Protease Biochem March05

  • Uploaded by: seetharam
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Protease Biochem March05 as PDF for free.

More details

  • Words: 2,283
  • Pages: 66
Proteases

 

Dr. Jessica Bell Davies Laboratory NIDDK/NIH  For the  University of Richmond  

What do proteases do? H

+

HN

3

H

O

C

C

R1

H N

C

H

R2

+

COO­

+

H2O

3

HN

C R1

COO­ H

+ +

3

HN

C

COO­

R2

∆Go for the rxn is ­2kcal/mol But… Catalyzed rxn (chymotrypsin) at  neutral pH, 37°C: 100/sec

Uncatalyzed rxn at neutral pH,  37°C: 1 X 10­10 /sec

 

Conditions for chemically catalyzed  reaction:  

24hrs. @ 6M HCl, 110°C

Koshland, D. (1996) J. Cell.  Comp. Phys. Suppl. 1 43:217.

Two types of cleavages endopeptidase

exopeptidase

Same rxn, Four mechanisms Named for residue/group in active site of enzyme essential for  most effective catalysis Serine

­OH

Cysteine/Thiol ­SH  

Acid/Aspartic ­COO­ Metallo

 

Zn2+

Mechanistic Sets of Proteases set

feature

inhibitor

examples

function

Serine protease

active site serine H57, D102, S195

fluorophosphates

trypsin thrombin plasmin coccoonase subtilisin acrosin

digestion blood coagulation lysis of blood clots mechanical digestion sperm penetration

Cysteine protease

active site cysteine C25, H159, N175

iodoacetate

papain strept. proteinase cathepsin B

digestion digestion intracell. digestion 

Acid protease

acidic pH optimum D32, D215

diazoketones

pepsin chymosin

digestion milk coagulation

Metalloproteases

Zn2+, E270 Zn2+, Ca2+ E143, H231

o­phenanthroline o­phenanthroline

carboxypeptidase thermolysin 

digestion digestion

 

 

Secretion

signal peptidases

Development snake

Digestion

Adhesion

P. gingivalis protease

Immune  Response

T­cell protease

Blood pressure  regulation renin

trypsin

Coagulation

Complement  Fixation CI protease

thrombin

Cell fusion

hemaglutinase

Tumor  Invasion

Reproduction  and  Fertilization

collagenase

acronase

Fibrinolysis

tissue  plasminogen  actvator

Hormone  Processing  

Kex 2

Pain Sensing kallikrein

Animal Virus  Replication HIV protease

 

6 Broad Categories Function           Protease Nutrition   trypsin, subtilisin, α­lytic    protease Invasion

  matrix metallo proteases

Evasion

  IgA protease

Adhesion   P. gingivalis protease Processing  signal peptidase, viral    proteases, proteosome Signaling   caspases, granzymes

Serine Protease Mechanism – The players

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

Serine Protease Mechanism – Oxyanion Hole

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

 

 

Adapted from Voet and Voet  (1995) Biochemistry, 2nd ed. John  Wiley and Sons, Inc. New York.

Serine inhibitors

CH3 O S O

O NH

CH

C

CH2

Cl

CH2 Peptide bond mimic

Chloro­methyl ketone [CMK] TPCK  

(L­1­Chloro­3­[4­tosylamido]­4­phenyl­2­butanone)  

Serine inhibitors

CH3 CH CH3

F O

P O

CH3 O

CH CH3

DFP Diisopropyl fluorophosphate  

 

Divergent vs. Convergent Evolution Catalytic Triad Conserved

Trypsin  

Elastase Same Fold

 

Subtilisin

Serpins Serine protease  inhibitors Irreversible Disruption of 3º  structure

 

 

Ecotin Serine Protease Inhibitor Unknown function Dimeric 1° and 2° binding sites Cleaved  

 

Cysteine protease mechanism Michaelis Complex 159

H

N

Tetrahedral intermediate I 159

25 N: HN

S H

H

O

N

+

25 N

H

S

HN

P1

P1

159

H  



159 25

25

N + N H

S



O

H Tetrahedral intermediate II

P1

NH2

H

N

N:

S

O

NH2

  H2O

Acyl Intermediate

P1

Cysteine protease mechanism Michaelis Complex 159

H

N

N:

S H

H

O

N

+

25 N

H

S

HN

No Asp102  equivalent

159

159 25

25

N + N H

S



O

H Tetrahedral intermediate II

P1



P1

Covalent  Intermediate

P1

 

159

25

HN

H

Tetrahedral intermediate I

NH2

H

N

N:

S

O

NH2

  H2O

Acyl Intermediate

P1

Cysteine protease inhibitors

159

H

N

25 S

N

:

H

I CH2

O C

OH

Iodoacetic acid E­64 (2S,3S)­3­(N­(1S)­1­[N­ (4guanidinobutyl)carbamoyl]3methylbutyl)carbamoyl)  oxirane­2­carboxylic acid

 

 

Cystatin Superfamily Cysteine protease inhibitors Non­canonical binding  

 

Acid protease mechanism

O

Asp25’

H O

H

P1

O

H O

Asp25

H

 

H

O

O

­

Asp25’

P1’

Tetrahedral  intermediate

O

P1’



O

­O

N



H

Asp25

N

O

O

O

O

O

O O

­

H

H

H

­

Asp25’

P1

H

  Asp25

O

Asp25

H

P1’

O

O

H

­

O

H

P1 O

N

H

O

H

N

Michaelis complex P1’ P1 H

Asp25’

Acid protease mechanism

H

O

O

O

O

O

O

­O

Asp25’

H

H

­

Asp25

P1’

Asp25

O

O

H

­

O

H

P1 O

N

H

O

H

N

Michaelis complex P1’ P1 H

Asp25’

No covalent  intermediate

Activated water H O

H

P1

O

H O

Asp25

H

 

H

O

O

­

Asp25’

P1’

Tetrahedral  intermediate

O



H

P1’



O

N

O

O O

H

  Asp25

­

H

N

P1

Asp25’

Acid protease inhibitors

 

  Indinavir, Roche

CH3

H N

RHN O

O

HIV Protease Substrate

NHR’

N O

O H

 

  Reiling, K. K. et al. Biochemistry (2002) 41:4582­94.

Movie of Multi­drug resistant HIV Models: www.ucsf.edu Click on A­Z listings Under C find Craik, Charles Within the Craik website there is section  entitled movies Enjoy!

 

 

Pepsin

HIV  Protease  

 

Metallo protease mechanism H

His

H

His

Zn2+

His

His

O

O P1

­O

O

P1



Zn2+

O

 

Glu

P1

O P1

­O

O

O

  H

N

His

His

H P1’

H P1’

Glu

Zn2+

O

­

Zn2+

His

His

H

O N

Glu

­

His

His

O

H O

Zn2+

H

His

O

Glu

N

Glu

O

Zn2+

­

His

H

P1’

­

Glu

O

O

Metallo protease mechanism H

O

Glu

Activated water

­O

O



Glu

His

His

Zn2+

P1

O P1

­O

O

O

  H

N

His

His

O

 

P1

H P1’

H P1’

Glu

Zn2+

O

­

Zn2+

P1

No covalent  intermediate ­

His

His

O

H O

Zn2+

H

His

O

Glu

H

O N

Zn2+

His

N

His

H

His

His

O

Glu

O

Zn2+

­

His

H

P1’

­

Glu

O

O

H2N­Asp­Arg­Val­Tyr­Ile­Pro­Phe­His­Leu­Co2H Proangiotensin

H2N­Asp­Arg­Val­Tyr­Ile­Pro­Phe­Co2H Angiotensin

A

Zn2+

H

NH

H

O

C

C

R2

H

O

N

C

C

H

R1

H N

C

H

R1

O

H2N

C ­ O

+

C

NH

Arg

H2N

carboxy­di­peptidase active site A

Zn2+

H S CH2  

H

O

C

C

CH3

H N

C

O C ­

  Captopril

O

H2N + C H2N

NH

Arg

Thermolysin

Carboxypeptidase A

 

 

Synopsis of Protease Mechanisms Serine

Ser­His Asp Catalytic Triad covalent intermediate Cysteine Cys­His covalent intermediate Acid  Asp­Asp Activated water no covalent intermediate Metallo Zn2+ or equivalent­Glu  

Activated Water   no covalent intermediate

How Proteases Order Off the Menu P2

P1

OH

N H

N H

O

P2’

CH3

O

H N

Peptide

P1’ H N

O

N H

O

Scissile Bond Subsite of  Protease

 

OH

NH3+

S2

S1

 

S1’

S2’

Substrate Selection within One Tertiary Fold

 

 

Methods to Determine Specificity 1>

Synthesis of short peptides [15 to 20a.a.],  check for cleavage with PAGE

2>

Phage display of short peptides

3> Positional scanning synthetic  combinatorial libraries [PS­SCL]  

 

N H

O

X

Ac­XXXO­AMC Ac­XXOX­AMC Ac­XOXX­AMC Ac­OXXX­AMC  

X

O

H N

N H

X

O

A K A K A K A K

R F R F R F R F

N P N P N P N P  

H N

O

H N

O

X

D S D S D S D S

E T E T E T E T

Q W Q W Q W Q W

G Y G Y G Y G Y

H V H V H V H V

7­amino­4­methyl  coumarin

I m I m I m I m

L

L L L

Harris J. L. et al. Rapid and general profiling of  protease specificity by using combinatorial fluorogenic  substrate libraries. PNAS (2000) 97:7754­9.

