Op Amp Circuit

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Op Amp Circuit as PDF for free.

More details

  • Words: 572
  • Pages: 9
6.002

CIRCUITS AND ELECTRONICS

Operational Amplifier Circuits

6.002 Fall 2000

Lecture 20

1

Review „

Operational amplifier abstraction + –

 ∞ input resistance  0 output resistance  Gain “A” very large

„

Building block for analog systems

„

We will see these examples: Digital-to-analog converters Filters Clock generators Amplifiers Adders Integrators & Differentiators

Reading: Chapter 16.5 & 16.6 of A & L.

6.002 Fall 2000

Lecture 20

2

Consider this circuit: i i

R1

v2 + – v1 + –

R2 v = v1 R1 + R2 ≈ v− +

v2 − v − i= R1

R1

R2

v− – v+ +

+ vOUT –

R2

vOUT = v − − iR2 − v − v = v− − 2 ⋅ R2 R1

R  R  = v − 1 + 2  − v2 2 R1  R1  = v1

R2 R + R2 R ⋅ 1 − v2 2 R1 + R2 R1 R1

R2 = (v1 − v2 ) R1 6.002 Fall 2000

subtracts!

Lecture 20

3

Another way of solving — use superposition v1 → 0

v2 → 0 R1

R2 R1 v2 +



v1 +





v+ + R2



vOUT2

+

vOUT2

vOUT1

R1 + R2 =v ⋅ R1 +

v1 ⋅ R2 R1 + R2 = ⋅ R1 + R2 R1 = v1

vOUT = vOUT1 + vOUT2 R2 = (v1 − v2 ) R1 6.002 Fall 2000

R2

R1

R1 || R2

R2 = − v2 R1

vOUT1

Lecture 20

R2 R1

Still subtracts! 4

Let’s build an intergrator… vI + –

+ vO –

∫ dt

Let’s start with the following insight: i

+ i + –

C

vO –

t

1 vO = ∫ i dt C −∞ vO is related to ∫ i dt But we need to somehow convert voltage vI to current. 6.002 Fall 2000

Lecture 20

5

First try… use resistor + vR –

vI + –

i

+

R C

vO

vI →i R

– But, vO must be very small compared to vR, or else v i≠ I R When is vO small compared to vR ? dv larger the RC, RC O + vO = vI dt smaller the vO vR dvO when RC >> vO for good dt integrator dvO RC ≈ vI ωRC >> 1 dt t 1 or vO ≈ vI dt ∫ RC −∞ Demo 6.002 Fall 2000

Lecture 20

6

There’s a better way… i

Notice i

– +

v − ≈ 0V under negative feedback vI i = so, R – R vI + – +

vI R

+

vC



– vI

+ –

R

+

vO = −vC

+ t vO 1 vI – vO = − ∫ dt C −∞ R

We have our integrator. 6.002 Fall 2000

Lecture 20

7

Now, let’s build a differentiator… + vO –

d dt

vI + –

Let’s start with the following insights: i vI

+ –

C

dvI i=C dt

dvI i is related to dt But we need to somehow convert current to voltage.

6.002 Fall 2000

Lecture 20

8

Differentiator… Recall

i i

– + R

i

– + vO –

+ 0V

i

C vI + –

+ vC –

Demo 6.002 Fall 2000

R – +

vO = −iR

current to voltage

vO vI = vC dvI i=C dt

dvI vO = − RC dt Lecture 20

9

Related Documents

Op Amp Circuit
November 2019 3
Op-amp
May 2020 4
Nra 7th Circuit Op
June 2020 2
Op Amp Basics
November 2019 7
Op Amp Specs
June 2020 4