitution 673 13.7 e & z nomenclature 677 13.8 elimination of organohalogens 678 13.9 dehydration of alcohols 682 synthesis of cyclohexene 685 13.10 pinacol rearrangement 686

13.11 hofmann elimination 691 13.12 oxidation of alcohols 694 synthesis of citronellal 697 key ideas from chapter 13 698 chapter 14 electrophilic addition to unsaturated carbons 14.1 addition reaction mechanisms 713 14.2 direction and stereochemistry of addition reactions 715 14.3 addition of hydrogen halides 718 14.4 addition of water and alcohols 722 14.5 hydroboration-oxidation 726 synthesis of (-)-isopinocampheol 730 14.6 electrophilic addition of halogens 732 14.7 addition of hydrogen 736 14.8 dihydroxylation reactions 742 14.9 addition of carbenes 745 synthesis of 7,7-dichlorobicyclo[4.1.0]heptane 749 14.10 oxidation of alkenes 750 key ideas from chapter 14 754 chapter 15 organic synthesis 15.1 synthesis design and strategy 771 15.2 principles of retrosynthetic analysis 774 15.3 protecting groups 778 synthesis of the ethylene glycol acetal of cyclohexanone 781 15.4 lithium dialkylcuprate reagents 781 synthesis of trans-stilbene 784 15.5 a synthetic example 786 15.6 synthesis of difunctional compounds 790 key ideas from chapter 15 795 chapter 16 conjugation and resonance 16.1 naming compounds with multiple functional groups 812 16.2 conjugated dienes 816 16.3 the allyl group and resonance 823 16.4 conjugate addition reactions 826 special topic - ultraviolet spectroscopy 829 16.5 double bonds conjugated with carbonyl groups 832 sidebar - the chemistry of vision 834 16.6 the diels-alder reaction 837 synthesis of cis-norbornene-5,6-endo-dicarboxylic anhydride 841 16.7 orbital symmetry and the diels-alder reaction 844 16.8 synthesis with the diels-alder reaction 847 key ideas from chapter 16 852 chapter 17 aromaticity 17.1 benzene 868

sidebar - diamond, graphite, and buckyballs 872 17.2 the stability of benzene 874 17.3 molecular orbitals in benzene 876 17.4 the molecular orbitals of cyclobutadiene 879 17.5 aromaticity 880 17.6 h�ckel's rule 882 17.7 aromatic ions 887 17.8 naming benzene derivatives 891 17.9 aromatic heterocyclic compounds 895 17.10 polynuclear aromatic hydrocarbons 898 17.11 the benzyl group 900 key ideas from chapter 17 901 chapter 18 aromatic substitution reactions 18.1 mechanism of aromatic electrophilic substitution 914 18.2 the nitration of benzene 917 18.3 halogenation and sulfonation of benzene 920 18.4 friedel-crafts alkylation and acylation 924 18.5 effects of monosubstituted arenes on substitution 928 18.6 rate effects with monosubstituted arenes 932 18.7 classification of substituents 935 18.8 friedel-crafts acylation 943 synthesis of o-benzoylbenzoic acid 947 18.9 multiple substituent effects 948 18.10 substitution on polycyclic arenes 951 18.11 diazotization 954 synthesis of methyl orange 957 sidebar - sulfa drugs 958 18.12 other diazonium salt reactions 961 18.13 nucleophilic aromatic substitution 963 18.14 benzyne 965 synthesis of trypticene 968 18.15 synthesis examples 969 key ideas from chapter 18 975 chapter 19 a substitution on carbonyl compounds 19.1 keto-enol tautomerism 997 19.2 enols and enolate ions 999 19.3 the mechanism of a substitution 1002 19.4 a halogenations 1003 synthesis of 2-bromocholestanone 1005 19.5 alkylation of enolate ions 1009 19.6 stabilized enolate ions 1012 sidebar - barbiturates 1020 19.7 enamine reaction 1023 synthesis of 2-acetylcyclohexanone 1026 19.8 silyl enol ethers 1027 19.9 1,3-dithianes 1030 key ideas from chapter 19 1033 chapter 20 carbonyl condensation reactions 20.1 the carbonyl condensation mechanism 1052 20.2 carbonyl condensation vs a substitution 1054 sidebar - borodin and aldehydes 1056 20.3 mixed aldol condensations 1057

20.4 intramolecular aldol condensations 1061 synthesis of 1,5-diphenyl-1,4-pentadien-3-one 1063 20.5 the claisen condensation 1064 sidebar - biochemical carbonyl condensation reactions 1067 20.6 the dieckmann cyclization 1071 20.7 the michael addition reaction 1072 20.8 the robinson annulation reaction 1076 synthesis of 4,4-dimethyl-2-cyclohexen-2-one 1079 20.9 carbonyl condensations in synthesis 1080 key ideas from chapter 20 1084 chapter 21 radical reactions 21.1 radical structure and stability 1093 21.2 halogenation of alkanes 1095 sidebar - atmospheric ozone depletion 1099 21.3 allylic bromination 1102 21.4 benzylic bromination 1105 synthesis of 1-bromo-1-phenylethane 1106 21.5 radical addition to alkenes 1107 21.6 radical oxidations 1112 21.7 radical reductions 1115 synthesis of 1-methoxy-1,4-cyclohexadiene 1121 special topic - electron spin resonance spectroscopy 1122 key ideas from chapter 21 1125 chapter 22 polymer chemistry 22.1 structural characteristics of polymers 1138 22.2 polymer nomenclature 1141 22.3 types of polymerization reactions 1144 22.4 chain-growth polymerization 1146 synthesis of poly(vinyl acetate) 1155 sidebar - natural rubber 1155 22.5 controlling stereochemistry in vinyl polymers 1157 22.6 nonvinyl chain-growth polymerization 1160 22.7 step-growth polymerization 1163 synthesis of poly(ethylene terephthalate) 1165 sidebar - plastic recycling 1167 22.8 copolymers 1169 sidebar - plasticizers 1172 22.9 cross-linked polymers 1173 key ideas from chapter 22 1178 chapter 24 carbohydrates 24.1 classification of carbohydrates 1250 24.2 monosaccharides 1253 24.3 cyclic forms of monosaccharides 1256 sidebar - the sweet taste 1260 24.4 reactions of monosaccharides 1263 24.5 oxidation and reduction reactions 1265 24.6 changing the chain length 1268 24.7 fischer proof of glucose structure 1271 24.8 glycolysis - i 1275 24.9 glycolysis - ii 1280 sidebar - arsenic poisoning 1285 24.10 glycoside formation 1286

24.11 disaccharides 1291 24.12 polysaccharides 1291 key ideas from chapter 24 1294 chapter 25 nucleic acids 25.1 nucleosides and nucleotides 1306 25.2 laboratory synthesis of nucleotides and nucleosides 1310 25.3 nucleic acids 1314 25.4 replication of dna 1317 sidebar - the polymerase chain reaction 1321 25.5 structure and biosynthesis of rna 1325 25.6 rna and peptide biosynthesis 1328 25.7 sequencing of dna 1332 25.8 laboratory nucleic acid synthesis 1337 sidebar - self replicating organic compounds 1343 key ideas from chapter 25 1345

Related Documents

Organic Chemistry
November 2019 35
Organic Chemistry
November 2019 29
Organic Chemistry
November 2019 35
Organic Chemistry
August 2019 42
Organic Chemistry
June 2020 16