! $
&
+ +
,,-
"# %
! %
&
'
(
)*
&,
-
&,&
.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
0
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
2
/
&,1 &,3
, , , , , , , , , , , , , , , , , , , , , , , , , , ,
! 4! - !
5
!
1, 1,&
, , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , !
2
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , &&
/
"#
!#
9
!
, :
!
6
8
;
!
!
#
"#
=
> !
? -
!
@
4!
4!
!
,
$ "
"#
8 ! "<
! ,
, : !
"<
!7
4!
, $
,
<
),
=
; 4!
!
:A
!
@ !!
!=
, %
-
, $ !
%
= !
4!
!8
8
!
-
8
B
!
; 4! !
!
B
! @
,
/
4!
CD =
E-
6 "#
! !
"# ;
! "# B
, $
"# ;
-
!
= 4!
, : !
!
8 ! -
!
C
"
-
"
?
!
-
, 4!
=
! !
!
; ,
;
8
:
-!8
, !!
H
B
4!
G
# )! :
, F
! <
;
"#
, !
%
;
!
H
"
, :
"
-
!
4! ;
H !#
! 8
-
!
,
//
, $?
8
6 ??
!
! H
;
:
! J
?
I
-
! K
'
K
*
! ,
J
!
K
J
K
!
-
4! - ! ;
!
-
K
' ;
! -!
! !,
;
A
7! ;
; 4!
K
-
!
;
A A
, :
K !
!
, %
' 22M* K
-
A ' 222*
F
! ;
!
! ;
!
! ;
;
4! -
!! ! ,
K
K ! P!
;
! ,
' 22&*;
-
' 223*
? H
; H
H ;?
, ;
' 202*
!
-
,
/
:
K
5 !
'&NN *; K-
! !
! !
K
!
O
-
,
!
!
!
!
4!
A
-
- !
%
A
! , G ;
! , %
,
,
!-
;
! , K
4! - !
,>
!
,/
!
! !
-
;
-
' 2M&*
-
-
!
!
! !
K H
! ;
%
, I
K
' 20L*;
! 6 ' 200*
-
-
!
!
;
;
*
4! - ! K
F
, %
% ' 22M*
!
K
!
-
! !
K K
K
-
! !
K
-
-
!
!
K' !
!
,
,&
:' 22L*;
!
* K
-
!
!
, :
A
! ! K*,1 /
! '
;
!
-
!
, %
!
K
'
* 7
' 222* K
!
'
!
!
- K
4! - !
!
4!
4! - !
,
!
! , %
;
!
*
K
4! - ! , %
H
- !
, %
4!
!
6
! ;
-
-
K
4! - !
! , %
!
; ' !
A
-
;
;
*;
-
!
!
4! - !
! , :
K -
H
K
4! - !
!
! >
-
, I
!
, :
! K;
K !
!
! -
K
K -
;
K K - 4!
H
!
K
, %
- !
! !
-!
! ;
!
! ; ;F
; ' 2MN*
IK P
, 6 ' 22.*; P K; G 6 G K ' 20M*,
&
K,
, : , !
; ;
-
! K; !
!
:
1
!
H
K
&
!
-
!
-
-
, %
H
!
-
K
!
!
; 4!
!
-
K;
!
*
! K
!- 4!
K
'
!
4! ,
4!
; ' 22M*,
!
-! ,
K;
- -
K6
K
!
H K
A ,
!
'
-!
*
K
6
!
-K !
-K
! !
H
;
J
A
,
!
!
;
! !
;
, % ! , /
-
' 222*
-
!
!
:
!
;
'
!
*
! -
,
K
! -
!
H !
-
, /
!
- -
!
;
7
! !
;
; !
-
! !
!
7
!
, >
; , : ;!
;
! K -
, : -
K
K
, C
!
' 222* 4!
4!
-
( K;
A
H
-
!
;
!
6 ,
!
A ,
I
H
!
4!
-
3
%
!
,
-
-
-
,
!
!
!
6
;
7 *
A
K;
!
'
-K , /
!
!-
4! - !
*
K
!
K; 4! - !
K' ,3
H
4!
H
!
*,
!
!
!
'
-
K
;
4! - !
K ,
-
K !
- !
% 6
-
;
, I 4! - !
!
;G
J ' 22L*
H
22NQ J
!
-K
!
!
22M,
!
A
%
!
-K
H
!
!
J 4!
,
1
! !
K -
!
, G ,
$
! !
K
H
;
;
! -
!
- !
, :
! ;
;
-
-
K
-
, : ! K
J!
-K
-
-
4!
K(
! 6 H 4! - !
,
K- ;
-K
,
;
!
4! - !
,
!
4!
!- 4!
K;
, % , %
-
-
! -
!
, /
K
A
;H !
%
-
, %
!
3
! H
,
:
A
! , %
H
!- 4!
K ,
K;
K!
K
4! - ! ;
: -
!
!
!
-
-
,
!
,
!
" # # $
/
;
!
, :
4! ; !
K
K
!
!
,.
!
;
-
! ! ;
, F -K ' 2M&* K, %
:
-
K
G
' 2M1*
-
!
!
, /
!
-
! 5 -
K
6
!
K
, %
H
-
7
! !
;
! !
!, >
K -
:
K
;
!
;
K
!
-
5
H
-
-
J
-
K ! !
K
, :
K
K
K
-
!
7
-!
!
!
!
K
;
' 2ML*
G
K
,%
!
!
!
!
!
' @
:
;
! ' 22L*S, :
' 2M3*
' 22N*
;
!
K
*
; 6
%
K;
' 2M0* '
! ' K
; !- 4!
H
4! ;
* !
;
6; 222*,
, %
.
R
! >
)
;)
-
K,
!
':-!
!
!- 4!
!
;-
5
K
;
%K
!
* -
K
, / !
K;
!O
A ' 223* -K
K
! , !-
.
;
,
;
;
!
-
, / !
A
-K
-
7!
K;
K, %K
!
K;
A !
, !
! -
K
-
7
-
K
!
-
7
, > !
)
-
;
, %
K
K -
-K
' 2MM*
-
!
, >
; T -K
;
! !
; 6
:
!
U' @
!
;
!
, K
! ;!!
K A , R
K :
!
K
-
' 2MM*; K -
!
K;
' 2MM*;
,0 -
! A
4! - !
' 22N*;
!
G
K -
-
' 221*
!
, !
K -
' 22N*; P
!
! ;
K
-
! !
! A
!
4! -
' 2L3*
;
K
! %
?
4! - !
4! - !
0
-!
-
K !
K
-
!
% K
! !
-
5 L
;
4! - !
K ;
;
!
K
;
-K
! -
; !
, %
;
!
, /
A !
4! !
, %
' 2L3* A
K
,
!
, %
K
!
K
' 22.*S, : -
;! ' 222* H
4! - ! ' 22N*
;
!
4! - ! ! ;
F
K
J! :
'&NNN*;
, ? K !
A
-
;)
*,L
6; 222; , 11L; !
!
-
!
! , R
A ' 22L*S
L
$-
,
%
K
7
,?
K;
-
' 222*
K
-
!
, /
-
;
K /' *
K;
!
,%
/'N*
, $
-
!
!
4! - !
, :
A
!
, % ;
;
K; ;
K-
!
!
-
-
K ;
4! - !
-
!
! 4! - !
, :
4!
! H
-
, % ! ; -K
! ,
4!
!
-
! H
-
-
K
!
! , %
?
,
!
; -
' 220*;
;
J!
'
!
*
-K
K ! K !
%
H
,$ ! -K
!
,
;
! !
! -
J ;
!
K; 4! - !
'? *;
-
K
K
!
! -! ;
! ;
!
K
-K
,
H
4! - !
!
!
A
-
!
, :
;
! !
-
K !
A
!
-
!
-K
' ! *, -
-
' *
0
:
;
'1*
K,
!-
!
'&*
-
;
'&* %
-K !
!
, >
5
;
!
!
! !
%
,
!
I /-
H
;
-
-
A
! -
!
!
K5I /
!
-
, /
;
-
5
K
/
H
,M
%
K
4!
5
K -
C )
K
-
&NN /
! K 2LN
!
, : ' 22L*
!
&NN /
!-
-
!
;!!
3W
,
!- 4!
( 22N X NN*;
:
!
!
- ;
-K
-
Y
!
/,
K
!
K;
!
KI / ;
;
')! , /
;
N
!
-
6
! ,
!
K
V
5 -
! ')
7
!
? -
K !
K
*, I
$
:
,
,
;
22L;
K
-
!
-
F
, %
!
5
F 22M,2
;
-
M
6
!
, I
,
C
, ;
, %
!
K
K
-
-
-
5
-
!
' 222*
, > H
!
, T UR
; 222; .N0S, % 4! !
! K
K
-K
-
2
% N / FA
! ;
6 ;
! :
;
,
/,
K H
!
F G
:
$ Q , ,
M
4!
!
K,
!
K;
K
-
-K
,
&
% /
; -! -
!
!
!
! !
!
K
6
;
, %
;
!
!
K %
!!
-
H
!
-
, /
A
!
K
A ' 22L*
5
5
-
, % 7!
F 6: 7
' 2M&*
! -
-
!
