Martian Life

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Martian Life as PDF for free.

More details

  • Words: 1,194
  • Pages: 24
The Case for Microbial Life on Mars

Overview 1. Timeline 2. Is life possible on Mars? 3. The Martian Environment 4. Introducing … the Extremophiles 5. Importance

Timeline • 1609 – Galileo • first to telescopically view Mars Galileo

• 1781 – William Herschel (British) • claims that Martian polar caps made of ice • 1784 to British Royal Society: Mars has a considerable but modest atmosphere, so that its inhabitants probably enjoy a situation in many respects similar to our own.

• 1854 – William Whewell

Herschel

• posits that Mars may harbor life

• 1877 – Giovanni Schiaparelli (Italian) • observation of canali

• 1895 – Percival Lowell (American) • claims canals were made by ancient civilization (Mars) W.O.T.W.

• 1897 – H.G. Wells • writes The War of the Worlds

Lowell

Timeline – The Modern Age • 1938 - Orson Welles • Mercury Theater on the Air

• 1965 – Mariner 4 • flyby of Mars reveals atmosphere Welles

• 1976 – Viking 1 • 1976 – Viking 2

Mariner 4

• 1997 – Mars Global Surveyor • 1997 – Mars Pathfinder • 2001 – Odyssey • 2004 – Spirit (Mars Exploration Rover A) • 2004 – Opportunity (Mars Exploration Rover B) • 2006 – Mars Reconnaissance Orbiter • 2008 – Phoenix Mars Lander (Scout Program) • Search for environments suitable for microbial life

Viking Program • Mariner missions (refocus search for life)

• Viking (Lander & Orbiter) • Viking 1 (1976-1982) • Viking 2 (1976-1980) • Biological Experiments • • • • •

Martian soil GC◦MS GEx (Gas Exchange) LR (Labeled Release) PR (Pyrolytic Release)

The Mars Viking Lander

• Orbiter • Surface imaging Viking Orbiter

Viking Program & Martian Life Assumptions about “Martians”

• Photosynthetic – Light & CO2 – Respiration

• Surface – < 5cm depth

• Earth-like

Ciccarelli et al. 2006. Science. 311: 1283

Viking Biological Experiments • Pyrolytic Release Experiment • Production of organics from CO2 • Not reproducible

• Labeled Release Experiment • Rapid release of CO2 in presence of nutrient solution • Followed by a prolonged, slow release • 160°C loss of activity • 40-60°C partial loss of activity • 18°C relatively stable (lost during long term storage)

• Gas Exchange • Soil release of O2 in presence of water • Evolution of CO2 in presence of nutrient solution

• GC◦MS

• Negative for organic compounds • WTF???

• Orbiter • “clear evidence that liquid water flowed on the surface of Mars in the past” (McKay, 1996)

Phoenix Mars Lander • • • •

Search for microbial life “Follow the water” 07/31/08 - Presence of water confirmed Wet Chemistry • • • •

Soil pH 8 to 9 Mg, Na, K, Cl present Carbonate identified (water interactions) Perchlorate also identified

• Detected atmospheric snow

The Martian Environment Mars Ionizing Radiation / hour ~10 REM

Earth negligible

Length of Day

24h 37m

23h 56m

Gravity

0.377g

1.0g

Atmosphere

95% CO2 2.7% N2 0.1% O2

78.1% N2 20.9% O2 0.03% CO2

Pressure

560 Pa

105 Pa

Avg. Surface Temp

-65°C

15°C

Diurnal Temp. Range

-89°C to -31°C

10°C to 20°C

Horneck, G. 2008. Acta Astronautica 63:1015-24

Is Life Feasible on Mars?

