Oscilaciones

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Oscilaciones as PDF for free.

More details

  • Words: 1,096
  • Pages: 5
OSCILACIONES Oscilación libre En el caso en que un sistema reciba una única fuerza y oscile libremente hasta detenerse por causa de la amortiguación, recibe el nombre de oscilación libre. Éste es por ejemplo el caso cuando pulsamos la cuerda de una guitarra.

FIGURA 01: Oscilación libre. La envolvente dinámica muestra fases de ataque y caída Oscilación amortiguada Si en el caso de una oscilación libre nada perturbara al sistema en oscilación, éste seguiría vibrando indefinidamente. En la naturaleza existe lo que se conoce como fuerza de fricción (o rozamiento), que es el producto del choque de las partículas (moléculas) y la consecuente transformación de determinadas cantidades de energía en calor. Ello resta cada vez más energía al movimiento (el sistema oscilando), produciendo finalmente que el movimiento se detenga. Esto es lo que se conoce como oscilación amortiguada.

FIGURA 02: Oscilación amortiguada En la oscilación amortiguada la amplitud de la misma varía en el tiempo (según una curva exponencial), haciéndose cada vez más pequeña hasta llegar a cero. Es decir, el sistema (la partícula, el péndulo, la cuerda de la guitarra) se detiene finalmente en su posición de reposo. La representación matemática es , donde

es el coeficiente

de amortiguación. Notemos que la amplitud es también una función del tiempo (es decir, varía con el tiempo), mientras que a y son constantes que dependen de las condiciones de inicio del movimiento. No obstante, la frecuencia de oscilación del sistema (que depende de propiedades intrínsecas del sistema, es decir, es característica del sistema) no varía (se mantiene constante) a lo largo de todo el proceso. (Salvo que se estuviera ante una amortiguación muy grande.) Oscilación autosostenida Si logramos continuar introduciendo energía al sistema, reponiendo la que se pierde debido a la amortiguación, logramos lo que se llama una oscilación autosostenida. Éste es por ejemplo el caso cuando en un violín frotamos la cuerda con el arco, o cuando soplamos sostenidamente

una flauta.

FIGURA 03: Oscilación autosostenida. La envolvente dinámica presenta una fase casi estacionaria (FCE), además de las fases de ataque y caída La acción del arco sobre la cuerda repone la energía perdida debido a la amortiguación, logrando una fase (o estado) casi estacionaria. Preferimos llamarla fase casi estacionaria -y no estado estacionario, como suele encontrarse en alguna literatura- debido a que, en condiciones prácticas, resulta sumamente difícil que la energía que se introduce al sistema sea exactamente igual a la que se pierde producto de la amortiguación. En consecuencia, la amplitud durante la fase casi estacionaria no es en rigor constante, sino que sufre pequeñas variaciones, cuya magnitud dependerá de nuestra habilidad para compensar la energía perdida. Si la energía que se repone al sistema en oscilación es menor a la que se pierde producto de la fricción obtenemos una oscilación con amortiguación menor, cuyas características dependen de la relación existente entre la energía perdida y la que se continúa introduciendo. También en este caso el sistema termina por detenerse, aunque demore más tiempo. (En música lo llamaríamos decrescendo.) Por el contrario, si la energía que introducimos al sistema es mayor que la que se pierde por la acción de la fricción, la amplitud de la oscilación crece en dependencia de la relación existente entre la energía perdida y la que se continúa introduciendo. (En música lo llamaríamos crescendo.) Oscilación forzada Las oscilaciones forzadas resultan de aplicar una fuerza

periódica y de magnitud constante (llamada generador G) sobre un sistema oscilador (llamado resonador R). En esos casos puede hacerse que el sistema oscile en la frecuencia del generador (ƒg), y no en su frecuencia natural (ƒr). Es decir, la frecuencia de oscilación del sistema será igual a la frecuencia de la fuerza que se le aplica. Esto es lo que sucede por ejemplo en la guitarra, cuando encontramos que hay cuerdas que no pulsamos pero que vibran "por simpatía". Debe tenerse en cuenta que no siempre que se aplica una fuerza periódica sobre un sistema se produce una oscilación forzada. La generación de una oscilación forzada dependerá de las características de amortiguación del sistema generador y de las del resonador, en particular su relación. Resonancia Si, en el caso de una oscilación forzada, la frecuencia del generador (ƒg) coincide con la frecuencia natural del resonador (ƒr), se dice que el sistema está en resonancia. La amplitud de oscilación del sistema resonador R depende de la magnitud de la fuerza periódica que le aplique el generador G, pero también de la relación existente entre ƒg y ƒr. Cuanto mayor sea la diferencia ente la frecuencia del generador y la frecuencia del resonador, menor será la amplitud de oscilación del sistema resonador (si se mantiene invariable la magnitud de la fuerza periódica que aplica el generador). O, lo que es lo mismo, cuanto mayor sea la diferencia entre las frecuencias del generador y el resonador, mayor cantidad de energía se requerirá para generar una determinada amplitud en la oscilación forzada (en el resonador). Por el contrario, en el caso en que la frecuencia del generador y la del resonador coincidieran (resonancia), una fuerza de pequeña magnitud aplicada por el generador G puede lograr grandes amplitudes de oscilación del sistema resonador R. La Figura 04 muestra la amplitud de oscilación del sistema resonador, para una magnitud constante de la fuerza periódica aplicada y en función de la relación entre la frecuencia del generador ƒg y la frecuencia del resonador ƒr.

FIGURA 04: Curva de resonancia a = f (t) ƒg/ƒr = 1 => Resonancia En un caso extremo el sistema resonador puede llegar a romperse. Esto es lo que ocurre cuando un cantante rompe una copa de cristal emitiendo un sonido con la voz. La ruptura de la copa no ocurre solamente debido a la intensidad del sonido emitido, sino fundamentalmente debido a que el cantante emite un sonido que contiene una frecuencia igual a la frecuencia natural de la copa de cristal, haciéndola entrar en resonancia. Si las frecuencias no coincidieran, el cantante debería generar intensidades mucho mayores, y aún así sería dudoso que lograra romper la copa. El caso de resonancia es importante en el estudio de los instrumentos musicales, dado que muchos de ellos tienen lo que se conoce como resonador, como por ejemplo la caja en la guitarra. Las frecuencias propias del sistema resonador (caja de la guitarra) conforman lo que se denomina la curva de respuesta del resonador. Los parciales cuyas frecuencias caigan dentro de las zonas de resonancia de la caja de la guitarra serán favorecidos frente a los que no, de manera que el resonador altera el timbre de un sonido

Related Documents

Oscilaciones
May 2020 3
Oscilaciones
December 2019 13
Aplicacion Oscilaciones
April 2020 19
Proyecto Oscilaciones
April 2020 4
Informe Oscilaciones
October 2019 11
Informe Oscilaciones
October 2019 9