;
,
'
* %
%$5
;
-K
, : K
!-
! I
- , :
-
-
, &
, ? ;K
!
;
%
%$!
!
K
!
K
7 H
K
V ' 22L*,
!
)!
A
-
!A
K
!
?
A
I
- !
J!
K
' 221* K
, F
' 223*;
'? * A
; A
-
, K; >
K-
2
K
!
' 2M&*; F
; !
; ! -
!
-
A ' 22L* !
-
A ' 22 *S, $ $-
, %
%$!
' , ,; %$%*, % ?
,
! ; ?
%
%$R
!
;
K
!
! -
;
' 223*
%
-
!
!
' 223* 3 %
-
/ -
A
!
%
; !
K ;
-
1
! 1
!
3
%
%
! A
F K
!
4! - ! , I
!- 4! I
,
!
;
, $-
-
6 P !
;
K !
, 4! , /
% !
K
-
A
;
!
-K
, >
5
;
-
; -K
!
!
F , :
4! - !
6
, %
!
, C
4!
!
-
.
!
4! - ! , !
! "
:
6 -
K
-
A ,
!
K
!
4! - !
6
K ! K
;
-
; ! %-
A
2LN 22&,
H
!
H
$
22&
223; I
?
!
'/
!
!
;
!
K;
, %
K
-
; !
K
A -
A
, :
, %
A
; !
H .
Y
-
!
2M. ;
!
2M.
J! -
4! K
' I% .,L
22L
;
-
K
*, %
!
! !
A 22L
,
!
, %
K
!
6
-
I% L,N
*
H
*
4!
* -
!
F K
H
,
; -
'
;
H
! ;
, I
/
! -
F
,
-
:
;
22M ' I% L,N*, ?
! '
K
,
!
I%
K; ! !
! -
-
K,
;
' I% .*
-
!
!
V ' 222* !
I
A ' 22&*
A
-
7 -K
,
, %
! !
N
!
, % ,
,
!
-
K
!
;
;
, % -
#
!!
;
!
-!
, C
!
!
#
$%%&'
:
! , $
% !
-
4! - ! !
!
K
! ;
!
, G
!
;
;
!K? 6
,
L
-
J ! !
! -
K
!
1
4! - !
!-
7! !
4!
A
!
-
, %
Y
,
;
4! - !
! '1*
& /
!
H
'
;
(
K
-
- , %
:!
!
F
K !
-
H
!
':F * !
4! '3* , :
K
!
R
S, I
! %
!
4! 'F
':/ * L
' ? *;
?! !
;
K
: -
G
! -
! >
K;
' 22 *,
' *
! -
K
;
/
,
!
!
!!
!-
6 K
! -!
//
-
K I% L,N
, :
H , :
7 ,
!
, $ :
-
!
!
* ;
K
!
-
'3* -
H
? K
;
-
> !
K
-
-
I% .,L
K,
I% .,L; ; !
;: !
,
'&NN *, /
?
;
I% L,N
;
! ?
:
! !
5
5 :/
, :F
K
K
K
-
!
!
4!
; ?!
/
' 220*;
!
K
!
!-
K -
!
/Q ,
!
!
K
-
-
-
7
,
K, %
5
-
;
-K
!
-K
;
K-
, F!
7!
!
!
J
:
:F
;
;
!
5 !
! I /
!
;
K A
I /
7
K ,
K
!
E !
C
;
0
!
%
4!
!
; ,
! -K
4!
H
! :
-
K
-
K
; M
,
!
! , %
K
K
-
, :
-
, >
; 4!
H !
-
! !
,
K;
:F
K !
, > !
; !
K!
K
;
;
;
;
K !-
!
,:
-! ;
! !
K
!
!
! !
K , ; -K >
K
' 223*, ?
)
! K
-
' 2MM*
,
-K
, !- 4!
; , % 0
:
M
%
!
) !
K
; !
;
-
!
4! !
K;
A
!
! 7!
4! 4!
K- !
,
!
;
K;
!
, %
)
, ,
&
K;
K
!
!
!
4! - ! -
,
;
!
!
,
4!
K;
H ; 5 !
, I
!!
-
4!
K
K
K !
!
-
FA
K
T
()*
;
5
!
4!
K
, %
-
K
4!
-K
K, ; $G
, %
!
+
, .U '
6 , 2
2
>
-! %
$G
;
K
' 223* -
! K;
K
K
!
, % -
$G
;
! %
;
-
!
-
; , &13*, I
; 7
' 22L*,
K
; %
$G
' , .M0*,
!
!
, G 6 6 -
!
, ;
$G
-
%
K
H
, % O
O
, %
;
;
>
K
H -
!
-
-K
;
$G
;
;
1
K
-
; , :
)
' 2MM*
;
-
K;
! K
-K
-
4!
, % 4!
?
, : !
K
K;
! ,
!
: !
H ,
4!
)/ ,
-K !
K
:
-K
;
!
7
;
-!
K;
6
!
! )
-
K
A
4!
'.*
-
!
!-
-
,
'L*
/
;
K
!-
;
; '0*
'M*
'2* : !
K; K
-
, > K
K
'0*
;
;
!H
! ,
!
K
'
K;
, /
! ' 223*
-
*, % K
-
K -
', ,
*
-
-
-
! !-
;
!
! ,
3
K
K ,
>
-
K
Z -
,&N /
K
-
;
!
! -
!
-
(
!
,
4!
! -
A
6
6
' * X N;
!
, I K
K
, %
, :
;
H
;
-
! -
K
A
, )
!
!
!
K
!
"
!
%
!
!
!
! !
'!
! '
-
,
K
0/ K
' *
! "
7
!
' N*
!
!
, %
K
A
'!
6
*
! -
-
*,&
$
!
)
-
' *, % ;
K
(
K
-
(
-
K, I
;
-
! -
-
K*, >
;
-K
-
! -
O
!
&N &
: )
)!
! ! ' 22N* ,
!
-
! !
, :
! K K
!
K
,
.
; -
K ! !
!
'
6 !
-
- ;
K
! -
#
!
!
! /
, -
K
K
$
!
!
-!
H
4!
K;
;
)
, !
)
- !
4!
!
! , %
!
,
:F
;
4!
;
'
4!
!
? !
KG
-K ! -
5
, 5
!
-
!
!
?
!
A
!- 4! !
$G
;
, %
! !
!
, /
! ///
H
;
!
!
!
H
K-
;
A
K;
!
-
,
!
;
; ! K
, %
, I
H
!
K6 -K -K -
!
;
'MNW
L1W
, % -
I% .,L
!
K; , /
!
!
H
-K
;
K 4! - !
-
!
!
,&&
:
K -
'
;
!
-
G
!
-
-
*
!
! 5
!
:/ ; ?
- ;
!
, %
!
, %
!
*, I
' &*
!
!
;
K
*,
-! -
!
A
!
; 5
I% L,N
K
, :
;
'$G
,
I
*
K
, %
H
!
, % &&
%
K !
!
; !
4! - !
! !
-K
> H K
A H
K K
H
-
-
,
L
-
4!
;
!
K
!
,
!
-K , :
!
'
! ;
K*
;
! !
-
A
J! -
! K
K
-
!
!
!
, ?K
!
;
$G
; !
!
K
, >
-
:
!
;
K
!
,&1 ;
N
!
!
H
K, : >
O
! -K ! !
H
, ?
K -K
;
!
K &1
;
K
H !- 4!
4! - !
! ,
> H
>
4!
!
4! - ! !
!
!
,I
!
;
-
! , %
! >
H
K
, /
A
;
!
2MN
!
2M1, / A
; , Y
>
H
-K ! K, : P
;P
;
5
A
H
-
; -
0
! -
5 ! - ,
>
%
K -
! K 6
!
!
!-
; K;
!
, % !
K
;
4!
K !
-K !
;
-
!
!
,
;
!
K
!
;
, /
6 -
-
, - ;
(
-
H
T , /
;
- 4!
-!
,
; 2M2; ,1.M*, :
K K
!
K;
!
-
K
- -
- -
H
-
K
, >
6
' 22M*;
,
' 2M2* C
-
!
, % ;
6 ,
-
Y
!
A
!
; 4!
;
-
K;
.U '>
-
!
!
-K
! 4!
>
K
, -K !
!-
;
K
, ?
!
-
; K 6
4! - !
% !
, /
- ! , :
- -
!
C
! ; ?!
!
K
! ;
!
'
*,
' 22N* K; ?
%
!
,
' 222*;
!
> A ,
;> K
? 6
Q
-
K; ;
;
K
J!
'&NNN*
H
K
,
!
K
4! -
-
!!
K!
,&3 &3
;
- -
K
K
M
K
J
K
>
;
!
? , /
, :
%
H
;
K
' 222* H
!
!
!
!
;
!
!
! K
! , %
, %
! K
!
- 4!
A
! !
!
5 !
K-
A
K;
!
!
;
K
'
K
*, / K
,
A
K
-
;
-
! A, %
5
!
4!
,
% ,
!
-
-
,
) # $
*
%
! -
-K
! K
K-
4! $ 4!
) -
%&
'$
,,
"
; O
-
!
!
A
%
);
-K
!
4!
K;
-
!
