Money - 1st Term

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Money - 1st Term as PDF for free.

More details

  • Words: 9,931
  • Pages: 79
1st Example: Valuate an European 10 years, 5% coupon rate, 100,000 Euros face value German Bond, that is negotiated

5000 0 108110.90 PREMIUM

5000

1 4807.69

2 4622.78

5000

5000

3 4444.98

4 4274.02

5000 5 4109.64

5000 6 3951.57

Pvb= sumatoria Ct / (1+kb)*t + FVn / (1+kb)*n

FV $ 100,000.00 CR 5% Matur 10 years KB 4% PV=? Current Market Price

coupon

$ 5,000.00 Its five per cent of future value

2nd Example: Valuate an European 5 years, 4% coupon rate, 100000 euros face value French Bond, that is negotiated wit

3er Example: Valuate a Ecuadorian Global 8 years, 9% coupon rate, 100.000 dollars face value Bond, discouting it at 9% c

More examples:

1) In Bloomberg you find that a German Bond 10 years Bond, 3% coupon rate 100000 Euros, is negotiated at 98.% of its p 2) Today Global Bonds of Brazil arte negotiated in the New York Stock Exchange in the following conditions: Face Value Maturity 1000000 100000 10000000

Coupon 5 8 10

Yield 6% 8% 10%

5% 9% 12%

What are the current market prices, which Bond would yo buy, why??

ue German Bond, that is negotiated with a required rate of return of 4%

5000 7 3799.59

5000 8 3653.45

5000 9 3512.93

105000 10 70934.24

100000 5000 5000.00

t of future value

French Bond, that is negotiated with a require rate of return of 5%.

ace value Bond, discouting it at 9% coupon rate. What type of Bond is it, why?

Euros, is negotiated at 98.% of its price. What is the yield to maturity of the Bond? e following conditions:

1st exercise Valuate a 10 years bond 100,000 euros that has 1,5% coupon rate semiannually and is negotiated at 7% discounted rate after 3 years the ice recalls the bond offering a 102,5% price, would you accept it? 100000.00 euros 10 years 1.50% semiannual 7.00% YTC manual traditional

71575.19

20 periods 1500.00 coupon

1500.00 1

1500.00 2

1500.00 3

1500.00 4

1500.00 5

1500.00 6

1449.28

1400.27

1352.91

1307.16

1262.96

1220.25

Bo= addition (coupons VA=

-71,575.19 € formula

yield is 7%

after 3 years 100000.00 euros 10 years 1.50% semiannual 7.00%

14 periods 1500.00 coupon

-78,158.96 €

VA=

call date call price coupon YTC

3 102500.00 1500.00 7.99%

102500.00 offered value

2nd exercise analyse a OMC 15 years bond 100 000 dollars, that has a 2,5% quarterly coupon rate, and is negotiated at 96,5% current 2 years later an international broker offers 101,5% of its price would you 100000.00 dollars 15 years 2.50% quarterly 96.50% P ( price) VA=

60 periods 2500.00 coupon 2.62% yield to maturity

$ 96,500.00 call date call price coupon YTC

2 years 101500.00 2500.00 3.17% yield to call

8 periods

In the new york stock exchange today you can negotiate the following securities

homework

6,1 6,2 6,3 6,4 6,5

otiated at 7% discounted rate

1500.00 7

1500.00 8

1500.00 9

1500.00 10

1500.00 11

1500.00 12

1500.00 13

1500.00 14

1500.00 15

1178.99

1139.12

1100.60

1063.38

1027.42

992.67

959.11

926.67

895.34

years

6 periods

yield to call

s negotiated at 96,5% current market price,.

1500.00 16

1500.00 17

1500.00 18

1500.00 19

100000.00 1500.00 20

865.06

835.81

807.54

780.23

51010.44

Karla Trávez 8 "A" International Commerce 1,- Valuate a ECB10 years Bond. 100,000 euros, that has a 1.5% coupon rate semianually and is negotiated at 7% discounted rate. After 3 years the ECB recalls the bond offering a 102,5% price, wouldyou accept it? Why? FV = M= CR = KB = PV =

100000 10 years 2% Semianually 7%

20 periods 1500 3.5%

$ 102,500

? Call Price

1500 0

1500 1

1500 2

1500 3

1500 4

1500 5

1500 6

1500 7

1500 8

1500 9

1500 10

100000 1500 20

1500 11

1500 12

1500 1500 1500 13 14 15

1500 1500 1500 1500 16 17 18 19

1178.99 1139.12 1100.60 1063.38 1027.42

992.67

959.11 926.67 895.34

865.06 835.81 807.54 780.23 51010.44

Bo = Addition [ Coupons t / ( 1 + Kb ) ^ t ] Manually Excell

1449.28

1400.27 1352.91

1307.16

1262.96 1220.25

$ -71,575.19

B) Call Date = Call Price = Coupon = YTC =

3 years

6 periods

102.5% $ 102,500

1500 $ -71,575.19

=

[ Coupon 1 / ( 1+KB ) ^ 1 ] + [ Coupon 2 / ( 1+KB ) ^ 1 ] +,,,,,,, [ 102,500 / (1+KB) ^6]

7.99% Accepted because the Yield to Call is greater than the yield to maturity

2,- Analyze a GMC 15 years bond, 100,000 dollars that has 2,5% quarterly coupon rate and it is negotiated at 96,5% coupon market price. Two years later an International Broker offer 101,5% of its price, would you accept it QUARTERLY FV = M= CR = PV =

100,000.00 15 years 2.50% 96.50%

FV = 100,000 Periods = 60 periods CR = 2,500 PV = 96,500 Tasa = ? 2.62% YTM Quarterly 10.47% YTM

IN 2 YEARS PV = Call date = CR = Call price = Tasa =

96,500 2 years Periods = 8 2,500 101.5% FV = 101,500 ? 3.17% YTC Quarterly 12.68% YTC

periods

Karla Trávez 8 "A" International Commerce 3,- In the New York Stock Exchange today you can negotiate the following fix - rent securities : Bond a) Telefonica b) Bank of America c) Toyota

Face Value 100,000.00 100,000.00 100,000.00

Maturity 5 10 12

Coupon Rate 1.50% quarter 2.50% semi 1% semi

Price 101.5% 99% 100%

YTM 5.65% 5.13% 2.00%

YTC 6.14% 6.49% 2.98%

Calculate the yield to maturity according to the information at the current market price. Assume that 2 years later you can negotiate the bonds at 102% of their values, which bond would you negotiate, why? a)

TODAY

IN 2 YEARS

FV = 100,000 M = 5 years 20 periods CR = 1.50% quarterly 1500 PV = 101.50% 101500 Tasa = ? 1.41% YTM Quarterly 5.65% YTM

PV = Call date = CR = Call price =

b)

IN 2 YEARS

TODAY

Tasa =

FV = 100,000 M = 10 years 20 periods CR = 2.50% semi 2500 PV = 99.00% 99000 Tasa = ? 2.56% YTM Semianually 5.13% YTM

PV =

b)

IN 2 YEARS

TODAY

FV = 100,000 M = 12 years 24 periods CR = 1.00% semi 1000 PV = 100.00% 100000 Tasa = ? 1.00% YTM Semianually 2.00% YTM

101,500 2 years 1,500 102.0%

?

PV =

102.0%

?

Periods =

periods

4

periods

FV = 102,000

3.25% YTC Semianually 6.49% YTC

100,000 2 years

CR =

Tasa =

4

FV = 102,000

2,500

Call date = Call price =

periods

1.54% YTC Quarterly 6.14% YTC

2 years

CR =

Tasa =

8

99,000

Call date = Call price =

Periods =

Periods =

1,000 102.0%

?

