6.002
CIRCUITS AND ELECTRONICS
Operational Amplifier Circuits
6.002 Fall 2000
Lecture 20
1
Review
Operational amplifier abstraction + –
∞ input resistance 0 output resistance Gain “A” very large
Building block for analog systems
We will see these examples: Digital-to-analog converters Filters Clock generators Amplifiers Adders Integrators & Differentiators
Reading: Chapter 16.5 & 16.6 of A & L.
6.002 Fall 2000
Lecture 20
2
Consider this circuit: i i
R1
v2 + – v1 + –
R2 v = v1 R1 + R2 ≈ v− +
v2 − v − i= R1
R1
R2
v− – v+ +
+ vOUT –
R2
vOUT = v − − iR2 − v − v = v− − 2 ⋅ R2 R1
R R = v − 1 + 2 − v2 2 R1 R1 = v1
R2 R + R2 R ⋅ 1 − v2 2 R1 + R2 R1 R1
R2 = (v1 − v2 ) R1 6.002 Fall 2000
subtracts!
Lecture 20
3
Another way of solving — use superposition v1 → 0
v2 → 0 R1
R2 R1 v2 +
–
v1 +
–
–
v+ + R2
–
vOUT2
+
vOUT2
vOUT1
R1 + R2 =v ⋅ R1 +
v1 ⋅ R2 R1 + R2 = ⋅ R1 + R2 R1 = v1
vOUT = vOUT1 + vOUT2 R2 = (v1 − v2 ) R1 6.002 Fall 2000
R2
R1
R1 || R2
R2 = − v2 R1
vOUT1
Lecture 20
R2 R1
Still subtracts! 4
Let’s build an intergrator… vI + –
+ vO –
∫ dt
Let’s start with the following insight: i
+ i + –
C
vO –
t
1 vO = ∫ i dt C −∞ vO is related to ∫ i dt But we need to somehow convert voltage vI to current. 6.002 Fall 2000
Lecture 20
5
First try… use resistor + vR –
vI + –
i
+
R C
vO
vI →i R
– But, vO must be very small compared to vR, or else v i≠ I R When is vO small compared to vR ? dv larger the RC, RC O + vO = vI dt smaller the vO vR dvO when RC >> vO for good dt integrator dvO RC ≈ vI ωRC >> 1 dt t 1 or vO ≈ vI dt ∫ RC −∞ Demo 6.002 Fall 2000
Lecture 20
6
There’s a better way… i
Notice i
– +
v − ≈ 0V under negative feedback vI i = so, R – R vI + – +
vI R
+
vC
–
– vI
+ –
R
+
vO = −vC
+ t vO 1 vI – vO = − ∫ dt C −∞ R
We have our integrator. 6.002 Fall 2000
Lecture 20
7
Now, let’s build a differentiator… + vO –
d dt
vI + –
Let’s start with the following insights: i vI
+ –
C
dvI i=C dt
dvI i is related to dt But we need to somehow convert current to voltage.
6.002 Fall 2000
Lecture 20
8
Differentiator… Recall
i i
– + R
i
– + vO –
+ 0V
i
C vI + –
+ vC –
Demo 6.002 Fall 2000
R – +
vO = −iR
current to voltage
vO vI = vC dvI i=C dt
dvI vO = − RC dt Lecture 20
9