' K
A
*
-K
H
A !
K -
K
!
! -
, : !! ; &
!!
&
&,
& *,
-
,
! '
-
K; , %
H !
-
-
H
K ';
!
&
(, ?
J! !
' 1*
( & ) -
%
! >
%&
-
J!
, !
,
2
, >
' 22L*
P
K ' 221*
G
-
& -
H
-
,:
- -
-K
&
*&
&
*&
&
*&
&
*& ' 3*
- -
K
1
/
-
- -
-K
,
;
!
,
;
- -
! , F -
; G
I
-
K
' 223*
>
Q
- -
!
-
' - -
*, >
- H
-
;
H
;
, $!
K K
!
- -
'
*, >
K
;>
K -
K ;
;
Q
- -
,&. %
!
!
-
,
;
K
-! !
- -! , G 6
!
, %
;
,, , K
!
, $ *&
$
F -
; G K
I
-
' 223*
+
-!
% "(
%
-( - ,
-
&
$
+
6
!
K -
$
$ *&
&.
!
K ' 22L*;
'$ (
%
;
, /
- -
- -
&N
' .*
,
K
> ;
:
!
!
-
, %
.
X ;&,&L
!
% "( "'
-
&
/
! ;
!
!
&
- -
;
&
H
! ,&0
!
"' -
"
!
, %
- -
G
K
K
"
!
, $ "& ! :
/
, $ "& /
K
K
K!
, $ "&
%
, $ " & *$
"&
-
2/ !
-!
/
-
!-
,
-
, $ *& /
&
, $ *& " $
"&
, $ *&
&
, $ *&
& *&
!
' L*
/
/
& *$
"&
/ ' 0*
-
!
!
- -
, $ "&
/
&
, $ *& &
& "&
&L
/
-
-!
, K
A
!
K -
/
- -
&
"&
, $ *&
&
"&
, $ *& "&
' M*
, $ *&
K
-!
&0
, $ *&
, $ *&
& & :
&
K
!
K %
!
!
!
!
(
-! 7
, /
K2
!
M.
;
! - -
-K
&
K 4!
, -
!
!
; ) 4! ?
K ,
!
!
! -
, $ "&
/
&
, $ *&
&
, $ *&
&
-
& -K
& -
-
!!
&
"&
K
! -
$
, , ,;
-K
"&
"&
!
, $ *&
&
! !
&
"&
& %
&
, $ *&
&
' 2*
&
K!
-
, %
-
!
-
; !
-
!
-
4! , $ %
/
;
, $ "&
!
!
!-7 !
- , !
K; -
6
;
4! - !
& :
H
!! -
- -
'&N*
/
0*$ /
H
&
0" &
' ; [ ; [&;,,,; %*
-
- -
, $
'
*
- -
'& *
+*$
- -
! -
!
K;
-
, :
K
K!
!
6
-
!
K
,
K
>
' 2M2*
! ! &M
'&N*,&M
4! K-
&
&&
K ,
6 -
:
!
K
!
-
;
-!
-
! ;
K -
,&2 F -
; G
I
-
' 223* (
U ' , &2L*, % !
;
!!
- 3
( -4 -
, :J
!
K
K!
K
-
! -
! ; T ' (
! -
! !
K
;
!
, :
;
K
K;
! ;
!
;
!
! ,%
K-
-
! ,
;
-
!
!
;
!
K
-
,1N :
-
K
K
;
K
-
! : ' *
K K
-!
, >
, % H
: ' *
!
*
K
!!
!
-
G
G
!
! K
!
C
C
H
C
' !
*, ' 22M*
K
! H
G
K !
-!
!
K
K
,
4!
K K
!
K;
K
: ' * ! , % :
! !
: ' *; :
;
' 223*
H -
'
.W
H
K
;
K
!
!
-
, %
7
!
K
M.
!
;
K
!
;
!!
!
K !
!
, /
!
J! !
K;
!
K
,1
!
K R: ' *S
% -
- -
! 6
6
H '
-
-K K-
!
6 *
&2 1N 1
/ % %
V
! :
! G
/ ;?
? %!
;
! ;>
, ,
P
,
&1
;G-
;C
;
;
!
: - ;
;
A
'
-K 03
*,1&
A
!
; N
-!
,
H
-
-
%
-K
K
K
!
!
' , ,;
!
5 ?! !
;
:
K, Z
6
*,
;F
;)
A
!
P!
;G-
;
! K
!
H
,
K ,
; ;
!
A
:
K
K ,
;
!
! K;
-K
%
! -
! , >
;
!
K
6
, / !
!
;
4! K;
K
-K -
!
6
- !
4!
! !
E
K
H
K
4! - !
K
K
,
5 ! ;
!
,11 :
! !
!
!
!
: ' * !
, :
-
7
;
!
K
A
;
! K
; ,13
H -
-
- -
-
! !
, >
K
A K
A K , I
7
;
!
(
;
;
; 6
, -
! !
4! , %
%
!
! -
;
!
K K
!
!
-
!
H
!
(
, >
;
!
1&
; !
11
K
%
:
2M. ;
%
;
! !
K
K
6
'
X
! K
! ;
!-7
K;
, ;
K; 13
!
:!
,.&*
! ;?
!
F
-K 223,
H
; !-
, ,
&3
'
X 32,.3*, K
-
,
!
K
! K
!
-!
K
!
K
, !
K
-K >
-
!
-
' 2M2*;
- ;
5
;
-K
!
K
-K
' 222* &0,2
- !
- -
-
, :
T!
!
, :
!
!
-
, % -
&
K'
03
!
M. : ' *
7
- 2,.
, %
-
!
- -
K , / , %
H
!
-
H ! -
- -
!
/
H
:
, I
-
K
- - -
:
!
!
K
; N
!
-
; , ,;
-
!
!
!
-
&.
!
, %
K
,
!
!
!-
K
K;
K !
, ;
! ,10
- !
! !
-
1L
;
!
; ,
I !
!
, / H
,
-
K
!
1.
!
!
K !
10
-
J
:
K
A K
;
H
K
A
-
N,2LL,
K
;
4!
-
!
, $
; N,2N.;
! ;
,
;
!
/
! -
; ;
*
: - -
.
.W !
- -
% ;
7
!
,1L : K
- -
,1.
! U -
4! - !
%
;
-
-
H
- H
-
! !
:
! ;
!
!
N,.N
-
H
-
K
,
H
M.
- H
!
, % - -
, !
-
-
-
, I
, :
- -
;
- -
A
H
, >
-
K
!
K6 , /
6
-
, '&&* I
H
5
' .W
*
, % -
4!
4!
'&&* , G
>
H
.W
! H
!
!
,
-
- ! -
6
'
(
*
6
,
;
'&1* %
K K
- !
H
K
K
'&3*
&L
Depreciated State Probabilities Histogram
10000 9000 8000
# of Observations
7000 6000 5000 4000 Total Number of Observations: 32,343 3000 2000 1000 0
: M2,LW
0
0.1
0.2
1&;131 H ;
0.3
0.4 0.5 0.6 Depreciated State Probability
- -
0.8
0.9
1
!
-
H
0.7
N,1N
, :
4!
-
; H
- -
N,0N, %
H
- -
N,0N,1M %
!
! , %
!
-
K H !
! !
K;
J!
! -
,
!
K, /
-
K
/
K; % -
! !
4!
:
, :
-K
-
!
&
:
, :
;
!
;
-!
/
;
6 !
; -
;
-K H
-
K-
H
- -
-
, H
4!
H
H
!
- -
K
,
C
- -
K
- -
, %
4! ,
!
,
1M
K
, / ;-
;
!
;
K(
- -
! K
H K,
- ;
-
N,M.
K
H H
- ,
&0
K
4!
.W
!
C
;
!
!
K
!
; !
, % -
!
,
&M
,
K
%
!
! !
H
4! - !
5
K -
6
-K , %
!
-
K
!
-
!
( C
, I
!
H
!
,
; Q ! !
; A
-
! , :
,
:
4!
K; -
;
! K
K
K
-
K ;
K,
!!
!
5
, % -
-
!
!
-
- -K J! ! !
!
-K
K -
!
-
, :
!
, %
! !
-
-
!
! K
5 $G
I
!
,
;
5
!
, %
! -
K
,
! K;
: ' *
!
K
!
!
-
K;
!
!
- !
;
!
K
!
!
7
- !
-
,
I
H ;
4!
6
-
,
; , /
K
4! ;
K J! !
H ! !
-
;
!
-! - -
!
H
H ;
K
-
! !
7
! !
-
-
, %
!
4! - ! -
!
! -
, / 6
&2
K ;
K
!
-
,
!
-
! , >
-
! :
4!
! (
!
!
!
4! - ! ,
H :
;
H
- -
;
H
- -
-
;
-
, %
!
!
!- ! ,
K - !
, /
!
!
!
-
6
-K
, :!
!
-
K
' /
;
*
K-
A
-K
H ! - -
;
'
!
' -K
-
4! - !
K K
-K
! !
A
* *, %
KH
,
H
K -
!
, F
!!
K
K
-
K
!
K, !
K
! !
!
!
*
K;
K
!
4! - !
! '
! !
; Q
4!