FV = 102,000

1.49% YTC Semianually 2.98% YTC

Karla Trávez 8 "A" International Commerce BOOK'S EXERCISES 6.1.- Compton Computer bonds pay $80 annual interest , mature in 10 years, and pay $1,000 at maturity. What will their value be if the market rate of interest is 1) 6 percent, or 2) 10 percent, and interests is paid a) annually, b) semiannually? CR = M= FV = KB = PV =

80 10 years 1000 6% annually ? 0

PV = CR = M= FV = KB = PV =

80 2 71.20

80 3 67.17

80 4 63.37

80 80 5 6 59.78 56.40

80 7 53.20

80 10 years 1000 6% semiannually ? 80 0 1 75.47

20 periods

80 2 71.20

80 3 67.17

80 4 63.37

80 80 5 6 59.78 56.40

80 7 53.20

80 80 80 8 9 10 50.19 47.35 44.67

80 80 11 12 42.14 39.76

-$1,229.40 [ Coupon 1 / ( 1+KB ) ^ 1 ] + [ Coupon 2 / ( 1+KB ) ^ 1 ] +,,,,,,, [ 1080 / (1+KB) ^20]

80 10 years 1000 10% annually ? 0

PV =

1000 80 80 80 8 9 10 50.19 47.35 603.07

-$1,147.20 [ Coupon 1 / ( 1+KB ) ^ 1 ] + [ Coupon 2 / ( 1+KB ) ^ 1 ] +,,,,,,, [ 1080 / (1+KB) ^10]

PV = CR = M= FV = KB = PV =

80 1 75.47

80 1 72.73

80 2 66.12

80 3 60.11

80 4 54.64

80 80 5 6 49.67 45.16

80 7 41.05

1000 80 80 80 8 9 10 37.32 33.93 416.39

-$877.11 [ Coupon 1 / ( 1+KB ) ^ 1 ] + [ Coupon 2 / ( 1+KB ) ^ 1 ] +,,,,,,, [ 1080 / (1+KB) ^10]

80 80 80 13 14 15 37.51 35.38 33.38

1000 80 80 80 80 80 16 17 18 19 20 31.49 29.71 28.03 26.44 336.75

Karla Trávez 8 "A" International Commerce CR = M= FV = KB = PV =

80 10 years 1000 10% semiannually ? 80 0 1 72.73 PV =

20 periods

80 2 66.12

80 3 60.11

80 4 54.64

80 80 5 6 49.67 45.16

80 7 41.05

80 80 80 8 9 10 37.32 33.93 30.84

80 80 11 12 28.04 25.49

80 80 80 13 14 15 23.17 21.07 19.15

-$829.73 [ Coupon 1 / ( 1+KB ) ^ 1 ] + [ Coupon 2 / ( 1+KB ) ^ 1 ] +,,,,,,, [ 1080 / (1+KB) ^20]

6.3.- Greenman Engineering has some 15-years $1,000 par bonds outstanding, when have coupon interest rate of 9 percent and pay interest annually. What is the yield to maturity on the bonds if thier current market price is: a. $1,181.72 b. $795.99 c. Would you be wiling to pay $795.99 if you minimum required rate of return was 11 percent? Why or why not? A) PV = 1181.72 CR = 9% M= 15 years FV = 1000 YTM = ? YTM =

90.00

B) PV = 795.99 CR = 9% M= 15 years FV = 1000 YTM = ?

7.00%

90.00

YTM = 11.99%

6.4.- A $1,000 par value bond has a 12 percent coupon rate, pays interests annually, and has 15 years ramaining until it matures. a. If Bo = $1,151.72, what is its yield to maturity (YTM)? b. If the bond can be called in 6 years at $1,030, what is the bond's yield to call (YTC)? A) FV = 1000 CR = 12% M= 15 years PV = 1151.72 YTM = ? YTM =

10.00%

120

Call Price = CR = Call time= PV = YTM = ? YTM =

1030 120 6

years ###

9.01%

1000 80 80 80 80 80 16 17 18 19 20 17.41 15.83 14.39 13.08 160.54

Karla Trávez 8 "A" International Commerce 6.6.- Kamath Brithers has a $1,000 par, 9 percent coupon rate bond oustanding. The has 14 years to maturity. a. If the current market value of the bond is $1,200, and interest is paid annually, what is the bond's yield to maturity? b. What if everthing is as in (a), but interest is paid semiannually? a) ANNUALLY FV = 1000 CR = 9% M= 14 years PV = 1200 YTM = ? YTM =

6.75%

b) SEMIANNUALLY FV = 1000 CR = 9% M= 14 years PV = 1200 YTM = ?

90

YTM =

7.30%

90 28 periods

Karla Trávez 8 "A" International Commerce

Karla Trávez 8 "A" International Commerce

Karla Trávez 8 "A" International Commerce

Karla Trávez 8 "A" International Commerce

Karla Trávez 8 "A" International Commerce

BRUNO RAMOS BARCO

8B BANKING MANAGEMENT TASK N° 1

PROBLEMS: 1) Valuate a British 10 years, 100000 Z with a 2% semiannually coupon rate that is negotiated at 6% discounted rate. Assume 2 years later The British Central Bank recalls the bond at its Face Value. What is the YTC? Would you accept the offering? 1ST PART

N= FV = CR = K= Coupon = Coupon =

DATA 10 100000 2% 6%

years Z semiannually annually

2000 1

t=0

2000 2

2000 3 N= CR= K=

CR * FV 2000 Bond =

(85,122.53)

2000 … 20 periods 2% semiannually 3% semiannually

(Discounted Bond)

2ND PART DATA N= 2 CR = 2% PV = Bo = 85122.53 FV = 100000 Coupon = Coupon =

years semiannually Z Z

2000 1

t=0

2000 2

2000 3 N= CR= YTC =

CR * FV 2000 YTC = YTC =

6.33% 12.65%

semiannually annually

100000 FV 2000 Coupon 4 Periods 4 periods 2% semiannually ?

100000 FV 2000 Coupon 20 Periods

R//. Yes, because YTC represents a better percentage (6,33% semiannually) than K (3% semiannually) 2) The Bobl German 5 years bond is negotiated today at 98,5% of its value. If the bond is 100000 euros and 1% quarterly coupon rate, How much is the YTM? After 3 years The European Central Bank recalls bonds at 102.5%. Would you accept it? Why? 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 5 1% 98500 100000

years quarterly 98.5%

1000 1

t=0

1000 2

1000 3 N= CR= YTM =

CR * FV 1000 YTM = YTM = YTM =

1.08% 2.17% 4.34%

1000 …

100000 FV 1000 Coupon 20 Quarters

20 quarters 1% quarterly ?

quarterly semiannually annually

2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 3 1% 98500 102500

years quarterly 98.5% 102.5%

1000 1

t=0

1000 2

1000 3 N= CR= YTC =

CR * FV 1000 YTC = YTC = YTC =

1.33% 2.66% 5.32%

quarterly semiannually annually

R//. Yes, because YTC represents a better percentage (1,33% quarterly) than YTM (1,08% quarterly)

1000 … 12 quarters 1% quarterly ?

102500 FV 1000 Coupon 12 Quarters

3) The following fix-rent financial information is taken from Bloomberg: Bond Brazil Mexico Canada USA

FV 10000000 1000000 100000 100000

YTM = YTC =

? ?

Maturity 10 years 5 years 12 years 10 years

3.50% 1.50% 5% 2.50%

CR semiannually quarterly annually semiannually

Price 101.50% 97.50% 98% 100%

Assume After 4 years 102.50% After 3 years 99.50% After 5 years 101% After 5 years 103%

BRAZILIAN BOND - 1ST PART

N= CR = PV = FV =

DATA 10 3.50% 10150000 10000000

Coupon = Coupon =

CR * FV 350000

years semiannually 101.5%

t=0

350000 1

350000 2

350000 3 N= CR= YTM =

YTM = YTM =

3.40% 6.79%

350000 …

10000000 FV 350000 Coupon 20 Periods

20 periods 3,5% semiannually ?

semiannually annually

BRAZILIAN BOND - 2ND PART

N= CR = PV = FV =

DATA 4 3.50% 10150000 10250000

Coupon = Coupon =

CR * FV 350000

years semiannually 101.5% 102.5%

t=0

350000 1

350000 2

350000 3 N= CR= YTC =

350000 … 8 periods 3,5% semiannually ?

10250000 FV 350000 Coupon 8 Periods

YTC = YTC =

3.56% 7.11%

semiannually annually

MEXICAN BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 5 1.50% 975000 1000000

years quarterly 97.5%

15000 1

t=0

15000 2

15000 3 N= CR= YTM =

CR * FV 15000 YTM = YTM = YTM =

1.65% 3.30% 6.59%

15000 …

1000000 FV 15000 Coupon 20 Quarters

20 quarters 1,5% quarterly ?

quarterly semiannually annually

MEXICAN BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 3 1.50% 975000 995000

years quarterly 97.5% 99.5%

15000 1

t=0

15000 2

15000 3 N= CR= YTC =

CR * FV 15000 YTC = YTC = YTC =

1.69% 3.39% 6.78%

quarterly semiannually annually

15000 … 12 quarters 1,5% quarterly ?

995000 FV 15000 Coupon 12 Quarters

CANADIAN BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 12 5.00% 98000 100000

years annually 98%

5000 1

t=0

5000 2

5000 3 N= CR= YTM =

CR * FV 5000 YTM =

5.23%

5000 …

100000 FV 5000 Coupon 12 Years

12 years 5% annually ?

annually

CANADIAN BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 5 5.00% 98000 101000

years annually 98% 101%

5000 1

t=0

5000 2

5000 3 N= CR= YTC =

CR * FV 5000 YTC =

5.65%

annually

5000 4 5 years 5% annually ?

