ETABS 2016 16.2.1
3/21/2019
9
10
13
6
7
1
2
12
3
11
4
Z X
8
Y
5
etabs mong.EDB
3-D View
ETABS 2016 16.2.1
3/21/2019
S500
NẮP BE
NẮP
S500 W4 E
N ẮP
S500
BE NẮPW3
S500
N ẮP
BE
BE NẮP
W3
NẮP
S500
1500
1500 BE MONG NẮP
D
MON
G150
1500
12
5 NG1 MO
B NẮ P
NẮP
0 150
NẮP
NẮ
W4
MO
NG
NẮP
NẮ
BE NẮP
0 S5 0
B NẮP
NẮ
E
0 S50
0 150 NG MO
NẮ MO
PB
S5
NẮP
NẮP
P NẮ
0 S50 MO 150
E MONG
NG MO
BE
P NẮ
P NẮ
E PB NẮ
N MO
NẮ
0 50
E PB
00 S5
1
BE
E PB NẮ
15 NG MO
00
00 S5
NẮ
00
PB
E
MO
1 NG
0 50 4 W
00 15 NG O M
X
00 15 NG O M
5
3-D View
2
00 15 NG MO
8
etabs mong.EDB
E
00 S5
Z Y
E PB
PB NẮ
P NẮ
S
0 150
BE
BE
0 50 G1
0
NẮ
E PB NẮ
W4
0
150 NG MO
0
7
0 150 NG
E PB NẮ
E PB NẮ
E YB DA
E PB
S 50
BE
BE
PB NẮ
MO
E
S5
E
0 0 S50NG150
00 15 NG
0 150 NG
1500 NG MO 00
E PB NẮ
E
NẮ
E PB NẮ
6
B N ẮP
E
M
BE NẮP
0 S50
BE
W3
BE
E PB NẮ
0 150
PB
E
BE
BE
0 0 S50 NG150 O
E PB NẮ
P NẮ
MO
PB NẮ
W3 P BE
E PB
11
500 NG1 MO
E
500 NG 1
BE
W3
DAY
P BE BENẮ
500 NG1 500 MO S
BE NẮP
0
00
B NẮP
BE
NẮ P
13
N WẮ4P
00 G15 MON
BE NẮP
E
00 G15 MON
MO
NG MO
S50
BE NẮP
00 G15 MO N
BE
S500
BE
BE
BE NẮP
0
BE NẮP G MON
E AY B
N ẮP
0 S50
W3
S500
BE NẮP
BE
1500 MONGN ẮP
BE
W
BE BE 4 PY NẮDA
BE
NẮP
BE NẮP
BE NẮP
00 G15 MON
S500
NẮP
S500
B NẮP
9
S500
S500
10
BE
BE
B NẮP
BE NẮP
G MON
NẮP
BE
NẮP
BE NẮP
BE NẮP
4
BE
3
S500
NẮP BE
NẮP
ETABS 2016 16.2.1
3/23/2019
10
185.49 -187.03-29.43
CSA2
13
-14.39
CSA3 919.99
9
173.05
CSA4
-26.49
12
6
CSA6
1221.81
11
267.7
-51.41
CSA5
7
1
Y
X
5
2
8
etabs mong.EDB Plan View - Base - Z = 0 (m)
4
3
Strip In-Plane Moment Diagram
(ENVELOPE)
ETABS 2016 16.2.1
3/23/2019
10
31.62 9
13
-129.95
12
6
CSB6
CSB5
-291.35
CSB4
CSB3
CSB2
42.54 38.15
11
7
-174.91
1
Y -170.29 11.18
-180.31
7.63
X
5
2
8
etabs mong.EDB Plan View - Base - Z = 0 (m)
4
3
Strip In-Plane Moment Diagram
(ENVELOPE)
ETABS 2016 16.2.1
3/23/2019
-187.62
10
-691.91
1.2
CSA2
9
-151.77
CSA3
13
14.29
CSA4
6
-498.93 -173.63
12
11.51
CSA5
CSA6
7
11.45
11
1
Y
X
5
2
8
etabs mong.EDB Plan View - Base - Z = 0 (m)
4
3
Strip In-Plane Moment Diagram
(ENVELOPE)
ETABS 2016 16.2.1
3/23/2019
10
9
13
-15.6
-5.34
CSB5
CSB4
-0.19
CSB3
CSB2
12
193.73
6
CSB6
318.22
201.4
11
7
296.63
1
-9.46
Y
X
2
289.31
5
8
etabs mong.EDB Plan View - Base - Z = 0 (m)
4
-37.82
3
Strip In-Plane Moment Diagram
(ENVELOPE)
TÍNH TOÁN CỐT THÉP SÀN Công trình : Tây Hồ View Cấu kiện : Water Tank 1. Số liệu tính toán: Conc. Rebar
fck
32 MPa
fy
500
MPa
Es
200000
MPa
C32/40
1.5 1.15
3. Kết quả tính toán: Cấu kiện
Vách bể nước
Moment ngoài 1000 350
30
298
-62.5
Longitudinal Rebar As A's Factor Z Kbal K of Checks As (mm) (mm2) (mm2) n Y1 n Y2 2 safety (mm 3 16 4 16 1407 0.167 0.022 245 587 0 2.39 Ok.