-
;
! K
!
- -
-
!
H
K
, % 4!
! K
6
1N
J! ,
> K
K
-K
:
-
A
K
,:
;
! ,
; ! (
J
:
E
Q -
!
K , ,
" R S :-! ; C, 3.
,)
' 22N*; T !
K
! ,U 5
6
.05 03,
R&S :
;
,
?, G
5
' 2M1*; TF
6
R1S :
1M
; , ), ? K
K
! ,U
30 5 3M0, ,
,
U,
R3S ?
!
' 22&*; T
4#
; ?, ' 2L3*; T%
!
'
!
:
?
-6
K
12 1.0 123, :
,U 5
- 0&; .M35.2L, R.S ? K !
; %,
F
K
:
K
/
!
K !
RLS ?
;
,
,%
; :
%
K Y
;
$ ,
F
,
!
, .,
:, !
K !-
? 6
31&,
' 221*; T
;U #'6 :,
K .1 3
:,; G, G
!
.;
K
%
RMS
;U #'6
,
;U
!
!
' 222*; T%
: R0S
' 222*; TF
/
G
3N ; NM5 . , ! 6 ' 200*; T:
!
,U 5
- M. L 0 L&L, R2S
!
; \,
5
P, G
' 221*, TG
#
R NS
;
13
,F,
,:,
R &S F
!
; ),; :, !
&
M
C
K !
!
K 1M
!
,U
-
L
KI ?!
J
2&,
#
, ' 2M&*; TF ;
!
' 22.*; T?
K]U 5 R S F -K;
!
0M, ]U $
!
%, P ! /
1
LN0,
, ' 223*; T% ,U
&&. &33,
* (
? ,
C #
-
R 1S F
; ), U;
$
>, , I
* (
' 223*; T% 3MN0,
%
-
;
;
! !
K; C
?!
!
, R 3S F 6 : 7
;
, ' 2M&*; T
2 15 20L;U %
;C
R .S F %
, K 4! \
; ) K
> ;$
,
:
-4
I
- -
,?,;
4
G ;
7 ! ;
;
%
!- ;
-
3
-
+
,
%
-
R LS F
, %
; C\ :
;
%
%
U;
-
>
Y
K
; ' 22M*; T
' 223*; T
;
;
;$
-
,
,J
A
,U
$
4* (
LML0, R 0S F
-!
;
, ' 20L*; T
- M3
L
FK
%
I
- 2MN; C , ; %
; ?,; :, : ; I
!
;
, ' 222*; T:
F I
K/ ! ,
(
, 31 M.,
:
K
U;
- & %
%
&32 1 &,
!
,
!
]U $
6 ' 22.*; T
' 2MM*; T: ,U
R& S
:
, IK
:
R&NS
5
0L,
R MS ^^^^^^^ ; ' 2MN*, T
R 2S
U;
-
0N .N3 .NM,
Y
,U 5
- N0 .N0 .1M, R&&S
;
'&NNN*; TG
!
K
,U 5
#
.0 &315&01, R&1S
; #
R&3S
, > 5
F
6
; F
' 22L*; T%
), > P
-!
U;
.. L0, ' 22N*, TG
/ ]U %
F ,; MN LM2 0 1,
1&
:
% K
F
R&.S
;
,
&
),>,
' 22L*, >
-
5
!
# ;
,
;
R&2S
,
,
-
-
G ;
' 22 *, T%
C
,; , )
K R1 S
G
?
,U 8
-5
K
' 22M*; T
; ,
!
NL
6 ' 222*, T !
6
L 11. 1.1 -
R11S
?
; )!
1L0 10&, K
K
!
' 22L*; T !
;
,; 9 ,
: 3
>
!
1. 1LL,
'&NNN*; TF
5
K
%
33 332 3LM,
; ), :, ' 200*; T% %
,>
K
K
#
,> K
Y
*
P,
,U % R13S
;G
,U 5
;)
Z
!
]U
:
%
%
!
H
; ) A K :,
:
:, 6
,U 5
-. 'G
;
F
K,U
, L3 L.1 L0N,
R1.S
; P,
P,
A ' 22 *, T U;
- ;
, U;
R10S
;
;>
! ?!
K;
% ,
G, ' 223*, T% $
* (
320 ,
V, ' 22M* T: K
!
-!
,U # R1MS
!
1N,
/
R1LS
;
; ), ' 2ML*; T/
R1&S
,U
.. &. 5&0L,
! U; #'6 * (
R1NS
!
' 2M0*, T
,
;
K
.. &2 .0,
,U R&MS
, ML
&.,
R&LS ^^^^^^^ '&NN *, TF
R&0S
] %
, 12 0L1 0MM,
, ' 22L*; T U; 5
F 6
-! 3& &0 L&,
11
/
R12S
7 ;/
V ' 22L*; T%
:
:
U;
$
* (
.L.N, R3NS ^^^^^^^; ' 222*, T%
U; 8
-5
3
&&2 L&, R3 S >
;
, ' 2M3*, T:
!
K,U 5
#
0 &L. &00, R3&S >
; )
, F, ' 2M2*, T: C
%
?!
K
;
:
U;
R31S ^^^^^^^ ; ' 223*, % R33S >
:
K
C
K
.0 1.0 1M3,
:
K
,
Y
K
,
, ,; ' 223*; T:
>
;U
, ,;
-
%
-
7
;$
Y
K
, R3.S >
; :,;
-
!
?
:
/ R3LS >
'&NN *; T
Y
K
I K
%
#
R30S )
!
K
,U
$
.
.
. .&
(
!
& 1.. 1L&,
; _
:-
' 2MM*; T
:
&
.. 5 .MN,
7
R3MS )
L,NU;
' / Y *,
; F,' 2M&*; T%
5
% -
; _
P
)!
K
;U 5
! ' 22N*, T
! KU;
L2 & N, R32S P
K;
, ' 221*; T/
-
20L 2M0U; % R.NS P
K;
#
,; , G 6
,
R.&S P
-4 7 ; /
K
' 22M*, TG
-6
3.
; \, ' 22N*, T ! '
F
;
, M1 3.N 30&,
'
R. S P
]
?,
(
!
,U 5
&& 32 .N1,
,U 5
K
3M,
K $
!
, G
K' 20M*; T
#
M
13
21 &3L,
,U
R.1S P ! $
; , ' 202*; T: (
1
R.3S G
-
,U 5
, %K
' 22L*, T !
-
&M
,U
R.0S
- N3 3MM .N2 ! ,U 5
#
.5 1L, !
K,U %
; C, ,
6
, M. &N 5& M,
F, \
' 220*; T
#
6
,U 5
31 &25LN,
R.MS
6 :
;
, , ' 22M*; T:
!
U;
R.2S
# F
! K
;F
;
;Y :
6
6
M
K -
!
;
!
$ !
!
!
K
-
KU,
Y
K;
, 4!
,U ;
)
! K,
:
; C
;/
!
?
' 22L*; T !
RLNS ^^^^^^^ ' 22M*; TF
RL S
J
5
; C, , ' 22.*; T -
-4 7
%
; C, , ' 22N*, T
R.LS
'
1&.,
),
R..S
K
:
!
7
7
- 7
;
7 $ (
- 7#:
,
G, ' 2M&*, T:
FK
U; 5
- 2N 03 N3, RL&S $-
;
!
* ( RL1S $-
21 ;
RL3S
' 221*, T
, ;
; :,
P :,
/%
A; P ?
,U
, A ' 22L*, 6
#
'
,
,
,; ?, ? ! U;
RL.S
%
,
' 22M*; T
;
$
-
.& 1,
' 22&*, T%
! U; $
(
&2, 1.
I 5
'
-
N
RLLS ^^^^^^^ ; ' 22L*; T%
!
K !66 ,U 5
+
13 L305LLM, RL0S
!
;
,:, ' 2L3*; T%
3L RLMS
;
-
' 223*; T
;
!
;
)
!
;
,
;
; YP ?
- ' 22M*; T :
:, >
' 22 *, T%
K
%-
'
-5
&N
1L
J
.* NL 1&051LM,
!
4! ,U %
,
.2 MN,
I
, ,' 2MM*, T:
;,
?
- 6 .L
; 2.N5MM,U 8 R0 S % K
! ,U /
,$
U; 5 R0NS
,
3.5 .3,
( RL2S
,U
1L2 1M ,
!
K !
:
/ F
F
$O !
/
!
I
/
/
%
'
; F
$ Y
' ! %
! K ?
*
22 . X
RW S ' 2 2L
NN * ,
/
'
*
/
'
L 1*
/
'
L 3*
I *
?
% -
'
I
% -
L,N '
-
I
% -
L,N '
-
1
'
10
-
-
%$%*
%?::1
* * *
:
//
I
%-
F
Government Consumption Coefficient Correlation PWT56 x PWT60 1 0.9 Ghana
0.8
Canada
0.7
Haiti
Nigeria
Cameroon
Pakistan
0.6
Ecuador Morocco Nepal
0.5 0.4
Togo Trinidad and Tobago Sierra Leone
Congo, Rep.