101000 FV 5000 Coupon 5 Years

AMERICAN BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 10 2.50% 100000 100000

years semiannually 100%

2500 1

t=0

2500 2

2500 3 N= CR= YTM =

CR * FV 2500 YTM = YTM =

2.50% 5.00%

2500 …

100000 FV 2500 Coupon 20 Periods

20 periods 2,5% semiannually ?

semiannually annually

AMERICAN BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 5 2.50% 100000 103000

years semiannually 100% 103%

2500 1

t=0

2500 2

2500 3 N= CR= YTC =

CR * FV 2500 YTC = YTC =

2.76% 5.53%

semiannually annually

2500 … 10 periods 2,5% semiannually ?

103000 FV 2500 Coupon 10 Periods

BRUNO RAMOS BARCO

8B BANKING MANAGEMENT TASK N° 2

MORE PROBLEMS: 1) In the New York Stock Exchange you can buy a 5 years FEDBOND, 100000 Dollars, 2.5% semiannually coupon rate at 98.5% current market price. If you could renegotiate them 2 years later at its Face Value. Would you accept it? Why? 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 5 2.50% 98500 100000

years semiannually 98.5%

2500 1

t=0

2500 2

2500 3 N= CR= YTM =

CR * FV 2500 YTM = YTM =

2.67% 5.35%

2500 … 10 periods 2,5% semiannually ?

semiannually annually

2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 2 2.50% 98500 100000

years semiannually 98.5% 100%

2500 1

t=0

2500 2

2500 3 N= CR= YTC =

CR * FV 2500 YTC = YTC =

2.90% 5.81%

semiannually annually

100000 FV 2500 Coupon 4 Periods 4 periods 2,5% semiannually ?

100000 FV 2500 Coupon 10 Periods

R//. Yes, because YTC represents a better percentage (2,90% semiannually) than YTM (2,67% semiannually) 2) The Bond of America has the following portfolio: Bond GMC ADIDAS Petrobras Mitsubishi

FV 1000000 100000 10000000 1000000

Maturity 10 years 5 years 3 years 12 years

4% 1.5% 0.5% 1.5%

CR semiannually quarterly monthly semiannually

Price 97.50% 95.81% 102.78% 101%

YTM 8.37% 7% 5% 2.90%

YTC 10.34% 9.24% 5.48% 3.45%

Analyze the current market prices given and the YTM and the YTC, consider a renegotiation of all bonds 2 years later when FED and ECB have decided to decrease interest rate policies to 2.5% and the new Bond Price reference is 102% of its value . Would you accept it to renegotiate it. Why??? GMC BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 10 4% 975000 1000000

years semiannually 97.50%

40000 1

t=0

40000 2

40000 3 N= CR= YTM =

CR * FV 40000 YTM = YTM =

4.19% 8.37%

40000 … 20 periods 4% semiannually ?

semiannually annually

GMC BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 2 4% 975000 1020000

years semiannually 97.50% 102%

40000 1

t=0

40000 2

40000 3 N= CR= YTC =

CR * FV 40000 YTC = YTC =

5.17% 10.34%

semiannually annually

1020000 FV 40000 Coupon 4 Periods 4 periods 4% semiannually ?

1000000 FV 40000 Coupon 20 Periods

R//. Yes, because YTC (10,34% annually) is more than YTM (8,37% annually) ADIDAS BOND - 1ST PART

N= CR = YTM = PV = FV = Coupon = Coupon =

DATA 5 1.50% 7% ? 100000

years quarterly annually

1500 1

t=0

1500 2

1500 3 N= CR= YTM =

CR * FV 1500 Price =

(95,811.78)

1500 …

100000 FV 1500 Coupon 20 Quarters

20 quarters 1,5% quarterly 1,75% quarterly

(Discounted Bond)

ADIDAS BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 2 1.50% 95811.78 102000

years quarterly 95.81% 102%

1500 1

t=0

1500 2

1500 3 N= CR= YTC =

CR * FV 1500 YTC = YTC = YTC =

2.31% 4.62% 9.24%

quarterly semiannually annually

R//. Yes, because YTC (9,24% annually) is more than YTM (7,00% annually)

1500 … 8 quarters 1,5% quarterly ?

102000 FV 1500 Coupon 8 Quarters

PETROBRAS BOND - 1ST PART

N= CR = YTM = PV = FV =

DATA 3 0.50% 5% ? 10000000

Coupon = Coupon =

CR * FV 50000

years monthly annually

50000 1

t=0

50000 2

50000 3 N= CR= YTM =

Price =

(10,278,047.51)

50000 …

10000000 FV 50000 Coupon 36 Months

36 months 0,5% monthly 0,42% monthly

(Premium Bond)

PETROBRAS BOND - 2ND PART

N= CR = PV = FV =

DATA 2 0.50% 10278047.51 10200000

Coupon = Coupon =

CR * FV 50000

years monthly 102.78% 102%

50000 1

t=0

50000 2

50000 3 N= CR= YTC =

YTC = YTC = YTC = YTC =

0.46% 1.37% 2.74% 5.48%

monthly quarterly semiannually annually

R//. Yes, because YTC (5,48% annually) is more than YTM (5,00% annually)

50000 … 24 months 0,5% monthly ?

10200000 FV 50000 Coupon 24 Months

MITSUBISHI BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 12 1.50% 1010000 1000000

years semiannually 101%

15000 1

t=0

15000 2

15000 3 N= CR= YTM =

CR * FV 15000 YTM = YTM =

1.45% 2.90%

15000 … 24 periods 1,5% semiannually ?

semiannually annually

MITSUBISHI BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 2 1.50% 1010000 1020000

years semiannually 101% 102%

15000 1

t=0

15000 2

15000 3 N= CR= YTC =

CR * FV 15000 YTC = YTC =

1.73% 3.45%

semiannually annually

R//. Yes, because YTC (3,45% annually) is more than YTM (2,90% annually)

1020000 FV 15000 Coupon 4 Periods 4 periods 1,5% semiannually ?

1000000 FV 15000 Coupon 24 Periods

3) Valuate the following Bonds according to the information: Bond Gol Telefonica England Mitsubishi

FV 100000 1000000 10000000 1000000

Maturity 8 years 10 years 12 years 5 years

4% 1% 2% 0.50%

CR semiannually quarterly semiannually quarterly

Price 94.38% 100.50% 99.50% 102.40%

YTM 9% 3.94% 4.05% 1.50%

YTC 10.22% 3.82% 4.18% 1.18%

Analyze the current market prices given and the YTM and the YTC, consider a renegotiation of all bonds 3 years later when FED and ECB have decided to decrease interest rate policies to 6% and the new Bond Price reference is its face value . Would you accept it to renegotiate it. Why??? GOL BOND - 1ST PART

N= CR = YTM = PV = FV = Coupon = Coupon =

DATA 8 4% 9% ? 100000

years semiannually annually

t=0

4000 1

4000 2

4000 3 N= CR= YTM =

CR * FV 4000 Price =

(94,382.99)

4000 …

100000 FV 4000 Coupon 16 Periods

16 periods 4% semiannually 4,5% semiannually

(Discounted Bond)

GOL BOND - 2ND PART

N= CR = PV = FV =

DATA 3 4% 94382.99 100000

years semiannually 94.38% 100%

t=0

4000 1

4000 2

4000 3 N=

4000 … 6 periods

100000 FV 4000 Coupon 6 Periods

Coupon = Coupon =

CR * FV 4000

CR= YTC = YTC = YTC =

5.11% 10.22%

4% semiannually ?

semiannually annually

R//. Yes, because YTC (10,22% annually) is more than YTM (9,00% annually) TELEFONICA BOND - 1ST PART

N= CR = PV = FV = Coupon = Coupon =

DATA 10 1% 1005000 1000000

years quarterly 100.50%

10000 1

t=0

10000 2

10000 3 N= CR= YTM =

CR * FV 10000 YTM = YTM = YTM =

0.98% 1.97% 3.94%

10000 …

1000000 FV 10000 Coupon 40 Quarters

40 quarters 1% quarterly ?

quarterly semiannually annually

TELEFONICA BOND - 2ND PART

N= CR = PV = FV = Coupon = Coupon =

DATA 3 1% 1005000 1000000

years quarterly 100.50% 100%

10000 1

t=0

10000 2

10000 3 N= CR= YTC =

CR * FV 10000 YTC = YTC = YTC =

0.96% 1.91% 3.82%

quarterly semiannually annually

R//. No, because YTC (3,82% annually) is less than YTM (3,94% annually)

10000 … 12 quarters 1% quarterly ?