Meteorite fragment ALH 84001

Streptococcus

~20-100 nanometers

~600 nanometers

The Extremophiles Organisms that thrive in, and may even require, environmental conditions (physical and/or geochemically extreme) that are detrimental to the majority of life on Earth. Examples: Acidophiles – pH conditions under 3 Alkaliphiles – pH conditions over 9 Halophiles – Salt (NaCl) concentrations over 2M Psychrophiles – Temperatures under 15°C Radioresistant – Ionizing Radiation Thermophiles – Temperatures over 60°C Xerophiles – Arid conditions (desiccation)

The Xerophiles • Greek - xeros (dry) + philos (love) • Low water availability (water activity) • Arid conditions • deserts • ~1/3 of Earth’s surface • includes Antarctica

Deinococcus radiodurans

Cacti (a xerophile)

The Halophiles • Greek – halo (salt) + philos (love) • Domains: Archaea, Bacteria, and Eukarya • 2M salt concentration • Molarity of seawater ~0.5M

• Modes of Action: • Osmoprotectants “compatible solutes” • Potassium influx • Forces water towards proteins

• Dead Sea • Great Salt Lake

Great Salt Lake Halophilic Bloom

The Halophiles (con’t) • Halobacterium salinarum (4 to 5.5M [salt]) • Archaea • Two strains sequenced • NRC-1 • R1

• Halocins • Antimicrobial peptides/proteins

• Astrobiology candidate? • Form a salt crust • ↓ UV sensitivity Halobacterium sp. NRC-1

The Psychrophiles • Greek – psychro (cold) + philos (love) • Obligate (20 °C and lower) • Facultative (growth down to ~ 0 °C)

• Virtually Ubiquitous • • • • •

Alpine & arctic soils Antarctica (-20 °C mean) Deep Ocean Glaciers & snowfields permafrost

Desulfofrigus oceanense

Psychrophiles (con’t) • Modes of Action • Cryoprotectants (antifreeze) • Cellular adaptations (proteins, fatty acids) • Cold sensing Æ gene expression • Cold shock

• Exopolymers • Primarily polysaccharides

• Growth rate

The Alkaliphiles • Alkaline environments – pH > 9 (through 11)

• Mode of Action • Maintain pH of ~8 inside cells (proton pumps)

• Playa lakes, carbonate rich soils • Examples • Geoalkalibacter ferrihydriticus • Bacillus okhensis • Alkalibacterium iburiense

The Alkaliphiles (con’t) • Carbonate environments • Examples • Mono Lake • Octopus Spring (YNP)

“Tufa Towers” at Mono Lake

Wish You Were Here Pink Floyd

Radioresistance Short Term Dosages (Humans) 0-5 REM – Safe 50-100 REM – Anemia 100-200 REM – Nausea & fatigue 300-500 REM – LD50 500-1200 REM – Death in days >10,000 REM – Death in hours

Deinococcus radiodurans Lethal dose (37%) -15,000,000 REM

Radioresistance (con’t) • Other radioresistant bacteria • Thermococcus gammatolerans • Rubrobacter sp. • Chroococcidiopsis sp.

• Modes of Action • Multiple genome copies • Rapid DNA repair systems • Mn accumulation (?)

Rubrobacter

• Why? • Most likely to survive desiccation from arid environments (see Xerophiles)

So … where’s Waldo? • Surface conditions too harsh • Confirmed by Viking and Mars Lander

• “Martian oases” • Sub-surface is best bet • How deep? 50 cm, 1 m, 2 m, deeper? • 1 meter • • • •

dramatic drop (60-97%) in cosmic radiation Presence of liquid water (?) Lower temperature fluctuations (?) Geothermal activity (?)

Why Does It Matter? • Contamination of Mars • “Forward-contamination” • COSPAR • Committee on Space Research • Planetary protection concept • Decontamination of all equipment sent to Mars

• protect any possible Martian life

• Martian microbes? • harmful to human explorers? • brought back to Earth? (panspermia)

Forward Contamination Panspermia and

Forward-Contamination Contamination of other planets with microbes of Earth origin

Panspermia Contamination of Earth with microbes of an extraterrestrial origin

Further Reading •

McKay, C.P. 1997. The Search for Life on Mars. Origins of Life and Evolution of the Biosphere. 27: 263-89.



Horneck, G. 2008. The Microbial Case for Mars and its Implication for Human Expeditions to Mars. Acta Astronautica. 63: 1015-24.



DasSarma, S. 2006. Extreme Halophiles are Models for Astrobiology. Microbe. 1: 120-6.



Klein, H.P., et al. 1976. The Viking Mission Search for Life on Mars. Nature. 262: 24-27.



McKay, D.S., et al. 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science. 273: 924-930 .

Related Documents

Martian Life
November 2019 47
Ps--martian
November 2019 7
Boris-micul Martian
June 2020 5
A Martian Odyssey-doc
August 2019 11