0.3
Burundi
0.2 0.1 0
Openness Coefficient Correlation PWT56 x PWT60 1 0.9 0.8
Cameroon
Haiti
Bolivia
0.7 0.6
Paraguay
Congo, Rep. Argentina
Sierra Leone Algeria
0.5 0.4 0.3 Congo, Dem. Rep. 0.2 0.1 0
1M
Tunisia
:
/// Terms of Trade
Austria Belgium Denmark Finland France Germany Greece Ireland Italy Netherlands Norway Portugal Spain Sweden Switzerland United Kingdon Argentina Bolivia Brazil Canada Chile
Cointegrating Vectors
(0.256) 0.105 (0.866) 0.099 (0.038) 0.120 (1.109) 0.124 (0.287) 0.068 (0.373) 0.064 (0.018) 0.059 0.139 0.031 0.210 0.047 0.526 0.082 0.280 0.021 (0.062) 0.053 (0.030) 0.029 0.110 0.143 (0.077) 0.160 (1.335) 0.092 (0.378) 0.042 0.171 0.087 0.318 0.030 (0.192) 0.044 0.228 0.017
Colombia Costa Rica Ecuador El Salvador Guatemala Haiti Honduras Jamaica Mexico Paraguay
(0.707) 0.031 (0.379) 0.063 (0.199) 0.047 0.066 0.059 (0.453) 0.104 (0.643) 0.082
Government (0.089) 0.078 0.394 0.042 (0.060) 0.105 0.570 0.072 0.611 0.130
0.667 0.109
0.896 0.073 0.551 0.028 (1.901) 0.102 0.756 0.052 0.750 0.054 (0.053) 0.098 0.129 0.126 0.967 0.096
2.006 0.378 3.890 0.469 0.341 0.028 0.924 0.091 2.688 0.143 0.441 0.031 0.473 0.143 0.318 0.109 0.588 0.067
1.177 0.068 0.850 0.034 (0.228) 0.053 0.259 0.055
Openess
Interest Rate
(1.527) 0.313 (0.902) 0.151 (1.557) 0.165 (4.337) 0.438
(0.631) 0.058 (1.388) 0.105 0.206 0.127 (3.517) 0.170
0.395 0.583 (1.084) 0.329 (1.670) 0.115 5.430 0.503 2.636 0.123 (3.093) 0.234 4.980 0.347 (0.249) 0.179
(1.299) 0.159 (1.009) 0.083 (0.027) 0.107 0.074 0.124 (0.201) 0.057 0.387 0.129 0.196 0.128 (1.201) 0.121 (0.062) 0.241 (0.904) 0.168 (0.894) 0.096 (1.428) 0.252 2.230 0.644 3.164 0.393 0.754 0.087
(3.598) 1.158 2.512 0.238 (0.911) 0.265 (7.855) 0.625 2.614 0.307 (0.478) 0.245 (0.869) 0.114 0.417 0.212 (2.026) 0.360
1.591 0.522 (0.596) 0.327 (2.668) 0.537 0.178 0.134 2.747 0.344 1.438 0.260
Trend
(0.100) 0.006
0.068 0.008 (0.089) 0.005
0.001 0.006
(0.324) 0.012
(0.033) 0.014 0.022 0.005
(0.031) 0.009 (0.966) 0.143 0.166 0.216 2.782 0.306 (3.964) 0.315 (1.133) 0.232 (0.235) 0.275 (1.549) 0.392 (2.768) 0.302
(1.107) 0.287
12
(0.151) 0.005
(0.084) 0.011
Constant 162.179 20.825 189.043 11.968 147.000 20.607 277.086 17.608 131.655 10.606 144.219 11.856 89.059 8.151 119.323 3.221 (29.618) 13.818 (43.658) 11.317 270.035 6.810 46.595 8.376 92.722 3.160 101.974 20.981 147.521 16.636 125.227 14.208 121.991 5.852 121.894 24.604 (54.253) 16.635 108.774 5.230 43.498 5.553 (2.943) 3.264 104.405 8.013 120.952 10.225 148.699 4.937 59.713 12.320 167.642 7.329 160.407 16.763 70.379 4.858 62.977 3.896 56.533 5.284
Cointegrating Vectors
Terms of Trade Peru Trinidad Tobago
2.260 0.193 (0.211) 0.021
United States Uruguay Venezuela Australia Indonesia New Zealand Papua New Guinea
0.399 0.084 0.116 0.031 (0.667) 0.044 0.330 0.058 (1.110) 0.070 0.214 0.023
Bahrain Bangladesh Hong Kong India Israel Japan
(0.459) 0.094 (1.981) 0.408 0.503 0.132 0.645 0.122 (0.415) 0.045
Jordan Korea
(0.118) 0.127
Kuwait Malaysia
(0.203) 0.028
Government 8.450 0.548 0.433 0.040 4.443 0.337 (0.756) 0.264 1.202 0.089 1.474 0.139 0.647 0.209 (0.149) 0.113 0.011 0.055 0.124 0.025 0.553 0.200 (0.149) 0.033 6.339 0.342 0.467 0.040
0.581 0.017 0.421 0.079 (0.055) 0.049 0.326 0.006
Nepal Pakistan Philiphines
0.000 0.029 0.196 0.050
Saudi Arabia Singapore Sri Lanka Thailand Turkey
(5.534) 0.409 0.217 0.087 (0.076) 0.041 (0.353) 0.048
Algeria Burkina Faso Burundi Cameroon Central Africa Zaire Congo
0.055 0.089 (0.096) 0.017 0.484 0.074 0.111 0.024 0.332 0.068 (0.060) 0.008
1.827 0.130 (0.030) 0.030 (0.813) 0.081 0.042 0.016 (0.107) 0.086 0.434 0.048 0.484 0.108 0.994 0.059 0.880 0.290 1.406 0.148
0.690 0.098 0.662 0.118 0.489 0.026
Openess
Interest Rate
38.385 1.815
Trend
(0.000) 1.057 2.455 0.356
3.354 0.616 5.037 0.596 6.241 0.559 (3.351) 0.479 (1.407) 0.520 (8.539) 0.873
(0.078) 0.414 (2.328) 0.227 (0.794) 0.118 (4.669) 0.459
0.086 0.007 0.436 0.172 0.124 0.016 0.074 0.016
(3.580) 2.132 (1.824) 0.344 (0.101) 0.074 (5.383) 0.526 0.242 0.139 (1.594) 0.273 (0.010) 0.048 0.692 0.165 (2.928) 0.213 1.706 0.125 3.603 0.495 (0.595) 0.118 (0.536) 0.709 (10.215) 0.446 1.520 0.348 1.216 1.142 8.937 0.197 (2.782) 0.405 2.708 0.213 (2.422) 0.874 (1.813) 0.140 (1.438) 0.198 (0.018) 0.109
(2.580) 0.293
(1.017) 0.248 (1.875) 0.090 (3.105) 0.245 (0.076) 0.162 (0.101) 0.107 (1.474) 0.132 (1.698) 0.127 (0.260) 0.237 (2.328) 0.306 (0.491) 0.120 (1.085) 0.453 (1.927) 0.179 (1.055) 0.343 (0.695) 0.333 (2.388) 0.367 (2.786) 0.302 (0.660) 0.374 (1.572) 0.243 (4.906) 0.442 (1.083) 0.163
3N
(0.246) 0.010
(0.065) 0.007
0.244 0.004
0.247 0.019 0.137 0.015
Constant (794.825) 29.783 88.267 4.912 (43.647) 16.583 (31.912) 18.223 (82.124) 8.426 180.013 9.969 74.141 10.733 371.321 16.521 45.844 5.708 77.306 4.500 87.115 5.683 324.296 43.950 (0.046) 24.681 2.511 13.533 277.845 12.523 15.470 6.716 131.034 17.961 127.356 5.232 52.255 4.590 88.067 4.046 (5.293) 6.895 26.951 9.599 191.720 7.025 624.551 50.067 273.111 15.968 61.707 11.761 104.267 23.275 (122.775) 6.792 66.318 10.076 (42.223) 12.202 99.845 13.897 143.328 3.894 80.923 10.105 69.277 5.158
Cointegrating Vectors
Terms of Trade Egypt Ethiopia Gabon Ghana Kenya Liberia Madagascar
0.119 0.046 (0.125) 0.060 (0.035) 0.019 (0.205) 0.034 0.065 0.038 (0.049) 0.062 (0.292) 0.030
Malawi Morocco Niger Nigeria Senegal Sierra Leone
(0.433) 0.056 (0.237) 0.038 (0.840) 0.112 (0.664) 0.360
South Africa Sudan Togo
(0.102) 0.035
Tunisia Zimbabwe Rwanda Ivory Coast C.S.P C.S.P (GV) C.S.P.: Correct sign proportion Standard errors below coefficients.