1000000 FV 10000 Coupon 12 Quarters

ENGLAND BOND - 1ST PART

N= CR = PV = FV =

DATA 12 2% 9950000 10000000

Coupon = Coupon =

CR * FV 200000

years semiannually 99.50%

t=0

200000 1

200000 2

200000 3 N= CR= YTM =

YTM = YTM =

2.03% 4.05%

200000 …

10000000 FV 200000 Coupon 24 Periods

24 periods 2% semiannually ?

semiannually annually

ENGLAND BOND - 2ND PART

N= CR = PV = FV =

DATA 3 2% 9950000 10000000

Coupon = Coupon =

CR * FV 200000

years semiannually 99.50% 100%

t=0

200000 1

200000 2

200000 3 N= CR= YTC =

YTC = YTC =

2.09% 4.18%

semiannually annually

R//. Yes, because YTC (4,18% annually) is more than YTM (4,05% annually)

200000 … 6 periods 2% semiannually ?

10000000 FV 200000 Coupon 6 Periods

MITSUBISHI BOND - 1ST PART

N= CR = YTM = PV = FV = Coupon = Coupon =

DATA 5 0.50% 1.50% ? 1000000

years quarterly annually

5000 1

t=0

5000 2

5000 3 N= CR= YTM =

CR * FV 5000 Price =

(1,024,042.12)

5000 …

1000000 FV 5000 Coupon 20 Quarters

20 quarters 0,5% quarterly 0,375% quarterly

(Premium Bond)

MITSUBISHI BOND - 2ND PART

N= CR = PV = FV =

DATA 3 0.50% 1024042.12 1000000

Coupon = Coupon =

CR * FV 5000

years quarterly 102.40% 100%

5000 1

t=0

5000 2

5000 3 N= CR= YTC =

YTC = YTC = YTC =

0.30% 0.59% 1.18%

quarterly semiannually annually

R//. No, because YTC (1,18% annually) is less than YTM (1,50% annually)

5000 … 12 quarters 0,5% quarterly ?

1000000 FV 5000 Coupon 12 Quarters

BRUNO RAMOS BARCO

8B BANKING MANAGEMENT TASK N° 3

6.3.- Cavalier industries has a current (Do) cash dividen of $2 per share. You estimate that cash dividends will grow at 12% per year for each of 3 years (t1,t2,t3), and then a 6% oer year for each of 2 more years (t4 and t5). After t5 you expect them to grow at 2% per year to infinity. a.- What is the current market value of Cavalier Industries common stock if the required rate of return is 14%? b.- What is the market price if evereything is the same as in a) except that after year 5 there is no expected growth in cash dividends

Do = g1 = g2 = g3 = Ks =

Data (Section A) 2 12% 6% 2% 14%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

12% 6% 2%

D1 = Do(1+g1)^1 D1 = 2(1+0,12)^1 D1 = 2,24

D2 = Do(1+g1)^2 D2 = 2(1+0,12)^2 D2 = 2,51

D3 = Do(1+g1)^3 D3 = 2(1+0,12)^3 D3 = 2,81

D4 = D3(1+g2)^1 D4 = 2,81(1+0,06)^1 D4 = 2,98

D5 = D3(1+g2)^2 D5 = 2,81(1+0,06)^2 D5 = 3,16

D6 = D5(1+g3)^1 D6 = 3,16(1+0,02)^1 D6 = 3,22

d1 d2 d3 d4 d5 d6 P5 Po

2.24 2.51 2.81 2.98 3.16 3.22 26.84 23.13

P5 = D6 / (Ks-g3) P5 = 3,22 / (0,14-0,02) P5 = 26,84 Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 2,24/(1,14)^1 + 2,51/(1,14)^2 + 2,81/(1,14)^3 + 2,98/(1,14)^4 + 3,16/(1,14)^5 + 26,84/(1,14)^5 Po = 1,96 + 1,93 + 1,90 + 1,76 + 1,64 + 13,94 R//. Po = $23,13

Do = g1 = g2 = Ks =

Data (Section B) 2 12% 6% 14%

P5 Po=? t=0

d1=2,24 1

d2=2,51 2

d3=2,81 3

d4=2,98 4

d5=3,16 5

12% P5 = D1 / Ks P5 = d5 / Ks P5 = 3,16 / 0,14 P5 = 22,55

6% P5 Po

22.55 20.90

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 2,24/(1,14)^1 + 2,51/(1,14)^2 + 2,81/(1,14)^3 + 2,98/(1,14)^4 + 3,16/(1,14)^5 + 22,55/(1,14)^5 Po = 1,96 + 1,93 + 1,90 + 1,76 + 1,64 + 11,71 R//. Po = $20,9

No-Growth

6.7.- You are interested in buying 100 shares of a &60 par value preferred stock that has an 8,5% dividend rate a.- If you required return is 11%, how much would you willing to pay to acquire its 100 shares? b.- What if no dividend will be paid until t = 3? At the same required return, how much would you now be willing to pay?

Po = dr = Ks = D1 =

Data (Section A) 60 8.50% 11% ?

D4 = Ks =

Data (Section B) 5.10 11% P3 = D4 / Ks P3 = 5,10 / 11% P3 = 46,36

D1 = Po * dr D1 = 60 * 8,5% D1 = 5,10

Po = D1 / Ks Po = 5,10 / 11% Po = 46,36 Po = $4636,36

D1 Po x 100 shares

Po=? t=0 Po = P3 / (1+Ks)^3 Po = 46,36 / (1+0,11)^3 Po = 33,90 Po = 3390,07

d1 = 0 1

d2 = 0 2 P3 Po

x 100 shares

5.10 4636.36

P3 = 46,36 d3 = 0 d4=5,10 3 Infinity 46.36 3390.07

6.9.- A stock currently pays cash dividends of $4 oer share (Do = $4), and the required rate of return is 12%. What is its market value in the following cases? a.- There is o future growth in dividends. b.- Dividends grow at 8% per year to infinity. c.- Dividends grow at 5% for each of 2 years; and there is no growth expected after D2. d.- Growth will be 10% for each of 2 years (n = 2) after which growth will be 5% per year until infinity. e.- Recalculate d) where growth is now 7% for 5 years ( n = 5 ), after which growth will be 3% per year until infinity. f.- Finally, now suppose the required rate of return is 15% and Do = $2.50. Recalculate a), b), d) and e) with these new values.

Do = Ks =

Data (Section A) 4 12%

Do = g1 = Ks =

Data (Section B) 4 8% 12%

Do = g1 = Ks =

Data (Section C) 4 5% 12% D1 = Do(1+g1)^1 D1 = 4(1+0,05)^1 D1 = 4,20

Po = D1 / Ks Po = 4 / 0,12 Po = $33,33

Po

33.33

Po = D1 / (Ks-g) Po = 4 / (0,12-0,08) Po = $100

Po

100

d1 1

d2 2

d1 d2 P2 Po

4.20 4.41 36.75 36.57

P2 Po=? t=0

D2 = Do(1+g1)^2 D2 = 4(1+0,05)^2 D2 = 4,41

P2 = D1 / Ks P2 = d2 / Ks P2 = 4,41 / 0,12 P2 = 36,75

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 4,20/(1,12)^1 + 4,41/(1,12)^2 + 36,75/(1,12)^2 Po = 3,75 + 3,52 + 29,30 R//. Po = $36,57

No-Growth

Do = g1 = g2 = Ks =

Data (Section D) 4 10% 5% 12% D1 = Do(1+g1)^1 D1 = 4(1+0,10)^1 D1 = 4,40

P2 Po=? t=0

D2 = Do(1+g1)^2 D2 = 4(1+0,10)^2 D2 = 4,84

D3 = D2(1+g2)^1 D3 = 4,84(1+0,05)^1 D3 = 5,08

P2 = D3 / (Ks-g2) P2 = 5,08 / (0,12-0,05) P2 = $72,60

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 4,40/(1,12)^1 + 4,84/(1,12)^2 + 72,60/(1,12)^2 Po = 3,93 + 3,86 + 57,88 R//. Po = $65,67

d1 1

d2 2

d1 d2 d3 P2 Po

4.40 4.84 5.08 72.60 65.67

d3

Do = g1 = g2 = Ks =

Data (Section E) 4 7% 3% 12%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