400.0

0.06 0.058

300.0

0.056 0.054

200.0

0.052 0.05

100.0

0.048 0.046

0.0

0.044

A R N D Q E G H I L K F P S T WY V mM

P4 N H

O

A R N D Q E G H I L K M m F P S T W Y V

P2

O

H N

N H

P3

500.0

O

H N O

P1

200.0

400.0

150.0

300.0 100.0 200.0 50.0

100.0

0.0

  A R N D Q E G H I L K F P S T W Y V mM

 

0.0

A R N D Q E G H I L K F P S T W Y V mM

Regulation of Proteases – A Few Examples Zymogens Pro­peptide that must be cleaved before protease becomes fully active Trypsinogen 16

1 Enteropeptidase

1

15

Trypsin 16

Zymogen form has distorted oxyanion hole and substrate binding pocket Compartmentalization Macromolecular Inhibitors Host and non­host

 

 

Cytotoxic Lymphocytes

 

 

Molecular Biology of the Cell, Garland

Cytotoxic T Lymphocyte Apoptotic Pathway Cytotoxic T  lymphocyte Granzymes Perforin Ca

2+

3

Fas DD

Ca2+

Ca2+ Ca2+

FADD

cleave  pro­caspases

DED

Mito. apoptosis aggregrates pro­caspase  8, intermolecular cleavage  to caspase 8, activation of  effector caspases [3, 6, 7],    apoptosis

GrnA

GrnB

MPR?

 

serpins Nuclease ?

Bcl­2

Single stranded  breaks in DNA nucleus

Granzymes: Lymphocyte Serine Proteases Name

 

Activity

Predicted P1 

MW

cleavage site

                    

A

Trypsin­like                 R/K

60 (Dimer)

B

Asp­ase         

        D/E

35

C

Unknown

        N/S

27

D

Unknown

        F/L

35­50

E

Unknown

        F/L

35­45

F

Unknown

        F/L

35­40

G

Unknown

        F/L

H

Chymase        

         F

I

Unknown

J

Unknown

K

Trypsin­like

M

Met­ase  

 

M/L/nor­L

30 30

Granzyme Structure

  Waugh et al. (2000) Nat. Struct. Biol. 7:762­765

 

Granzyme A, Proposed Dimeric Structure

 

 

Granzyme A: Substrate Specificity and  Macromolecule Substrates Substrate

    Sequence P4

FLUOROGENIC LIBRARIES

P3

V/I G/A/S

P2

P1

N

R

PIL-1β

D

A

P

V

R

S

L

N

C

T

THROMBIN RECEPTOR

T

L

D

P

R

S

F

L

L

R

HISTONE H1

K

L

G

L

K

S

L

V

S

K

HISTONE H2b

A

P

A

P

K

K

G

S

K

K

SET

Q

T

Q

N

K

A

S

R

K

R

LAMIN B

V

T

V

S

R

A

S

S

S

R

 

 

Chasing the Crystals

 

 

Macromolecular Inhibition of  Granzyme A 1.2

mOD/min @ 405nm

1

Control mM84R Eco

0.8

dM84R Eco

0.6

Tryp. Inh.

0.4

0.2

 

0

0

0.05

 

5

[Inhibitor], µM

50

Potential Effects of Oligomer on  Macromolecular Inhibitors

 

grnA

 

Potential Effects of Oligomer on  Macromolecular Inhibitors grnB:dEcotin

 

 

Potential Effects of Oligomer on  Macromolecular Inhibitors mEcotin

 

 

Small Molecule Inhibitor of Granzyme A 0.8 0.7

O N

mOD/minute @405nm

0.6

C

C

O N

C

C

N

C

C

CH2Cl

O

0.5 0.4 0.3 0.2 0.1

 

0

0

50

  100 [Inhibitor], nM

150

200

Crystallization Previous conditions: 0.1M Citrate, pH 5.6, 20% peg 4K, 20% Isopropanol New Conditions: 4M NaFormate 0.1M Citrate, pH 5.6, 20­30% peg4K, 0.2M AmAcetate 0.1M Cacodylate, pH 6.5, 15­20% peg4K, 0.2M AmSO4 0.1M Tris, pH8.5, 13­18% peg4K, 0.2M LiSO4

 

 

Diffraction!!!