0.115 0.079 (0.031) 0.012 0.60 0.56
Government 2.262 0.094 3.875 0.184 0.288 0.053 2.113 0.075 0.378 0.055 0.411 0.058 2.403 0.137 1.813 0.156 0.114 0.074 (0.726) 0.112 0.355 0.068 0.044 0.054 (0.526) 0.333 0.434 0.096 3.461 0.726 (0.563) 0.056 0.243 0.041 1.144 0.081 4.773 0.290 1.209 0.065 0.81 0.80
Openess
Interest Rate
(12.751) 0.710 (4.384) 0.214 (0.949) 0.415 0.101 0.372 (1.059) 0.163
(0.460) 0.194 (4.243) 0.248 (1.024) 0.152 7.144 0.717 0.396 0.298 (0.938) 0.181
(4.280) 0.281 (0.015) 0.381 (0.582) 0.124 (0.888) 0.512 0.318 0.688
0.302 0.589 (6.611) 0.365 11.779 2.972 3.113 0.161 (1.584) 0.906
Trend
0.084 0.012 0.004 0.007
0.161 0.009
0.097 0.003 0.316 0.013
0.152 0.006
(2.207) 0.177 (8.014) 1.959 (0.639) 0.350 (0.080) 0.004
1.164 0.247 5.971 0.622 (2.200) 0.279 0.58 0.58
(2.110) 0.416
(2.299) 0.266 0.82 0.63
3
Constant 174.381 8.093 109.363 9.140 90.600 6.101 31.752 9.149 75.200 3.809 97.235 9.998 (52.262) 16.324 (1.763) 12.472 69.382 2.770 84.161 4.367 78.618 3.566 269.341 12.421 96.645 48.323 12.679 7.149 235.321 24.831 160.030 4.845 105.233 3.476 29.301 9.990 (189.385) 23.234 80.454 4.906
:
/
!
G
!
!
!
&
3&
:
! Table 1 Estimation results summary Dependent variable: exchange rate misalignment
Countries
Austria Belgium (*) Denmark Finland France Germany Greece Ireland Italy Netherlands Norway Portugal Spain Sweden Switzerland United Kingdon Argentina Bolivia (*) Brazil Canada Chile Colombia Costa Rica Ecuador El Salvador Guatemala Haiti Honduras Jamaica
Mean µ(1) 2.470 15.60 0.958 0.71 (0.323) 11.59 9.747 54.12 0.959 11.71 0.581 13.23 1.877 4.17 0.287 10.00 6.201 14.81 3.006 11.81 2.306 9.62 1.267 11.31 2.956 16.15 5.659 17.31 2.322 8.23 5.507 12.91 44.264 15.43 4.405 0.48 11.714 14.03 1.223 9.31 6.436 25.57 2.784 26.74 18.223 18.39 8.877 14.84 15.805 15.30 165.401 26.92 21.538 15.24 73.347 19.27 12.037 11.98
Constant part of probability µ(2)
(∗)
(1.809) (3.20) (3.179) NaN (3.803) (1.42) (5.570) (1.34) (3.429) (2.26) (5.557) (1.15) (5.912) (2.79) (4.076) (2.47) (0.342) (0.24) (0.520) (0.60) (1.685) (0.96) (4.141) (2.75) (3.510) (2.88) (4.730) (0.73) (1.513) (0.40) (4.591) (2.28) (41.761) (1.47) (58.201) NaN (9.869) (1.66) (1.063) (0.70) (46.133) (2.71) (11.080) (2.87) (0.699) (0.29) (9.285) (1.66) (8.158) (1.24) 107.813 0.28 (4.040) (0.65) 18.275 0.64 (10.823) (1.78)
β(1) 3.794 8.82 4.784 7.95 4.297 9.33 4.177 5.54 3.968 8.87 5.415 10.41 5.323 5.19 3.827 9.89 1.253 2.19 0.543 0.80 3.536 7.15 4.117 9.29 3.643 8.29 4.260 6.80 3.906 7.63 4.346 6.73 5.733 4.79 4.630 6.36 3.113 7.76 2.877 5.89 5.256 7.10 4.824 8.20 (0.004) 4.204 5.64 4.537 5.53 5.907 4.60 2.368 3.28 5.702 4.16 4.446 5.07
β(2) 3.844 8.62 4.101 6.48 2.970 6.42 5.380 7.36 3.023 6.30 2.541 3.63 4.059 5.08 1.109 1.18 4.421 9.70 4.578 9.52 3.432 5.11 2.543 4.80 3.562 10.88 4.719 7.86 1.839 3.24 4.672 7.61 6.242 6.02 3.427 3.97 3.591 8.55 2.507 5.88 4.705 5.40 3.582 6.46 5.030 8.68 3.980 6.43 5.311 7.25 6.280 5.42 5.201 7.26 6.320 5.76 6.076 6.04
31
Autoregressive Factor
Standard Deviation σ(1) 0.898 38.91 0.621 30.49 1.040 14.23 1.531 32.02 1.009 27.67 1.050 46.07 1.116 24.92 1.064 25.98 1.105 29.39 0.750 29.58 1.038 24.77 1.319 27.91 1.401 28.42 1.350 30.61 1.179 24.57 1.653 30.25 5.758 33.41 6.367 20.95 4.883 27.82 0.800 18.74 3.507 30.32 1.255 30.63 2.388 30.27 2.430 21.71 2.513 25.40 2.186 30.83 3.302 27.03 2.924 32.09 1.875 26.66
σ(2)
(∗∗)
0.775 (3.28) 2.516 0.01 4.450 7.81
Maximum Likelihood Likelihood Function α Ratio Statistic Value (MSM) 0.904 43.04 217.56 57.12 0.979 60.28 38.83 NaN 0.985 30.12 189.76 97.01 0.985 91.98 450.59 NaN 0.968 36.84 288.94 83.10 0.992 43.75 269.86 NaN 0.959 53.05 305.73 56.45 0.969 44.36 318.14 83.20 0.963 68.36 302.43 73.67 0.959 42.25 116.54 66.23 0.969 25.04 273.94 75.39 0.956 31.55 391.60 66.99 0.928 39.06 440.72 40.35 0.990 25.46 401.68 NaN 0.984 11.24 343.43 94.91 0.958 44.08 495.76 66.77 0.990 68.35 993.49 NaN 0.951 64.06 537.93 49.87 0.959 51.59 1,035.08 68.56 0.975 (2.89) 209.94 89.83 0.990 161.47 838.13 NaN 0.985 152.31 371.05 NaN 0.953 105.48 662.18 66.54 0.972 35.15 351.89 57.86 0.983 81.87 682.60 NaN 1.001 197.05 606.59 NaN 0.973 70.69 659.86 72.98 1.007 118.47 742.37 NaN 0.980 143.93 626.84 89.15
Table 1 Estimation results summary Dependent variable: exchange rate misalignment Countries
Mexico Paraguay Peru Trinidad Tobago United States Uruguay Venezuela Australia Indonesia New Zealand Papua New Guinea Bahrain Bangladesh Hong Kong India Israel Japan Jordan Korea Kuwait Malaysia Nepal Pakistan Philiphines Saudi Arabia Singapore Sri Lanka Thailand Turkey Algeria Burkina Faso
Mean µ(1) 12.113 19.65 4.062 4.58 71.672 12.01 (5.817) 18.40 3.637 8.86 25.193 25.04 18.769 17.03 6.105 13.61 (2.054) 8.46 (8.938) 13.45 2.705 15.93 14.019 16.74 6.399 19.59 (27.934) 8.38 11.648 13.74 10.461 14.04 2.356 8.77 0.118 9.93 21.590 22.08 0.279 8.44 (2.424) 14.86 5.533 8.06 2.483 5.49 17.954 16.80 (1.620) 7.20 1.053 1.76 14.405 31.75 1.855 11.87 6.089 15.12 15.101 16.79 52.445 17.15
Constant part of probability µ(2)
(∗)
(12.716) (1.64) (3.224) (1.00) (5.004) (0.42) (20.030) (0.75) (1.323) (0.32) (13.363) (2.15) (6.563) (1.47) (0.583) (0.35) (10.752) (0.62) (22.249) (0.98) (2.337) (1.47) (1.004) (0.42) (13.191) NaN (36.302) (0.34) (2.301) (0.62) (1.953) (0.64) (3.281) (0.91) (3.984) (3.05) (4.661) (1.02) (4.823) (3.40) (6.082) (1.30) (1.116) (0.53) (0.579) (0.56) (2.129) (0.69) (6.499) (0.93) (1.488) (0.57) (10.407) (1.92) (3.704) (1.68) (12.509) (0.99) (11.900) (1.03) (0.162) (0.04)
β(1) 1.387 2.16 1.944 3.40 1.241 2.05 3.851 7.13 1.762 3.74 2.979 7.23 2.835 4.37 1.104 2.33 3.804 6.62 4.125 8.70 2.750 7.33 2.644 2.70 1.920 1.92 4.768 6.11 3.112 4.58 2.638 4.85 3.744 8.26 3.738 8.03 3.932 6.19 4.174 7.17 3.942 10.17 1.635 2.37 1.721 2.26 3.015 4.84 4.361 6.59 4.857 4.19 5.863 6.18 3.527 6.25 4.017 6.32 3.331 5.08 (13.027) (9.96)
