Nodal and Loop Analysis cont’d
AIHT
1
Advantages of Nodal Analysis • Solves directly for node voltages. • Current sources are easy. • Voltage sources are either very easy or somewhat difficult. • Works best for circuits with few nodes. • Works for any circuit. AIHT
2
Advantages of Loop Analysis • Solves directly for some currents. • Voltage sources are easy. • Current sources are either very easy or somewhat difficult. • Works best for circuits with few loops.
AIHT
3
Disadvantages of Loop Analysis • Some currents must be computed from loop currents. • Does not work with non-planar circuits. • Choosing the supermesh may be difficult. • FYI: PSpice uses a nodal analysis approach AIHT
4
Where We Are • Nodal analysis is a technique that allows us to analyze more complicated circuits than those in Chapter 2. • We have developed nodal analysis for circuits with independent current sources. • We now look at circuits with dependent sources and with voltage sources. AIHT
5
Example Transistor Circuit +10V
Vin
+ –
1kΩ + Vo –
2kΩ
AIHT
Common Collector (Emitter Follower) Amplifier
6
Why an Emitter Follower Amplifier? • The output voltage is almost the same as the input voltage (for small signals, at least). • To a circuit connected to the input, the EF amplifier looks like a 180kΩ resistor. • To a circuit connected to the output, the EF amplifier looks like a voltage source connected to a 10Ω resistor. AIHT
7
A Linear Large Signal Equivalent 0.7V Ib 5V
+ –
1kΩ
+ – 50Ω 100Ib
2kΩ
+ Vo –
AIHT
8
Steps of Nodal Analysis 1. Choose a reference node. 2. Assign node voltages to the other nodes. 3. Apply KCL to each node other than the reference node; express currents in terms of node voltages. 4. Solve the resulting system of linear equations. AIHT
9
A Linear Large Signal Equivalent 0.7V 1 5V
Ib V 2
V1 + –
1kΩ
2
+ –
V3
V4
3 50Ω 100Ib
4
AIHT
+ Vo
2kΩ
–
10
Steps of Nodal Analysis 1. Choose a reference node. 2. Assign node voltages to the other nodes. 3. Apply KCL to each node other than the reference node; express currents in terms of node voltages. 4. Solve the resulting system of linear equations. AIHT
11
KCL @ Node 4 0.7V 1 5V
Ib V2
V1 + –
1kΩ
2
+ –
V3
V4
3 50Ω 100Ib
4
+ Vo
2kΩ
–
V3 − V4 V4 + 100 I b = 50Ω 2 kΩ AIHT
12
The Dependent Source • We must express Ib in terms of the node voltages: V1 − V2 Ib = 1 kΩ
• Equation from Node 4 becomes
V3 − V4 V1 − V2 V4 + 100 − =0 50Ω 1 kΩ 2kΩ AIHT
13
How to Proceed? • The 0.7V voltage supply makes it impossible to apply KCL to nodes 2 and 3, since we don’t know what current is passing through the supply. • We do know that V2 - V3 = 0.7V
AIHT
14
0.7V 1
Ib V2
V1 + –
1kΩ
+ –
V3
V4 50Ω 100Ib
AIHT
4
+ Vo
2kΩ
–
15
KCL @ the Supernode V2 − V1 V3 − V4 + =0 1kΩ 50Ω
AIHT
16
Another Analysis Example • We will analyze a possible implementation of an AM Radio IF amplifier. (Actually, this would be one of four stages in the IF amplifier.) • We will solve for output voltages using nodal (and eventually) mesh analysis. • This circuit is a bandpass filter with center frequency 455kHz and bandwidth 40kHz. AIHT
17
IF Amplifier 100pF 4kΩ
100pF
80kΩ
– 1V ∠ 0°
+ –
160Ω
Vx +
AIHT
+ 100Vx
+ –
Vout –
18
Nodal AC Analysis • Use AC steady-state analysis. • Start with a frequency of ω=2π 455,000.
AIHT
19
Impedances -j3.5kΩ 4kΩ
-j3.5kΩ
80kΩ
– 1V ∠ 0°
+ –
160Ω
Vx +
AIHT
+ 100Vx
+ –
Vout –
20
Nodal Analysis -j3.5kΩ 4kΩ 1 1V ∠ 0°
+ –
160Ω
-j3.5kΩ 2 80kΩ – Vx +
AIHT
100Vx
+ + –
Vout –
21
KCL @ Node 1 V1 − 100Vx V1 − V2 V1 − 1V V1 + + + =0 4kΩ 160Ω - j 3.5kΩ - j 3.5kΩ Vx = −V2 1 1 1 1 V1 + + + 4kΩ 160Ω - j 3.5kΩ - j 3.5kΩ 100 1 1V = + V2 + - j 3.5kΩ j 3.5kΩ 4kΩ AIHT
22
KCL @ Node 2 V2 − V1 V2 − 100Vx + =0 - j 3.5kΩ 80kΩ Vx = −V2 1 1 101 + V2 = 0 V1 + j 3.5kΩ - j 3.5kΩ 80kΩ AIHT
23
Matrix Formulation 1 2 1 4kΩ + 160Ω − j 3.5kΩ 1 j 3.5kΩ
− 100 1 + 1V V j 3.5kΩ j 3.5kΩ 1 = 4kΩ −1 101 V2 0 + j 3.5kΩ 80kΩ
AIHT
24
Solve Equations V1 = 0.0259V-j0.1228V = 0.1255V∠-78° V2 = 0.0277V-j4.15×10-4V=0.0277V ∠ -0.86° Vout = -100V2 = 2.77V ∠ 179.1°
AIHT
25