Moment trong 1000 350
30
298
56.0
3
16
4
16 1407 0.167 0.020
244
527
0
2.67
Ok.
Moment ngoài 1000 350
30
298
-63.0
3
16
4
16 1407 0.167 0.022
245
592
0
2.38
Ok.
Moment trong 1000 350
30
298
45.0
3
16
4
16 1407 0.167 0.016
244
424
0
3.32
Ok.
Moment ngoài 1000 350
30
298
-58.5
3
16
4
16 1407 0.167 0.021
245
550
0
2.56
Ok.
Moment trong 1000 350
30
298
55.0
3
16
4
16 1407 0.167 0.019
244
518
0
2.72
Ok.
Moment ngoài 1000 350
30
298
-63.8
3
16
4
16 1407 0.167 0.022
245
600
0
2.35
Ok.
Moment trong 1000 350
30
298
53.0
3
16
4
16 1407 0.167 0.019
244
499
0
2.82
Ok.
Moment ngoài 1000 350
30
298
-62.0
3
16
4
16 1407 0.167 0.022
245
583
0
2.41
Ok.
Moment trong 1000 350
30
298
48.0
3
16
4
16 1407 0.167 0.017
244
452
0
3.11
Ok.
Strip
d Moment b h c M (mm (mm) (mm) (mm) ) (kNm)
TÍNH TOÁN CỐT THÉP SÀN Công trình : Tây Hồ View Cấu kiện : Water Tank 1. Số liệu tính toán:
CSA2 CSA3 CSA4 CSA5 CSA6 Đáy bể nước CSB2 CSB3 CSB4 CSB5 CSB6
Lớp trên
1000 800
30
748
-187.0
5
20
5
20 3142 0.167 0.010
614
701
0
4.48
Ok.
Lớp dưới
1000 800
30
748
180.0
5
25
5
25 4909 0.167 0.010
613
675
0
7.27
Ok.
Lớp trên
1000 800
30
748
-157.0
5
20
5
20 3142 0.167 0.009
614
588
0
5.34
Ok.
Lớp dưới
1000 800
30
748
295.0
5
25
5
25 4909 0.167 0.016
613
1106
0
4.44
Ok.
Lớp trên
1000 800
30
748
-173.0
5
20
5
20 3142 0.167 0.010
614
648
0
4.85
Ok.
Lớp dưới
1000 800
30
748
177.0
5
25
5
25 4909 0.167 0.010
613
664
0
7.40
Ok.
Lớp trên
1000 800
30
748
-210.0
5
20
5
20 3142 0.167 0.012
614
787
0
3.99
Ok.
Lớp dưới
1000 800
30
748
267.0
5
25
5
25 4909 0.167 0.015
613
1001
0
4.90
Ok.
Lớp trên
1000 800
30
748
-250.0
5
20
5
20 3142 0.167 0.014
614
937
0
3.35
Ok.
Lớp dưới
1000 800
30
748
288.0
5
25
5
25 4909 0.167 0.016
613
1080
0
4.55
Ok.
Lớp trên
1000 800
30
748
-230.0
5
20
5
20 3142 0.167 0.013
614
862
0
3.65
Ok.
Lớp dưới
1000 800
30
748
129.0
5
25
5
25 4909 0.167 0.007
613
484
0
10.15
Ok.
Lớp trên
1000 800
30
748
-296.0
5
20
5
20 3142 0.167 0.017
614
1109
0
2.83
Ok.
Lớp dưới
1000 800
30
748
291.0
5
25
5
25 4909 0.167 0.016
613
1091
0
4.50
Ok.
Lớp trên
1000 800
30
748
-193.0
5
20
5
20 3142 0.167 0.011
614
723
0
4.34
Ok.