β(2) 5.018 8.71 4.133 9.36 4.616 8.69 4.420 8.65 3.739 8.73 3.844 9.30 4.120 8.02 3.807 10.50 3.736 5.76 3.908 6.34 3.104 7.81 5.352 5.22 5.665 5.66 4.557 5.21 4.562 6.25 4.373 8.53 2.637 4.64 (0.177) (0.25) 4.726 7.96 2.097 3.17 2.758 6.19 3.878 7.79 2.903 3.83 4.631 9.18 1.653 2.20 4.173 2.59 5.083 6.21 3.565 5.98 4.103 7.70 4.432 7.54 5.994 5.95
33
Standard Deviation σ(1) 2.186 30.04 2.275 26.64 13.153 27.09 2.030 29.94 1.691 25.76 5.163 28.25 3.659 23.66 1.647 26.99 1.887 23.37 1.987 29.69 1.203 24.79 1.248 NaN 2.263 2.26 1.630 24.78 1.956 20.68 2.207 26.47 1.763 25.22 1.141 20.52 2.611 29.28 1.718 7.02 0.797 29.53 2.079 22.39 1.392 12.42 2.960 30.24 1.294 19.65 0.922 16.97 1.896 36.65 1.323 27.09 2.867 26.54 3.545 24.49 4.270 28.23
σ(2)
(∗∗)
18.050 4.84 8.957 5.61 1.139 (2.29) -
Autoregressive Factor
Maximum Likelihood Likelihood Function α Ratio Statistic Value (MSM) 0.980 280.97 655.58 NaN 0.964 159.17 732.51 73.05 0.947 65.00 1,266.30 58.86 0.995 39.06 600.28 NaN 0.981 25.46 530.27 NaN 0.958 11.24 913.19 65.42 0.946 44.08 558.71 40.81 0.953 42.77 497.70 62.54 0.994 34.26 433.99 NaN 0.994 90.83 576.75 NaN 0.956 30.20 276.90 57.61 0.963 4.57 164.51 50.23 0.761 (94.86) 541.51 0.76 0.997 5.80 334.50 96.88 0.964 49.99 283.22 50.93 0.962 55.26 513.87 65.91 0.976 12.56 509.50 89.55 0.938 16.90 172.04 40.33 0.972 119.86 649.22 85.15 0.935 18.12 175.59 38.81 0.990 39.77 176.30 NaN 0.941 0.40 384.44 45.96 0.894 (0.74) 218.98 27.52 0.954 36.79 772.61 69.89 0.987 (4.71) 191.50 88.81 0.952 (0.02) 86.28 37.79 0.986 50.24 531.93 NaN 0.964 27.04 402.56 62.52 0.987 54.24 588.11 92.16 0.981 69.19 553.17 75.05 0.945 99.15 791.53 58.18
Table 1 Estimation results summary Dependent variable: exchange rate misalignment Countries
Mean
Constant part of probability (∗)
Standard Deviation
µ(2) µ(1) β(1) β(2) σ(1) Burundi 4.724 (4.263) 3.177 3.450 2.802 18.30 (1.03) 10.16 17.20 56.51 Cameroon 53.602 1.324 (10.555) 5.913 3.435 21.22 0.20 (1.74) 5.95 27.26 Central Africa 0.161 (5.070) 3.422 4.039 (0.872) 14.34 (1.87) 7.09 7.78 NaN Zaire 29.988 (8.967) 4.225 4.107 3.613 21.01 (1.35) 6.96 7.92 20.74 Congo 46.880 (0.245) (15.706) 6.006 3.223 20.21 (0.16) (0.01) 6.13 29.72 Egypt 41.089 (10.911) 3.865 4.558 5.002 25.10 (1.38) 6.76 8.90 30.39 Ethiopia 30.214 (64.648) 5.428 6.161 3.866 24.39 (0.73) 3.81 5.51 28.03 Gabon 83.807 (12.333) 3.864 6.027 2.643 34.96 (0.63) 1.66 5.85 27.46 Ghana 7.116 (20.700) 3.770 4.330 3.320 22.15 (1.26) 7.09 8.35 29.36 Kenya 0.887 (11.593) 4.794 1.394 2.567 10.22 (6.05) 8.06 2.09 26.16 Liberia 2.942 (0.912) 2.351 3.221 1.473 4.20 (0.30) 2.18 4.63 10.24 Madagascar 26.861 (8.460) 3.864 5.293 2.848 21.20 (1.00) 4.45 7.42 28.93 Malawi 32.006 (13.097) 4.967 5.598 5.709 7.67 (1.06) 3.56 4.97 21.35 Morocco 1.304 (6.148) 4.136 5.217 1.001 14.86 (0.95) 6.41 7.20 30.66 Niger 65.839 (8.983) 1.883 5.895 4.710 74.79 (8.21) 1.94 5.90 8.62 Nigeria 29.865 (8.962) 4.246 5.472 4.054 (*) 1.29 NaN 0.02 6.97 34.78 Senegal 115.507 31.178 5.269 6.102 2.917 28.93 0.65 3.52 5.48 27.99 Sierra Leone 2.990 (46.582) 4.018 2.841 7.923 10.44 (6.49) 9.52 3.78 15.83 South Africa 16.720 0.092 1.286 4.730 1.922 25.61 0.05 1.99 11.43 31.29 Sudan 64.618 (6.699) 1.256 3.341 15.207 9.71 (0.44) 1.13 5.59 13.47 Togo 297.748 218.287 5.241 6.034 2.474 31.72 0.12 3.61 5.45 26.17 Tunisia 1.861 (0.907) 3.537 4.534 1.850 2.79 (0.95) 3.54 4.53 2.13 Zimbabwe 31.525 10.481 0.785 4.087 4.415 11.28 0.66 1.12 8.66 22.13 Rwanda 149.542 (1.526) 1.369 5.612 9.064 22.75 (0.25) 1.24 5.67 23.25 Ivory Coast 119.985 35.884 5.365 6.332 2.783 29.91 0.61 3.52 5.78 30.52 Asymptotic t-ratios below coefficients. (*) These are the t-ratios of the difference between the mean of the two regimes. (**) These are the t-ratios of the difference between the standard deviation of the two regimes.
3.
σ(2)
(∗∗)
1.894 (7.39) (1.190) (2.53) 7.067 8.24 2.179 2.40 -
Autoregressive Factor
Maximum Likelihood Likelihood Function α Ratio Statistic Value (MSM) 0.975 16.19 446.51 93.27 0.974 82.44 704.96 79.77 0.980 600.01 205.74 98.16 0.966 102.40 845.74 71.98 0.901 124.15 686.81 42.27 0.971 144.47 1,017.00 92.02 0.996 168.80 739.21 NaN 0.989 269.57 562.09 62.98 0.988 18.12 765.44 NaN 0.911 39.77 558.72 41.07 0.951 0.40 203.37 37.75 0.983 (0.74) 665.74 NaN 0.968 36.79 515.65 55.24 0.992 33.89 256.95 NaN 1.111 (0.02) 767.41 91.71 0.989 50.24 828.80 NaN 1.006 27.04 590.11 NaN 0.921 54.24 327.60 31.86 0.962 69.19 568.83 78.08 0.893 17.82 318.41 18.64 1.001 222.91 495.20 NaN 0.650 (47.06) 106.75 0.79 0.981 37.05 524.77 53.27 0.908 619.23 752.81 34.78 1.004 231.13 719.16 NaN
Table 2 Estimation results summary Dependent variable: exchange rate misalignment
Countries
Austria
Transition Probabilities p11 0.9780
p22 0.9790
Goldfajn e Valdes (1999) Methodology Number/Average Duration Depreciations Appreciations -
Belgium (*) Denmark
0.9917
0.9837
-
-
0.9866
0.9512
-
-
Finland
0.9849
0.9954
-
France
0.9814
0.9536
2 30 -
Germany
0.9956
0.9270
Greece
0.9951
0.9830
1 44 -
Ireland
0.9787
0.7519
-
Italy
0.7779
0.9881
Netherlands
0.6325
0.9898
-
-
Norway
0.9717
0.9687
-
-
Portugal
0.9840
0.9271
-
-
Spain
0.9745
0.9724
-
-
Sweden
0.9861
0.9912
Switzerland
0.9803
0.8629
1 112 -
United Kingdon
0.9872
0.9907
2 17 1 15 -
Argentina
0.9968
0.9981
Bolivia (*) Brazil
0.9903
0.9685
0.9574
0.9732
Canada
0.9467
0.9247
Chile
0.9948
0.9910
Colombia
0.9920
0.9729
Costa Rica
0.4990
0.9935
Ecuador
0.9853
0.9817
El Salvador
0.9894
0.9951
Guatemala
0.9973
0.9981
Haiti
0.9144
0.9945
Honduras
0.9967
0.9982
Jamaica
0.9884
0.9977
1 16 -
1 4
-
1 5 6 24 5 5 6 19 -
7 16 5 6 3 24 -
4 8 3 40 3 22 4 9 2 56 2 36 2 32 1 61 5 19
3 14 2 54 2 9 2 30 3 25 2 20 3 19 3 27 3 18
3L
Markov Switching Model Number/Average Duration Depreciations Appreciations 7 8 24 25 3 2 107 64 4 2 87 34 1 374 7 5 46 17 3 3 109 27 2 2 175 51 8 3 51 4 4 4 3 106 1 4 6 97 8 4 24 25 6 4 55 12 4 3 92 18 10 33 2 91 2 95 1 209 6 30 16 13 4 104 2 189 4 10 1 108 2 110 1 150 2 11 1 105 7 22
5 6 7 30 5 17 1 10 4 34 9 8 1 86 4 103 4 22 2 176 2 176 6 45
Table 2 Estimation results summary Dependent variable: exchange rate misalignment
Countries
Transition Probabilities
Mexico
p11 0.8001
p22 0.9934
Paraguay
0.8748