7% 3% D1 = Do(1+g1)^1 D1 = 4(1+0,07)^1 D1 = 4,28

D2 = Do(1+g1)^2 D2 = 4(1+0,07)^2 D2 = 4,58

D3 = Do(1+g1)^3 D1 = 4(1+0,07)^3 D3 = 4,90

D4 = Do(1+g1)^4 D4 = 4(1+0,07)^4 D4 = 5,24

D5 = Do(1+g1)^5 D5 = 4(1+0,07)^5 D5 = 5,61

D6 = D5(1+g2)^1 D6 = 5,61(1+0,03)^1 D6 = 5,78

d1 d2 d3 d4 d5 d6 P5 Po

4.28 4.58 4.90 5.24 5.61 5.78 64.21 53.90

P5 = D6 / (Ks-g2) P5 = 5,78 / (0,12-0,03) P5 = $64,21

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 4,28/(1,12)^1 + 4,58/(1,12)^2 + 4,90/(1,12)^3 + 5,24/(1,12)^4 + 5,61/(1,12)^5 + 64,21/(1,12)^5 Po = 3,82 + 3,65 + 3,49 + 3,33 + 3,18 + 36,43 R//. Po = $53,90

Do = Ks =

Data (Section F) 2.50 15%

Po = D1 / Ks Po = 2,50 / 0,15 Po = $16,67

Po

16.67

Do = g1 = Ks =

Data (Section F) 2.50 8% 15%

Do = g1 = g2 = Ks =

Data (Section F) 2.50 10% 5% 15% D1 = Do(1+g1)^1 D1 = 2,50(1+0,10)^1 D1 = 2,75

Po = D1 / (Ks-g) Po = 2,50 / (0,15-0,08) Po = $36

Po

36

d1 1

d2 2

d1 d2 d3 P2 Po

2.75 3.03 3.18 31.76 28.70

P2 Po=? t=0

D2 = Do(1+g1)^2 D2 = 2,50(1+0,10)^2 D2 = 3,03

D3 = D2(1+g2)^1 D3 = 3,03(1+0,05)^1 D3 = 3,18

P2 = D3 / (Ks-g2) P2 = 5,08 / (0,15-0,05) P2 = $31,76

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 2,75/(1,15)^1 + 3,03/(1,15)^2 + 31,76/(1,15)^2 Po = 2,39 + 2,29 + 24,02 R//. Po = $28,70

d3

Do = g1 = g2 = Ks =

Data (Section F) 2.50 7% 3% 15%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

7% 3% D1 = Do(1+g1)^1 D1 = 2,50(1+0,07)^1 D1 = 2,68

D2 = Do(1+g1)^2 D2 = 2,50(1+0,07)^2 D2 = 2,86

D3 = Do(1+g1)^3 D3 = 2,50(1+0,07)^3 D3 = 3,06

D4 = Do(1+g1)^4 D4 = 2,50(1+0,07)^4 D4 = 3,28

D5 = Do(1+g1)^5 D5 = 2,50(1+0,07)^5 D5 = 3,51

D6 = D5(1+g2)^1 D6 = 3,51(1+0,03)^1 D6 = 3,61

d1 d2 d3 d4 d5 d6 P5 Po

2.68 2.86 3.06 3.28 3.51 3.61 30.10 25.10

P5 = D6 / (Ks-g2) P5 = 3,61 / (0,15-0,03) P5 = $30,10

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) Po = 2,68/(1,15)^1 + 2,86/(1,15)^2 + 3,06/(1,15)^3 + 3,28/(1,15)^4 + 3,51/(1,15)^5 + 30,10/(1,15)^5 Po = 2,33 + 2,16 + 2,01 + 1,88 + 1,75 + 14,97 R//. Po = $25,10

BRUNO RAMOS BARCO

8B BANKING MANAGEMENT - TASK N°4

Share Google Microsoft Petrobras Exxon Mobil Budweiser

MKT Price 250 100 50 1000 10

Current Dividend 40 20 15 150 2

Years 1,2,3 Growth 1 20% 10% 25% 12% 10%

Years 4,5 Growth 2 25% 8% 20% 8% 15%

6 to infinity Growth 3 10% infinity 5% infinity 10% infinity 6% infinity 20% infinity

Ks 30% 15% 20% 10% 15%

1.- According to the information valuate all the shares with the 3 different stages, include current market prices with infinity valuations and with no growth. 2.- Two years later J.P.Morgan Investment Bank of New York wants to buy the Portfolio with the following prices: Share Google Microsoft Petrobras Exxon Mobil Budweiser

MKT Price 450 200 150 1450 18

Data (Google - Infinity) Do = 40 g1 = 20% g2 = 25% g3 = 10% Ks = 30%

Would you recommend to accept the offering, why?

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

Dividends 48.00 57.60 69.12 86.40 108.00 118.80 594.00

PV 36.92 34.08 31.46 30.25 29.09 159.98

Po

321.79

d5 5

d6

20% 25%

D1 = Do(1+g1)^1 D1 = 40(1+0,20)^1 D1 = 48

D2 = Do(1+g1)^2 D2 = 40(1+0,20)^2 D2 = 57.60

D3 = Do(1+g1)^3 D3 = 40(1+0,20)^3 D3 = 69.12

D4 = D3(1+g2)^1 D4 = 69.12(1+0,25)^1 D4 = 86.40

D5 = D3(1+g2)^2 D5 = 69.12(1+0,25)^2 D5 = 108

D6 = D5(1+g3)^1 D6 = 108(1+0,10)^1 D6 = 118.80

P5 = D6/(Ks-g3) P5 = 594

Years d1 d2 d3 d4 d5 d6 P5

10%

Data (Google - No Growth) Do = 40 g1 = 20% g2 = 25% Ks = 30%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

Dividends 48.00 57.60 69.12 86.40 108.00 360.00

PV 36.92 34.08 31.46 30.25 29.09 96.96

Po

258.76

d5 5

20% 25% D1 = Do(1+g1)^1 D1 = 40(1+0,20)^1 D1 = 48

D2 = Do(1+g1)^2 D2 = 40(1+0,20)^2 D2 = 57.60

D3 = Do(1+g1)^3 D3 = 40(1+0,20)^3 D3 = 69.12

D4 = D3(1+g2)^1 D4 = 69.12(1+0,25)^1 D4 = 86.40

D5 = D3(1+g2)^2 D5 = 69.12(1+0,25)^2 D5 = 108

P5 = d5 / Ks P5 = 108 / 0,30 P5 = 360

New Data (Google - No Growth) N= 2 D1 = 48.00 D2 = 57.60 P2 = 450 Po = 258.76

Years d1 d2 d3 d4 d5 P5

P2 Po=258,76 t=0

Valores TIR

-258.76 49.64%

d1 1

d2 2

48.00 507.60 Yes, because TIR (49,64%) is more than K (30%)

No-Growth

Data (Microsoft - Infinity) Do = 20 g1 = 10% g2 = 8% g3 = 5% Ks = 15%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

10% 8% 5%

D1 = Do(1+g1)^1 D1 = 20(1+0,10)^1 D1 = 22

D2 = Do(1+g1)^2 D2 = 20(1+0,10)^2 D2 = 24,20

D3 = Do(1+g1)^3 D3 = 20(1+0,10)^3 D3 = 26,62

D4 = D3(1+g2)^1 D4 = 26,62(1+0,08)^1 D4 = 28,75

D5 = D3(1+g2)^2 D5 = 26,62(1+0,08)^2 D5 = 31,05

D6 = D5(1+g3)^1 D6 = 31,05(1+0,05)^1 D6 = 32,60

Years d1 d2 d3 d4 d5 d6 P5

P5 = D6 / (Ks-g3) P5 = 32,60 / (0,15-0,05) P5 = 326,02

Dividends 22.00 24.20 26.62 28.75 31.05 32.60 326.02

162.09

Total

248.90

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $248,90

New Data (Microsoft - Infinity) N= 2 D1 = 22.00 D2 = 24.20 P2 = 200 Po = 248.90

P2 Po=248,90 t=0

Valores TIR

-248.90 -0.57%

d1 1

d2 2

22.00 224.20 No, because TIR (-0,57%) is less than K (15%)

PV 19.13 18.30 17.50 16.44 15.44

Data (Microsoft - No Growth) Do = 20 g1 = 10% g2 = 8% Ks = 15%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

10% 8% D1 = Do(1+g1)^1 D1 = 20(1+0,10)^1 D1 = 22

D2 = Do(1+g1)^2 D2 = 20(1+0,10)^2 D2 = 24,20

D3 = Do(1+g1)^3 D3 = 20(1+0,10)^3 D3 = 26,62

D4 = D3(1+g2)^1 D4 = 26,62(1+0,08)^1 D4 = 28,75

D5 = D3(1+g2)^2 D5 = 26,62(1+0,08)^2 D5 = 31,05

P5 = d5 / Ks P5 = 31,05 / 0,15 P5 = 207

Years d1 d2 d3 d4 d5 P5

Dividends 22.00 24.20 26.62 28.75 31.05 207.00

PV 19.13 18.30 17.50 16.44 15.44 102.91

Total

189.72

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $189,72

New Data (Microsoft - No Growth) N= 2 D1 = 22.00 D2 = 24.20 P2 = 200 Po = 189.72

P2 Po=189,72 t=0

Valores TIR

-189.72 14.66%

d1 1

d2 2

22.00 224.20 No, because TIR (14,66%) is less than K (15%)