Lớp dưới
1000 800
30
748
170.0
5
25
5
25 4909 0.167 0.009
613
637
0
7.70
Ok.
Lớp trên
1000 800
30
748
-289.0
5
20
5
20 3142 0.167 0.016
614
1083
0
2.90
Ok.
Lớp dưới
1000 800
30
748
180.0
5
25
5
25 4909 0.167 0.010
613
675
0
7.27
Ok.
Lớp trên
1000 800
30
748
-201.0
5
20
5
20 3142 0.167 0.011
614
753
0
4.17
Ok.
Lớp dưới
1000 800
30
748
174.0
5
25
5
25 4909 0.167 0.010
613
652
0
7.52
Ok.
KIỂM TRA ĐỘ VÕNG SÀN ĐÁY BỀ
1. Ô sàn vị trí
Độ võng tính toán theo mô hình số : f= Nhịp của ô sàn: L= Độ võng cho phép: f < L/250 = Kết luận: Sµn ®¶m b¶o ®é vâng cho phÐp
1.926 cm 635 cm 2.54 cm
Project
The Concrete Centre
Well Lake
Client SunGroup Location Wall W4
Made by
rmw Checked
FLEXURAL CRACK WIDTH CALCULATION to BS EN 1992-1 : 2004 Originated from TCC14.xls v4.1 on CD
© 2002-2005 BCA for RCC
RECTANGULAR
chg
Date 24-Mar-19
fck = fyk = b= h= QP moment, M = Age at cracking =
32 500 1000 350 63.8 14
Cement type = Creep factor, φ =
R 2.0
Area of tension steel, As = d= Area of compression steel, As2 = d2 = Maxmum tension bar spacing, S = Max tension bar dia, Øeq =
MPa MPa mm mm KNm days (S, N, or R)
Short term or long term ? Cover to As, c =
1407 300 1407 60 100 16 S 42
-
mm2 mm mm2 mm mm mm (S or L) mm
CALCULATIONS modulus of elasticity of concrete = 22[(f ck+8)/10]0.3
Ecm =
33.3
GPa
moduli of elasticity of steel
Es =
200.0
GPa
Modular ratio
αe =
6.00
mean concrete strength at cracking mean concrete tensile strength uncracked neutral axis depth
fcm,t = fct,eff =
36.82 2.78
MPa MPa
[bh²/2+(αe-1)(Asd+As2d2)]/[bh+(αe-1)(As+As2)]
xu =
175.19
mm
bh³/12+bh(h/2-x)²+(αe-1)[As(d-x)²+As2(x-d2)²]
Iu =
3776
mm4 106
cracking moment = f ctI/(h-x)
Mcr =
60.12
kNm
nd
uncracked 2
1
Revision Job No
LEGEND
INPUT
Page
moment of area
< 63.8 kNm → section is CRACKED fully cracked neutral axis depth
(-Asαe-As2(αe-1)+[{Asαe+As2(αe-1)}²-2b{Asαed-As2d2(αe-1)}]½)/b
xc =
62.92
mm
concrete stress = M/[bx(d-x/3)/2+(αe-1)As2(d-d2)(x-d2)/x] stress in tension steel = σc∙αe(d-x)/x
σc = σs =
7.203 162.8
effective tension area = min[2.5(h-d), (h-x)/3, h/2]b - As
Ac,eff =
94285
MPa MPa mm2
As /Ac,eff
ρp,eff =
0.0149
max final crack spacing = min[1.3/(h-x),3.4c+0.17Ø/ρp,eff)]
sr,max =
325.1
mm
average strain for crack width calculation
εsm-εcm =
488.3
μstrain
CALCULATED CRACK WIDTH
Wk =
0.159
mm
FB625
Project
The Concrete Centre
Well Lake
Client SunGroup Location Slap - Bottom
Made by
rmw Checked
FLEXURAL CRACK WIDTH CALCULATION to BS EN 1992-1 : 2004 Originated from TCC14.xls v4.1 on CD
© 2002-2005 BCA for RCC
RECTANGULAR
chg
Date 24-Mar-19
fck = fyk = b= h= QP moment, M = Age at cracking =
32 500 1000 800 295 14
Cement type = Creep factor, φ =
R 2.0
Area of tension steel, As = d= Area of compression steel, As2 = d2 = Maxmum tension bar spacing, S = Max tension bar dia, Øeq =
MPa MPa mm mm KNm days (S, N, or R)
Short term or long term ? Cover to As, c =