 

 

Substrate Selectivity

 

 

Granzyme A: Human and Mouse Human Mouse

MRNSYRFLAS MRNASGPRGP

SLSVVVSLLL SLATLLFLLL

IPEDVCEKII IPEGGCERII

GGNEVTPHSR GGDTVVPHSR

PYMVLLSLDR PYMALLKLSS

Human Mouse

KTICAGALIA NTICAGALIE

NLNKRSQVIL NVGKRSKFIL

GAHSITREEP GAHSINK-EP

TKQIMLVKKE EQQILTVKKA

Human Mouse

FPYPCYDPAT FPYPCYDETT

TEKAKINKYV KKKATVNRNV

TILHLPKKGD AILHLPKKGD

DVKPGTMCQV DVKPGTRCRV

Human Mouse

AGWGRTHNSA AGWGRFGNKS

KDWVLTAAHC KNWVLTAAHC # REGDLKLLQL REGDLQLVRL # SWSDTLREVN APSETLREVN

ITIIDRKVCN ITVIDRKICN

DRNHYNFNPV DEKHYNFHPV

IGMNMVCAGS IGLNMICAGD

Human Mouse

LRGGRDSCNG LRGGKDSCNG

VFRGVTSFGL ILRGITSFG*

ENKCGDPRGP GEKCGDRRWP *

GVYILLSKKH GVYTFLSDKH

Human Mouse

LNWIIMTIKG LNWIKKIMKG

DSGSPLLCEG DSGSPLLCDG # AV SV

68% Identical!

P4

 

P3

P2

P1

Human           V/I    G/A/S      N

 R

Mouse

 R

  G        F/Y

 F

Substrate Specificity of Granzyme A Species

D102 R99

H57

P2 P3

P4

D189

 

 

P1

S195

Substrate Specificity of Granzyme A Species

P4

W224

 

 

Substrate Specificity of Granzyme A Species

P4

W224

 

 

Substrate Specificity of Granzyme A Species

 

 

Native Human GrA

Relative Fluorescence Units

0.06 0.05

Human

Mouse

P2

     N

     F

P3

 G/A/S

   F/Y

P4

    V/L

    G

0.04 0.03 0.02 0.01 0 A

R

N

D

Q

E G H I L K F P1-Arg PS-SCL of Human GrA - P3 Amino Acid

P

S

T

W

Y

V

n

Relative Fluorescence Units

0.06 0.05 0.04 0.03 0.02 0.01 0 A

R

N

D

Q E G H I L K F P P1-Arg PS-SCL of Native Human GrA - P4 Amino Acid

S

T

W

Y

V

n

Relative Fluorescence Units

0.06 0.05 0.04 0.03 0.02 0.01

 

0 A

R

  N

D

Q

E

G

H

I

L

K

F

P

S

T

W

Y

V

n

H ­> M GrA

0.14 0.12 0.1

Human

Mouse

P2

     N

     F

P3

 G/A/S

   F/Y

P4

    V/L

    G

0.08 0.06 0.04 0.02 0 A

R

N

D

Q

E

G

H

I

L

K

F

P

S

T

W

Y

V

n

0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 A

R

N

D

Q

E

G

H

I

L

K

F

P

S

T

W

Y

V

n

0.14 0.12 0.1 0.08 0.06 0.04

 

0.02

 

0 A

R

N

D

Q

E

G

H

I

L

K

F

P

S

T

W

Y

V

n

Conclusions: Mutational Studies

The residues identified from the model of mouse granzyme A [∆ L201, G202, E203, W211] when mutated into the equivalent  positions of the human homologue: 1> switch the substrate specificity at the P3 position, 2> increase the preference for small residues [A/G] over       branched residues [I/V] at the P4 position and 3> broaden residue selection at the P2 position.  

 

 

C. S. Craik Craik Lab Members Granzyme A Sandy Waugh  Sami Mahrus Carly Klein MT­SP1 Jeonghoon Sun Ami Bhatt

R. J. Fletterick Fletterick Lab Members

ALS 8.3.1

The Chemists Amy Barrios Alan Marnett  

NIH: The $$$ people  

James Holton

Related Documents

Biochem
November 2019 36
Biochem
November 2019 25
Biochem 06
October 2019 31
Biochem 01
October 2019 31
Biochem 10
November 2019 24

More Documents from "hamza jassar"

Atm_ellapugazhum
April 2020 26
Atm_kelaamal
April 2020 32
Analysing A Case Study
December 2019 22
Dhaam Dhoom
April 2020 32
Alaipayuthey
April 2020 23