No-Growth

Data (Petrobras - Infinity) Do = 15 g1 = 25% g2 = 20% g3 = 10% Ks = 20%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

25% 20% 10%

D1 = Do(1+g1)^1 D1 = 15(1+0,25)^1 D1 = 18,75

D2 = Do(1+g1)^2 D2 = 15(1+0,25)^2 D2 = 23,44

D3 = Do(1+g1)^3 D3 = 15(1+0,25)^3 D3 = 29,30

D4 = D3(1+g2)^1 D4 = 29,30(1+0,20)^1 D4 = 35,16

D5 = D3(1+g2)^2 D5 = 29,30(1+0,20)^2 D5 = 42,19

D6 = D5(1+g3)^1 D6 = 42,19(1+0,10)^1 D6 = 46,41

Years d1 d2 d3 d4 d5 d6 P5

P5 = D6 / (Ks-g3) P5 = 46,41 / (0,20-0,10) P5 = 464,06

Dividends 18.75 23.44 29.30 35.16 42.19 46.41 464.06

PV 15.63 16.28 16.95 16.95 16.95 186.50

Total

269.26

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $269,26

New Data (Petrobras - Infinity) N= 2 D1 = 18.75 D2 = 23.44 P2 = 150 Po = 269.26

P2 Po=269,26 t=0

Valores TIR

-269.26 -16.19%

d1 1

d2 2

18.75 173.44 No, because TIR (-16,19%) is less than K (20%)

Data (Petrobras - No Growth) Do = 15 g1 = 25% g2 = 20% Ks = 20%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

25% 20% D1 = Do(1+g1)^1 D1 = 15(1+0,25)^1 D1 = 18,75

D2 = Do(1+g1)^2 D2 = 15(1+0,25)^2 D2 = 23,44

D3 = Do(1+g1)^3 D3 = 15(1+0,25)^3 D3 = 29,30

D4 = D3(1+g2)^1 D4 = 29,30(1+0,20)^1 D4 = 35,16

D5 = D3(1+g2)^2 D5 = 29,30(1+0,20)^2 D5 = 42,19

P5 = d5 / Ks P5 = 42,19 / 0,20 P5 = 210,94

Years d1 d2 d3 d4 d5 P5

Dividends 18.75 23.44 29.30 35.16 42.19 210.94

PV 15.63 16.28 16.95 16.95 16.95 84.77

Total

167.53

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $167,53

New Data (Petrobras - No Growth) N= 2 D1 = 18.75 D2 = 23.44 P2 = 150 Po = 167.53

P2 Po=167,53 t=0

Valores TIR

-167.53 7.50%

d1 1

d2 2

18.75 173.44 No, because TIR (7,50%) is less than K (20%)

No-Growth

Data (Exxon - Infinity) Do = 150 g1 = 12% g2 = 8% g3 = 6% Ks = 10%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

12% 8% 6%

D1 = Do(1+g1)^1 D1 = 150(1+0,12)^1 D1 = 168

D2 = Do(1+g1)^2 D2 = 150(1+0,12)^2 D2 = 188,16

D3 = Do(1+g1)^3 D3 = 150(1+0,12)^3 D3 = 210,74

D4 = D3(1+g2)^1 D4 = 210,74(1+0,08)^1 D4 = 227,60

D5 = D3(1+g2)^2 D5 = 210,74(1+0,08)^2 D5 = 245,81

D6 = D5(1+g3)^1 D6 = 245,81(1+0,06)^1 D6 = 260,55

Years d1 d2 d3 d4 d5 d6 P5

P5 = D6 / (Ks-g3) P5 = 260,55 / (0,10-0,06) P5 = 6513,86

Dividends 168.00 188.16 210.74 227.60 245.81 260.55 6513.86

PV 152.73 155.50 158.33 155.45 152.63 4044.60

Total

4819.24

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $4819,24

New Data (Exxon - Infinity) N= 2 D1 = 168.00 D2 = 188.16 P2 = 1450 Po = 4819.24

P2 Po=4819,24 t=0

Valores TIR

-4819.24 -156.59%

d1 1

d2 2

168.00 1638.16 No, because TIR (-39,33%) is less than K (10%)

Data (Exxon - No Growth) Do = 150 g1 = 12% g2 = 8% Ks = 10%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

12% 8% D1 = Do(1+g1)^1 D1 = 150(1+0,12)^1 D1 = 168

D2 = Do(1+g1)^2 D2 = 150(1+0,12)^2 D2 = 188,16

D3 = Do(1+g1)^3 D3 = 150(1+0,12)^3 D3 = 210,74

D4 = D3(1+g2)^1 D4 = 210,74(1+0,08)^1 D4 = 227,60

D5 = D3(1+g2)^2 D5 = 210,74(1+0,08)^2 D5 = 245,81

P5 = d5 / Ks P5 = 245,81 / 0,10 P5 = 2458,06

Years d1 d2 d3 d4 d5 P5

Dividends 168.00 188.16 210.74 227.60 245.81 2458.06

PV 152.73 155.50 158.33 155.45 152.63 1526.26

Total

2300.91

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $2300,91

New Data (Exxon - No Growth) N= 2 D1 = 168.00 D2 = 188.16 P2 = 1450 Po = 2300.91

P2 Po=2300,91 t=0

Valores TIR

-2300.91 -11.89%

d1 1

d2 2

168.00 1638.16 No, because TIR (-11,89%) is less than K (10%)

No-Growth

Data (Budweiser - Infinity) Do = 2 g1 = 10% g2 = 15% g3 = 20% Ks = 15%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

d6

10% 15% 20%

D1 = Do(1+g1)^1 D1 = 2(1+0,10)^1 D1 = 2,20

D2 = Do(1+g1)^2 D2 = 2(1+0,10)^2 D2 = 2,42

D3 = Do(1+g1)^3 D3 = 2(1+0,10)^3 D3 = 2,66

D4 = D3(1+g2)^1 D4 = 2,66(1+0,15)^1 D4 = 3,06

D5 = D3(1+g2)^2 D5 = 2,66(1+0,15)^2 D5 = 3,52

D6 = D5(1+g3)^1 D6 = 3,52(1+0,20)^1 D6 = 4,22

Years d1 d2 d3 d4 d5 d6 P5

P5 = D6 / (Ks-g3) P5 = 4,22 / (0,15-0,20) P5 = -84,49

Dividends 2.20 2.42 2.66 3.06 3.52 4.22 -84.49

PV 1.91 1.83 1.75 1.75 1.75 -42.01

Total

-33.01

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = -$33,01

New Data (Budweiser - Infinity) N= 2 D1 = 2.20 D2 = 2.42 P2 = 18 Po = -33.01

P2 Po=-33,01 t=0

Valores TIR

-33.01 -17.95%

d1 1

d2 2

2.20 20.42 No, because TIR (-17,95%) is less than K (15%)

Data (Budweiser - No Growth) Do = 2 g1 = 10% g2 = 15% Ks = 15%

P5 Po=? t=0

d1 1

d2 2

d3 3

d4 4

d5 5

10% 15% D1 = Do(1+g1)^1 D1 = 2(1+0,10)^1 D1 = 2,20

D2 = Do(1+g1)^2 D2 = 2(1+0,10)^2 D2 = 2,42

D3 = Do(1+g1)^3 D3 = 2(1+0,10)^3 D3 = 2,66

D4 = D3(1+g2)^1 D4 = 2,66(1+0,15)^1 D4 = 3,06

D5 = D3(1+g2)^2 D5 = 2,66(1+0,15)^2 D5 = 3,52

P5 = d5 / Ks P5 = 2,66 / 0,15 P5 = 2458,06

Years d1 d2 d3 d4 d5 P5

Dividends 2.20 2.42 2.66 3.06 3.52 23.47

PV 1.91 1.83 1.75 1.75 1.75 11.67

Total

20.66

Po = (€ Dt / (1+Ks)^t) + (Pn / (1+Ks)^n) R//. Po = $20,66

New Data (Budweiser - No Growth) N= 2 D1 = 2.20 D2 = 2.42 P2 = 18 Po = 20.66

P2 Po=20,66 t=0

Valores TIR

-20.66 4.88%

d1 1

d2 2

2.20 20.42 No, because TIR (4,88%) is less than K (15%)

No-Growth

Using the following financial information taken from the BVG, analyze it: Security Amazonas Bond GMac Bond Holcim Shares Bolivariano Shares

Price 92% 95% 30 10

FV 100000 100000

Coupon / Dividend 4% semiannually 1,5% quarterly 10% 5%

N 5 years 7 years

Yield ? ? 15% 12%

g1

g2

12% 15%

10% 5%

P3 95% 98% 42 18

g1 = t1, t2, t3 g2 = infinity Valuate the securities according the financial information: a) An investor wants to invest $100000, which of the options are the best for him?, why? b) Assume 3 years after the investor bought all, another bank offers different prices (P3), would you recommend to buy, why?

