Little Symphony

  • Uploaded by: Nathan Shirley
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Little Symphony as PDF for free.

More details

  • Words: 20,603
  • Pages: 66
Little Symphony   Flute  

q. = 76

          f

2 Oboes

 

2 Clarinets in Bb

Bassoon

Horn in F







   

  

f



   Trumpet in Bb  

 

f

  Timpani    

f q. = 76

Violin I

  



 



Violin II

   

Viola

Double bass



 

        

 

 f          f    



I.



      mp  

  mp

 



      



           mp    



   



 





 



 













  







 





mp





                               



 









    















mf

  

mf

 

   

         

        







        





             

 



 

Nathan Wright Shirley

  

  

mf

     



     



f

 

f

 

 

 

  mp

 

 

 

 

   

    

   

 

f

 

 

 

  mp

 

 

 

 

   

    

   

 

   

Violoncello

 



 

   

2001, by Nathan Shirley - www.NathanShirley.org

2 9

Fl.

  

       

Ob.

Cl.

Bsn

Tpt

Vln I



 

     

       

Vc.



 

 

       

 

     

Vla



   

     

Vln II

Db.

  





      



 

                    



                         









 



 

            











    f  





   





























 

                  







                                                                           



              

  

 

 

 

    

 



 





         



 



pizz.

  

pizz.



  

   pizz.      

          solo arco mf

 

mp

     

    

17

 Fl. 



  





mp

 

 



  



Ob.









        mp

Cl.















Bsn

Hn



 







    



 mp

 

    



 

   

   

 

 











pizz.











pizz. p

p

  p

   

  

tutti



mf

         

  

              

  

  

  

        mp    

3







    

  







   





 



pizz.

 

    



   







Db.



 



Vc.

  

 

 

f



Vla

mp

   



 Vln I  Vln II

    



arco      

 

  

  

  

  

4 24

Fl.

     

Ob.

Bsn



 







Cl.







 

 





      

f

 Hn           mp

  





Timp.

 







 Vln I 

















Vla

  

Vc.

Db.





 

 



   

        

       

 

 

 

            

 

 

    

                              mf                                          mf                                mf                         f                       f

Tpt

Vln II



  

mf

     

 



 



   f p  arco   

   





 



arco

          

       

   

f

arco

      mf             mf           mf



 



   

   

 

     



  

   

 

 

f





   

     

 

 





            

        

  

 

         Fl.  31

 

 

 

           

 

 

 

  

 

 



 



 

   

 

5

mp                               Ob.         mp                                 Cl.                                 Bsn        f            Hn          mp f          Tpt        

      Vln I   

Timp.

Vln II

   

      







   

Vla                 Vc.          Db. 

   



   

     

 

 







         

 



  

 



     



     









































 

   



  





          

 mp 

mp

     

         

       

         



  

  

6

       Fl.            38

Ob.

Cl.

Bsn



 





 



       



 

 



mp

Tpt

Timp.

  



  







   

  





 









      pp









        mp

 



 mp



           f 





  

 





 













































     

      Db. 

   

   

       

   

mp

 

     

f

arco







     





 



  

    f

     

 

     

 

 



 



          



 

Vc.

     

    





Vla





  Vln I   Vln II



 



  

   Hn      

 



       



       

 

 



mp

 

mp

 



   

       

   

 

   

45

 Fl.  

      







 



           









q.=q q=76



mp

Ob.

 

Cl.

           









 









Bsn





Hn

  

 

Tpt





 Vln I   Vln II

Vla

Db.



   

     

arco

mp

f

   

    

 



     mp

    mp 





 









  











q.=q q=76





 





pizz. mp















pizz.















pizz.



pizz.



pizz.



Vc.



     





 

       

       

 

 



 



       mp

pizz.

pizz.

    

mp

 

mp

 

mp

   

7

8

                                                

50

 Fl.   Ob.

Cl.

Bsn







           



  









  









           

pp

f



 

     f

f

  

  

f







mf



  













 Timp. 



     







 Vln I    

Vln II



Vla

f

 



      



  

 



f

            











 

p

mp

        

 

Db.





      



mf

  arco      







arco      







f

f

    

                      p

arco

f

Vc.





pizz.

      





 

Hn



54

Fl.

      

Cl.

     

         

 Vln I 







Vln II









           



   

              





    



   

pp

 

                 pizz.





 

   





  





mf

mf

mp

mf

Vc.







              mf







Db.







pizz.               mf









9





pizz.

     

mf

 

                                  

Vla



mf





Ob.



         

10 58  

 Fl. 



     

   

Cl.







Ob.

              











 

 











 







Tpt







Timp.

 





Hn

Vln I



f

Vla

Vc.





 



        

        



 







 









 









 





 

arco         

                                

Vln II

Db.







          p                     



Bsn

 

     



 

      

























arco                                           mf arco          







 





 



mf

mf





 





arco





62 q = q.

  Fl.  

Cl.

Tpt

Timp.





     f

 

f

 

           

f q = q. q. = 76

Vln I

  



        

f

Vc.

f

Db.

 

     f

 

 

 







 

 

 

 

 

 





 













                          

       



















 

 



























 

 

  





arco

Vla

f

                     f           f  

Ob.

Bsn

 



q. = 76

11

    

  

 

 

 

 

 

f

    

   

 

 





 

  

 

   solo

mf



 

 

 

 

 

 

 

   

 

 

 

 

   

 

       



 



 

 

 

    mp

pizz.



          









  



12

71           Fl.  



mf

Ob.

       





















      

mf

mf

Cl.



        3 3





      3

3

 









mf

Bsn







 Vln I   

Vc.

















      mp



  



tutti

mf solo arco

   

 pizz. 