4906 750 3140 50 100 25 L 38
-
mm2 mm mm2 mm mm mm (S or L) mm
CALCULATIONS modulus of elasticity of concrete = 22[(f ck+8)/10]0.3
Ecm =
33.3
GPa
moduli of elasticity of steel
Es =
200.0
GPa
Modular ratio
αe =
17.99
mean concrete strength at cracking mean concrete tensile strength uncracked neutral axis depth
fcm,t = fct,eff =
36.82 2.78
MPa MPa
[bh²/2+(αe-1)(Asd+As2d2)]/[bh+(αe-1)(As+As2)]
xu =
411.21
mm
bh³/12+bh(h/2-x)²+(αe-1)[As(d-x)²+As2(x-d2)²]
Iu =
59299
mm4 106
cracking moment = f ctI/(h-x)
Mcr =
424.53
kNm
nd
uncracked 2
1
Revision Job No
LEGEND
INPUT
Page
moment of area
> 295 kNm → section is uncracked fully cracked neutral axis depth
(-Asαe-As2(αe-1)+[{Asαe+As2(αe-1)}²-2b{Asαed-As2d2(αe-1)}]½)/b
xc =
255.62
mm
concrete stress = M/[bx(d-x/3)/2+(αe-1)As2(d-d2)(x-d2)/x] stress in tension steel = σc∙αe(d-x)/x
σc = σs =
2.565 89.3
effective tension area = min[2.5(h-d), (h-x)/3, h/2]b - As
Ac,eff =
120094
MPa MPa mm2
As /Ac,eff
ρp,eff =
0.0409
max final crack spacing = min[1.3/(h-x),3.4c+0.17Ø/ρp,eff)]
sr,max =
231.5
mm
average strain for crack width calculation
εsm-εcm =
267.8
μstrain
CALCULATED CRACK WIDTH
Wk =
0.000
mm
FB625
Project
The Concrete Centre
Well Lake
Client SunGroup Location Slap - Top
Made by
rmw Checked
FLEXURAL CRACK WIDTH CALCULATION to BS EN 1992-1 : 2004 Originated from TCC14.xls v4.1 on CD
© 2002-2005 BCA for RCC
RECTANGULAR
chg
Date 24-Mar-19
fck = fyk = b= h= QP moment, M = Age at cracking =
32 500 1000 800 281 14
Cement type = Creep factor, φ =
R 2.0
Area of tension steel, As = d= Area of compression steel, As2 = d2 = Maxmum tension bar spacing, S = Max tension bar dia, Øeq =
MPa MPa mm mm KNm days (S, N, or R)
Short term or long term ? Cover to As, c =
3140 750 4906 50 100 20 L 40
-
mm2 mm mm2 mm mm mm (S or L) mm
CALCULATIONS modulus of elasticity of concrete = 22[(f ck+8)/10]0.3
Ecm =
33.3
GPa
moduli of elasticity of steel
Es =
200.0
GPa
Modular ratio
αe =
17.99
mean concrete strength at cracking mean concrete tensile strength uncracked neutral axis depth
fcm,t = fct,eff =
36.82 2.78
MPa MPa
[bh²/2+(αe-1)(Asd+As2d2)]/[bh+(αe-1)(As+As2)]
xu =
388.79
mm
bh³/12+bh(h/2-x)²+(αe-1)[As(d-x)²+As2(x-d2)²]
Iu =
59299
mm4 106
cracking moment = f ctI/(h-x)
Mcr =
401.38
kNm
nd
uncracked 2
1
Revision Job No
LEGEND
INPUT
Page
moment of area
> 281 kNm → section is uncracked fully cracked neutral axis depth
(-Asαe-As2(αe-1)+[{Asαe+As2(αe-1)}²-2b{Asαed-As2d2(αe-1)}]½)/b
xc =
195.76
mm
concrete stress = M/[bx(d-x/3)/2+(αe-1)As2(d-d2)(x-d2)/x] stress in tension steel = σc∙αe(d-x)/x
σc = σs =
2.543 129.6
effective tension area = min[2.5(h-d), (h-x)/3, h/2]b - As
Ac,eff =
121860
MPa MPa mm2
As /Ac,eff
ρp,eff =
0.0258
max final crack spacing = min[1.3/(h-x),3.4c+0.17Ø/ρp,eff)]
sr,max =
268.0
mm
average strain for crack width calculation
εsm-εcm =
388.7
μstrain
CALCULATED CRACK WIDTH
Wk =
0.000
mm
FB625