FV = PV = CR = N= COUPON = YTM =

Amazonas Bond (1st Part) 100000 92000 4% 10

Semi Periods

4000 5.04%

Amazonas Bond (2nd Part) FV = 95000 PV = 92000 CR = 4% Semi N= 6 Periods COUPON = YTC =

4000 4.83%

No, because YTC (4,83%) is less than YTM (5,04%)

FV = PV = CR = N= COUPON = YTM =

GMac Bond (1st Part) 100000 95000 1.50% 28 1500 1.73%

Quarter Periods

GMac Bond (2nd Part) FV = 98000 PV = 95000 CR = 1.50% Semi N= 12 Periods COUPON = YTC =

1500 1.82%

Yes, because YTC (1,82%) is more than YTM (1,73%) Holcim Shares (1st Part) Do = 3 g1 = 12% g2 = 10% Ks = 15%

P3 Po=? t=0

d1 1

d2 2

d3 3

d4

12% D1 = Do(1+g1)^1 D1 = 3(1+0,12)^1 D1 = 3,36

D2 = Do(1+g1)^2 D2 = 3(1+0,12)^2 D2 = 3,76

D4 = D3(1+g2)^1 D1 = 4,21(1+0,10)^1 D4 = 4,64

D3 = Do(1+g1)^3 D3 = 3(1+0,12)^3 D3 = 4,21

10%

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 92,73

Po = 69,51

Dividends 3.36 3.76 4.21 4.64 92.73

PV 2.92 2.85 2.77 60.97

Total Holcim Shares (2nd Part) N= 3 D1 = 3.36 D2 = 3.76 D3 = 4.21 P3 = 42.00 Po = 69.51

P3 Po=69,51 t=0

Valores TIR

-69.51 -8.97%

d1 1

d2 2

d3 3

3.36

3.76

46.21

No, because TIR (-8,97%) is less than Ks (15%)

69.51

Bolivariano Shares (1st Part) Do = 0.5 g1 = 15% g2 = 5% Ks = 12%

P3 Po=? t=0

d1 1

d2 2

d3 3

d4

15% D1 = Do(1+g1)^1 D1 = 0,5(1+0,15)^1 D1 = 0,58

D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 0,5(1+0,15)^2 D3 = 0,5(1+0,15)^3 D2 = 0,66 D3 = 0,76

D4 = D3(1+g2)^1 D1 = 0,76(1+0,05)^1 D4 = 0,80

5%

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 11,41

Po = 9,70

Dividends 0.58 0.66 0.76 0.80 11.41

PV 0.51 0.53 0.54 8.12

Total Bolivariano Shares (2nd Part) N= 3 D1 = 0.58 D2 = 0.66 D3 = 0.76 P3 = 18.00 Po = 9.70

P3 Po=9,70 t=0

Valores TIR

-9.70 28.45%

d1 1

d2 2

d3 3

0.58

0.66

18.76

Yes, because TIR (28,45%) is more than Ks (12%)

9.70

1.- In The Bolsa de Valores de Guayaquil there is the following financial information available: Security Global 2015 Bond CFN - Bond Holcim Shares Holcim Shares Tekal Shares Tekal Shares

Po 93.77% 87.44% 66.50 36.13 316.76 255.14

FV 100000 10000

Coupon / Dividend / Do 4,5% semiannually 2% quarterly $3 $3 $40 $40

N 10 years 4 years

Yield 10% 12% 10% 10% 20% 20%

g1

g2

7% 7% 10% 10%

5% 5% 5% 5% g1 = 1,2,3 years g2 = infinity

Analyze the Bonds and Shares and valuate the current market Prices today. In Shares consider g2 (growth rate of 2nd stage) a) % to infinity and b) without growing Assume you bought the bonds and shares at the current market Prices calculated, and 3 years later an important Investment Bank offers different Prices (P3 column) which of them would you accept, Why?

FV = PV = CR = N=

Global 2015 Bond (1st Part) 100000 ? 4.50% 20

COUPON = Kb =

4500 5.00%

PV =

-93,768.89

Semi Periods

Global 2015 Bond (2nd Part) FV = 99500 PV = -93,768.89 CR = 4.50% N= 6 COUPON = YTC =

Semi

Yes, because YTC (5,68%) is higher than Kb (5,00%)

4500 5.68%

CFN Bond (1st Part) 10000 ? 2.00% 16

FV = PV = CR = N= COUPON = Kb =

200 3.00%

PV =

-8,743.89

CFN Bond (2nd Part) 9500 -8,743.89 2.00% 12

Quarterly Periods

FV = PV = CR = N=

Quarterly

COUPON = YTC =

200 2.90%

Dividends 3.21 3.43 3.68 3.86 77.18

PV 2.92 2.84 2.76 57.98

Total

66.50

3.43

33.68

No, because YTC (2,90%) is lower than Kb (3,00%)

Do = g1 = g2 = Ks =

Holcim Shares (Infinity) 3 7% 5% 10%

D1 = Do(1+g1)^1 D1 = 3(1+0,07)^1 D1 = 3,21

D2 = Do(1+g1)^2 D2 = 3(1+0,07)^2 D2 = 3,43

D4 = D3(1+g2)^1 D4 = 3,68(1+0,05)^1 D4 = 3,86

D3 = Do(1+g1)^3 D3 = 3(1+0,07)^3 D3 = 3,68

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 77,18

Po = 66,50 Valores TIR

-66.50 -16.45%

3.21

No, because TIR (-16,45%) is lower than Ks (10%)

Do = g1 = Ks =

Holcim Shares (No Growth) 3 7% 10%

D1 = Do(1+g1)^1 D1 = 3(1+0,07)^1 D1 = 3,21

D2 = Do(1+g1)^2 D2 = 3(1+0,07)^2 D2 = 3,43

D3 = Do(1+g1)^3 D3 = 3(1+0,07)^3 D3 = 3,68

Years d1 d2 d3 P3

P3 = D3 / Ks P3 = 36,75

Dividends 3.21 3.43 3.68 36.75

PV 2.92 2.84 2.76 27.61

Total

36.13

3.43

33.68

Po = 36,13 Valores TIR

-36.13 4.07%

3.21

No, because TIR (4,07%) is lower than Ks (10%)

Do = g1 = g2 = Ks =

Tekal Shares (Infinity) 40 10% 5% 20%

D1 = Do(1+g1)^1 D1 = 40(1+0,10)^1 D1 = 44

D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 40(1+0,10)^2 D3 = 40(1+0,10)^3 D2 = 48,40 D3 = 53,24

D4 = D3(1+g2)^1 D4 = 53,24(1+0,05)^1 D4 = 55,90

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 372,68

Dividends 44.00 48.40 53.24 55.90 372.68

PV 36.67 33.61 30.81 215.67

Total

316.76

48.40

903.24

Po = 316,76 Valores TIR

-316.76 50.29%

44.00

Yes, because TIR (50,29%) is higher than Ks (20%)

Do = g1 = Ks =

Tekal Shares (No Growth) 40 10% 20%

D1 = Do(1+g1)^1 D1 = 40(1+0,10)^1 D1 = 44

D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 40(1+0,10)^2 D3 = 40(1+0,10)^3 D2 = 48,40 D3 = 53,24

Years d1 d2 d3 P3

P3 = D3 / Ks P3 = 266,20

Dividends 44.00 48.40 53.24 266.20

PV 36.67 33.61 30.81 154.05

Total

255.14

48.40

903.24

Po = 255,14 Valores TIR

-255.14 62.68%

44.00

Yes, because TIR (62,68%) is higher than Ks (20%)

2.- In the New York Stock Exchange today, in Bloomberg, there is the following financial information available: Security GM - Bond Boeing - Shares

Po 88.50% 100

FV 100000

Coupon / Dividend / Do 3% quarterly 15%

N 4 years

Yield 15.94% 15%

g1

g2

10%

5% g1 = 1,2,3 years g2 = infinity

An important client of Chase Manhattan bank wants to invest $100000, which of the options in the table could be the best alternative, why? Assume you bought the bonds and shares at the current market Prices, and 2 years later an important investment Bank offers different Prices (P2 column) which of them would you accept, why?