0.9842
Peru
0.7757
0.9902
Trinidad Tobago
0.9792
0.9881
United States
0.8535
0.9768
Uruguay
0.9516
0.9790
Venezuela
0.9445
0.9840
Australia
0.7511
0.9783
Indonesia
0.9782
0.9767
New Zealand
0.9841
0.9803
Papua New Guinea
0.9399
0.9571
Bahrain
0.9336
0.9953
Bangladesh
0.8721
0.9965
Hong Kong
0.9916
0.9896
India
0.9574
0.9897
Israel
0.9333
0.9875
Japan
0.9769
0.9332
Jordan
0.9768
0.4559
Korea
0.9808
0.9912
Kuwait
0.9848
0.8906
Malaysia
0.9810
0.9403
Nepal
0.8369
0.9797
Pakistan
0.8482
0.9480
Philiphines
0.9533
0.9903
Saudi Arabia
0.9874
0.8392
Singapore
0.9923
0.9848
Sri Lanka
0.9972
0.9938
Thailand
0.9714
0.9725
Turkey
0.9823
0.9837
Algeria
0.9655
0.9883
Burkina Faso
0.0000
0.9975
Goldfajn e Valdes (1999) Methodology Number/Average Duration Depreciations Appreciations 5 3 23 20 6 6 15 17 9 7 12 13 2 3 58 15 3 2 14 29 11 5 12 22 5 4 8 7 1 23 1 3 113 42 1 2 11 22 1 9 1 17 1 2 10 11 2 2 31 39 1 14 2 2 19 10 4 2 8 15 3 19 -
1 11 -
1 14 2 9 -
1 5 4 8 -
4 19 1 19 -
1 32 1 21 -
3 64 2 22 3 35 2 17 5 18
2 80 -
30
5 11 1 7 3 15
Markov Switching Model Number/Average Duration Depreciations Appreciations 5 7 12 55 5 9 3 43 3 5 14 66 2 1 129 113 5 11 5 33 5 5 38 36 4 1 38 123 8 8 4 46 1 205 3 5 65 30 5 7 24 16 1 197 1 1 267 22 1 1 192 115 1 1 55 168 5 4 19 60 9 6 27 12 9 2 22 2 2 1 193 18 4 2 45 13 4 4 87 14 3 8 9 25 3 15 2 8 2 2 106 108 2 1 105 13 5 16 1 241 4 8 48 15 4 46 2 2 44 96 1 1 3 396
Table 2 Estimation results summary Dependent variable: exchange rate misalignment
Countries
Transition Probabilities
Burundi
p11 0.9600
p22 0.9692
Cameroon
0.0000
0.9973
Central Africa
0.9684
0.9827
Zaire
0.9856
0.9838
Congo
0.0000
0.9975
Egypt
0.9795
0.9896
Ethiopia
0.9956
0.9979
Gabon
0.9795
0.9976
Ghana
0.9775
0.9870
Kenya
0.9918
0.8012
Liberia
0.9130
0.9616
Madagascar
0.9795
0.9950
Malawi
0.9931
0.9963
Morocco
0.9843
0.9946
Niger
0.8680
0.9973
Nigeria (*) Senegal
0.9859
0.9958
0.9949
0.9978
Sierra Leone
0.9823
0.9448
South Africa
0.7835
0.9913
Sudan
0.7784
0.9658
Togo
0.9947
0.9976
Tunisia
0.9717
0.9894
Zimbabwe
0.6868
0.9835
Rwanda
0.7972
0.9964
Ivory Coast
0.9953
0.9982
Goldfajn e Valdes (1999) Methodology Number/Average Duration Depreciations Appreciations 4 4 5 16 1 1 60 77 2 13 10 5 20 18 2 1 11 3 5 2 38 62 3 2 28 40 2 2 12 27 9 7 12 17 3 3 5 5 3 34 4 8 1 94 4 25 2 76 2 19 4 10 4 6 4 7 1 60 -
4 37 4 8 1 10 2 58 4 36 1 27 3 14 1 14 3 5 4 15 -
3 8 5 14 4 16
2 12 5 20 2 10
Average episode duration below number of episodes
3M
Markov Switching Model Number/Average Duration Depreciations Appreciations 5 5 30 20 1 1 4 364 3 4 40 53 4 4 55 38 1 1 2 401 1 239 1 4 74 22 1 5 2 3 118 54 3 1 119 6 3 6 3 14 1 137 1 5 50 26 1 6 141 50 1 59 2 2 48 176 1 59 1 1 96 21 4 4 4 109 4 2 10 18 1 2 59 103 1 2 21 43 4 3 2 78 1 1 4 268 1 2 59 191
:
/
!
!
K
! 0.1
RER Normalized Misalignment -Austria
1
Filtered Probability (Deprec)-Austria
0.05 0
0.5
-0.05 -0.1 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Austria
0 1960 1
0.5
0.5
0
0
-0.5
1970 1980 1990 Deprec. Episodes (G&V) -Austria
-0.5
-1 1960 1
1970 1980 1990 Apprec Episodes (MSM) -Austria
0.5
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Austria
0.5
0 1960
1970
1980
1990
RER Normalized Misalignment -Belgium
0 1960
1
1970
1980
1990
Filtered Probability (Deprec)-Belgium
0.05 0
0.5
-0.05 -0.1 -0.15 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Belgium
0 1960 1
0.5
0.5
0
0
-0.5 -1 1960 1
-0.5 1970 1980 1990 Apprec Episodes (MSM) -Belgium
0.5
0 1960
1970 1980 1990 Deprec. Episodes (G&V) -Belgium
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Belgium
0.5
1970
1980
1990
0 1960
32
1970
1980
1990
0.2
RER Normalized Misalignment -Denmark
1
Filtered Probability (Deprec)-Denmark
0.1 0
0.5
-0.1 -0.2 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Denmark
0 1960 1
0.5
0.5
0
0
-0.5
1970 1980 1990 Deprec. Episodes (G&V) -Denmark
-0.5
-1 1960 1
1970 1980 1990 Apprec Episodes (MSM) -Denmark
0.5
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Denmark
0.5
0 1960
1970
1980
1990
RER Normalized Misalignment -Finland
0 1960
1
1970
1980
1990
Filtered Probability (Deprec)-Finland
0.2 0.1
0.5
0 -0.1 -0.2 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Finland
0 1960 1
1970 1980 1990 Deprec. Episodes (G&V) -Finland
0.5 0
0.5
-0.5 -1 1960 1
1970 1980 1990 Apprec Episodes (MSM) -Finland
0.5
0 1960
0 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Finland
0.5
1970
1980
1990
0 1960
.N
1970
1980
1990
0.2
RER Normalized Misalignment -France
1
Filtered Probability (Deprec)-France
0.1 0
0.5
-0.1 -0.2 1960 1
0 1960
1970 1980 1990 Apprec. Episodes (G&V) -France
1
0.5
0.5
0
0
-0.5
-0.5
-1 1960 1
1970 1980 1990 Apprec Episodes (MSM) -France
0.5
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -France
0.5
0 1960
0.2
1970 1980 1990 Deprec. Episodes (G&V) -France
1970
1980
0 1960
1990
RER Normalized Misalignment -Germany
1
1970
1980
1990
Filtered Probability (Deprec)-Germany
0.1 0
0.5
-0.1 -0.2 1960 1
0 1960
1970 1980 1990 Apprec. Episodes (G&V) -Germany
1
1970 1980 1990 Deprec. Episodes (G&V) -Germany
0.5 0
0.5
-0.5 -1 1960 1
0.5
0 1960
0 1960
1970 1980 1990 Apprec Episodes (MSM) -Germany
1
1970 1980 1990 Deprec. Episodes (MSM) -Germany
0.5
1970
1980
0 1960
1990
.
1970
1980
1990
0.2
RER Normalized Misalignment -Greece
1
Filtered Probability (Deprec)-Greece
0.1 0
0.5
-0.1 -0.2 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Greece
0 1960 1
1970 1980 1990 Deprec. Episodes (G&V) -Greece
0.5 0.5
0 -0.5
0 1960 1
1970 1980 1990 Apprec Episodes (MSM) -Greece
0.5
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Greece
0.5
0 1960
1970
1980
1990
RER Normalized Misalignment -Ireland
0 1960
1
1970
1980
1990
Filtered Probability (Deprec)-Ireland
0.05 0
0.5
-0.05 -0.1 -0.15 1960 1
1970 1980 1990 Apprec. Episodes (G&V) -Ireland
0 1960 1
0.5
0.5
0
0
-0.5 -1 1960 1
-0.5 1970 1980 1990 Apprec Episodes (MSM) -Ireland
0.5
0 1960
1970 1980 1990 Deprec. Episodes (G&V) -Ireland
-1 1960 1
1970 1980 1990 Deprec. Episodes (MSM) -Ireland
0.5
1970
1980
1990
0 1960
.&
1970
1980
1990