FV = PV = CR = N= COUPON = YTM =

GM - Bond (1st Part) 100000 88500 3% 16 3000 3.99%

GM - Bond (2nd Part) 95000 88500 3% 8

Quarterly Periods

FV = PV = CR = N=

Quarterly

COUPON = YTC =

3000 4.18%

Yes, because YTC (4,18%) is higher than YTM (3,99%) The best alternative is GM - Bond because it offers a better yield (15.94%) than Boeing - Shares (15%)

Do = g1 = g2 = Ks = D1 = Do(1+g1)^1 D1 = 15(1+0,10)^1 D1 = 16,50

Boeing - Shares 15 10% 5% 15% D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 15(1+0,10)^2 D3 = 15(1+0,10)^3 D2 = 18,15 D3 = 19,97

D4 = D3(1+g2)^1 D4 = 19,97(1+0,05)^1 D4 = 55,90

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 209,63

Dividends 16.50 18.15 19.97 20.96 209.63

137.84

Total

179.04

Po = 179,04 Valores TIR

-179.04 1.63%

16.50

No, because TIR (1,63%) is lower than Ks (15%)

168.15

PV 14.35 13.72 13.13

P3 99.5% 95% $30 $30 $850 $850 g1 = 1,2,3 years g2 = infinity

15 Bond (2nd Part)

Semi Periods

Semi

Sell / Not Sell Sell Not Sell Not Sell Not Sell Sell Sell

Bond (2nd Part)

Quarterly Periods

Quarterly

P2 95% $150 g1 = 1,2,3 years g2 = infinity

Bond (2nd Part)

Quarterly Periods

Quarterly

oeing - Shares (15%)

Sell / Not Sell Sell Not Sell

1.- There is the following financial information available: Security Bond N° 1 Bond N° 2 Share N° 1 Share N° 1 Share N° 2 Share N° 2

Po 113.80% 96.67% 36.21 28.52 368.80 256.58

FV 100000 100000

Coupon / Dividend / Do 6% semiannually 2% quarterly $3 $3 $30 $30

N 12 years 4 years

Yield 10% 9% 12% 12% 14% 14%

g1

g2

5% 5% 7% 7%

3% 3% 5% 5% g1 = 1,2,3 years g2 = infinity

Analyze the Bonds and Shares and valuate the current market Prices today. In Shares consider g2 (growth rate of 2nd stage) a) % to infinity and b) without growing Assume you bought the bonds and shares at the current market Prices calculated, and 3 years later an important Investment Bank offers different Prices (P3 column) which of them would you accept, Why?

FV = PV = CR = N=

Bond N° 1 (1st Part) 100000 ? 6.00% 24

COUPON = Kb =

6000 5.00%

PV =

-113,798.64

Bond N° 1 (2nd Part) 97500 -113,798.64 6.00% 6

Semi Periods

FV = PV = CR = N=

Semi

COUPON = YTC =

No, because YTC (3,06%) is lower than Kb (5,00%)

6000 3.06%

FV = PV = CR = N=

Bond N° 2 (1st Part) 100000 ? 2.00% 16

COUPON = Kb =

2000 2.25%

PV =

-96,671.84

Bond N° 2 (2nd Part) 99000 -96,671.84 2.00% 12

Quarterly Periods

FV = PV = CR = N=

Quarterly

COUPON = YTC =

2000 2.25%

Dividends 3.15 3.31 3.47 3.58 39.75

PV 2.81 2.64 2.47 28.29

Total

36.21

3.31

33.47

No, because YTC (2,25%) is equal than Kb (2,25%)

Do = g1 = g2 = Ks = D1 = Do(1+g1)^1 D1 = 3(1+0,05)^1 D1 = 3,15

Share N° 1 (Infinity) 3 5% 3% 12% D2 = Do(1+g1)^2 D2 = 3(1+0,05)^2 D2 = 3,31

D4 = D3(1+g2)^1 D4 = 3,47(1+0,03)^1 D4 = 3,58

D3 = Do(1+g1)^3 D3 = 3(1+0,05)^3 D3 = 3,47

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 39,75

Po = 36,21 Valores TIR

-36.21 3.62%

3.15

No, because TIR (3,62%) is lower than Ks (12%)

Do = g1 = Ks =

Share N° 1 (No Growth) 3 5% 12%

D1 = Do(1+g1)^1 D1 = 3(1+0,05)^1 D1 = 3,15

D2 = Do(1+g1)^2 D2 = 3(1+0,05)^2 D2 = 3,31

D3 = Do(1+g1)^3 D3 = 3(1+0,05)^3 D3 = 3,47

Years d1 d2 d3 P3

P3 = D3 / Ks P3 = 28,94

Dividends 3.15 3.31 3.47 28.94

PV 2.81 2.64 2.47 20.60

Total

28.52

3.31

33.47

Po = 28,52 Valores TIR

-28.52 13.08%

3.15

Yes, because TIR (13,08%) is higher than Ks (12%)

Do = g1 = g2 = Ks =

Share N° 2 (Infinity) 30 7% 5% 14%

D1 = Do(1+g1)^1 D1 = 30(1+0,07)^1 D1 = 32,10

D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 30(1+0,07)^2 D3 = 30(1+0,07)^3 D2 = 34,35 D3 = 36,75

D4 = D3(1+g2)^1 D4 = 36,75(1+0,05)^1 D4 = 38,59

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 428,77

Dividends 32.10 34.35 36.75 38.59 428.77

PV 28.16 26.43 24.81 289.40

Total

368.80

34.35

886.75

Po = 368,80 Valores TIR

-368.80 39.30%

32.10

Yes, because TIR (39,30%) is higher than Ks (14%)

Do = g1 = Ks =

Share N° 2 (No Growth) 30 7% 14%

D1 = Do(1+g1)^1 D1 = 30(1+0,07)^1 D1 = 32,10

D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 30(1+0,07)^2 D3 = 30(1+0,07)^3 D2 = 34,35 D3 = 36,75

Years d1 d2 d3 P3

P3 = D3 / Ks P3 = 262,51

Dividends 32.10 34.35 36.75 262.51

PV 28.16 26.43 24.81 177.19

Total

256.58

34.35

886.75

Po = 256,58 Valores TIR

-256.58 58.51%

32.10

Yes, because TIR (58,51%) is higher than Ks (14%)

2.- There is the following financial information available: Security Telefonica - Bond Vodafone - Shares

Po 100% 10

FV 100000

Coupon / Dividend / Do 1% quarterly 4%

N 5 years

Yield 4% 6%

g1

g2

10%

5% g1 = 1,2,3 years g2 = infinity

An important client of Chase Manhattan bank wants to invest $100000, which of the options in the table could be the best alternative, why? Assume you bought the bonds and shares at the current market Prices, and 2 years later an important investment Bank offers different Prices (P2 column) which of them would you accept, why?

FV = PV = CR = N= COUPON = YTM =

Telefonica - Bond (1st Part) 100000 100000 1% 20 1000 1.00%

Telefonica - Bond (2nd Part) FV = 101500 PV = 100000 CR = 1% N= 8

Quarterly Periods

COUPON = YTC =

Quarterly

1000 1.18%

Yes, because YTC (1,18%) is higher than YTM (1%) The best alternative is Vodafone - Shares because it offers a better yield (6%) than Telefonica - Bonds (4%)

Do = g1 = g2 = Ks = D1 = Do(1+g1)^1 D1 = 0,4(1+0,10)^1 D1 = 0,44

Vodafone - Shares 0.4 10% 5% 6% D2 = Do(1+g1)^2 D3 = Do(1+g1)^3 D2 = 0,4(1+0,10)^2 D3 = 0,4(1+0,10)^3 D2 = 0,48 D3 = 0,53

D4 = D3(1+g2)^1 D4 = 0,53(1+0,05)^1 D4 = 0,56

Years d1 d2 d3 d4 P3

P3 = D4/(Ks-g2) P3 = 55,90

Dividends 0.44 0.48 0.53 0.56 55.90

46.94

Total

48.23

Po = 48,23 Valores TIR

-48.23 -156.21%

0.44

No, because TIR (-42,88%) is lower than Ks (6%)

15.48

PV 0.42 0.43 0.45

P3 97.5% 99% $30 $30 $850 $850 g1 = 1,2,3 years g2 = infinity

N° 1 (2nd Part)

Semi Periods

Semi

Sell / Not Sell Not Sell Not Sell Not Sell Sell Sell Sell

N° 2 (2nd Part)

Quarterly Periods

Quarterly

P2 101.50% $15 g1 = 1,2,3 years g2 = infinity

a - Bond (2nd Part)

Quarterly Periods

Quarterly

Telefonica - Bonds (4%)

Sell / Not Sell Sell Not Sell

Related Documents

Money - 1st Term
June 2020 6
1st Term- 2n Bat
November 2019 19
Editorial 1st Term Project
October 2019 22
Lab Manual-1st Term
June 2020 4
1st Term Basic
December 2019 14