    



 

    

    

mp

Db.





mf

         



  







 













    



  



 

78



Ob.





 Fl. 



     



           



      

           



  

 



p





   



13

 



mf





Cl.







    3

3

 



mf

Bsn







 Vln I   

Vla



Vc.

Db.







            

tutti pizz.

 

          



mp



  





  















 





   



mp

      



                    mf







      





   





arco       





         

mf

mf

         

  



  

14

  Fl.  85

 

Ob.

mp



Cl.

Bsn

Vla

Vc.

Db.



   



   

   







    



   mp

    





      

   

p







  

  



   

 





        



 



 



      





 



             















  



 

  

mf

                    



  

        





  

mf

 

  



      

   



     

f



  

 





92

Fl.

 







Cl.









 Bsn    Timp.

 



Db.





     mf









      



15

 



         

   

    



  



mf q.= q q=76







                             f



                                





f







                

















 



   

    

 







   











f

Vc.





f



Vla

 





 Vln I 

Vln II

 

 

   q.= q    q=76      

 

     pizz. 

   

 









     

   

 







mf

mf

16 99



 Fl. 

          



        

          



Ob.





       

ff

mf



          





mf

Cl.

Vln I



    







    



mf

       

    

          



  

       

                 









        pizz.                         





Vln II



Vla



 

 

Vc.



 

 

 

   

ff

mf



       f

      arco

Db.

   



f

      arco



f

   pizz.                                   mf

          pizz.                          mf

       f

   

   

   

  Fl.  103

Ob.



Cl.



Bsn







     



  







  













          





 



 

        

     





    



  









      













    











f



     17    



f

  

        



 

    







f



       

          

     

                                                           

Vln II

                                                          

Vla

                                                         

Vc.

Db.



 

Vln I





 Hn  Tpt









  





 



        

   

   

18 107

 Fl. 



Tpt



 







  





 Vln I  

Vln II





 

 

 

     

 

 

   

 

 

     







ff



    

         

 





 

 

 



   







 







 







 



  

Cl.

Hn

      



Ob.

Bsn







 

   













 

 

 

 



   



arco



 

 















 

   



  

 

   

                       

  





Db.



   









 

 







 

f







 



 

 





           

  

  

 

     

 

arco

      

 

 













  





Vc.





 

f

Vla

 







 

 



 

arco







 

f

   

  









111

  Fl.  

q. = 76

 

Ob.



mf



  

Cl.

    



        



mf

Bsn



 

  Vln I   Vln II

Vla

Vc.







                    mp



   







 



  



   

    Db. 

 

     mf

   mf







 



    

  



  



    



p

q. = 76



   

p

          p

19



solo

 

mf



     



            tutti pizz. mp



pizz.



p









pizz. p



  



 

       

solo









mf









pizz. p



  

20 116

Fl.

  



  

                         mp

mf

Ob.

Cl.

Bsn



















   p

  





p solo arco

 

  



  

 



      



   

Vln II

Vla



 

 



 

Vc.

Db.

 



 

     







  

   





 p tutti pizz.











 



  

cresc.





               cresc.













   

  

p





cresc.

mp



 cresc.

       



                  

p

    



tutti pizz.

mf

  

                 cresc.

p



         Vln I 

      



  





















cresc.

 cresc.

 cresc.



120

 Fl. 

Cl.















 

  



  



  



  

  

Bsn

  Hn

  Timp.   Vln I   

Vla

Db.







































 













 

 

   f

  arco 

A tempo

         f        f            f      









f



      rit.        

     







 

Vc.





Tpt

Vln II

  





Ob.

           rit.                      

 

pp



   

ff





ff arco



ff arco

f arco

   

  

 

f



f arco



f





 

  



  

  

 

  

   







 

21

                                         



A tempo



      



  

     

  

      

   



  

    



  

   





          





  

 

            



   



  

         

   

22 126

 Fl.    

Ob.

 

Cl.

Bsn

Hn



 

Vln II

Vla

Vc.











  











    



 





 

 

 

 





 











 

 

 

 



 



  

 



 



 









 

















 

 







 



 

 







 Vln I 

Db.



 

Tpt    Timp.



     

 

  

  





   

     

 

 



        

  



                











 







  

  

    

  









  













 



















   

 













    

         

   

130

 Fl.    

Ob.

 

Cl.

Bsn









 

 Hn  Tpt



   

Vc.

Db.

  

 



     

 

  

  Vln I 

Vla





 

Vln II







  Timp. 



 





 







 

 









 





 

         





 

   

          

 

 















   



 









 





 

      



 









 

          



















   



rit. 

 









 





 

         



           

 





















   





















      





































     

rit.

       

   





   

 pp



23

ff



pp

ff

 pp

ff

pp



ff

pp



ff

pp

ff

  

pp

 



ff

pp

ff

pp

ff

pp

ff

  

ff



ff

pp

pp

24

II.   Flute   2 Oboes

2 Clarinets in Bb

Bassoon

Violin I

























 























 























 













































  

Violin II

q = 76

q = 76

 con sord.                                                     



 



pp

Viola

 

       

con sord.

  

Violoncello

pp

Double bass



sord.   con  pp



   



con sord. pp

 

  



    

 

       



   

 

   



   

     



 

 

    



 

25 141

      Vln I   Fl.

 

Vla





 solo   

pizz.   

senza sord.

p

 

Vc.



mp

  





  



p

   

  



  



3

                 

p



   

   



 



                   

  



3

3

senza sord. pizz.

    

senza sord. pizz.

Db.





 

mp







 



                                          

 147

 Fl.   







Ob.

Cl.

  

 

 Vla 

          

Vc.

Db.

3





   

   

      3

3

  



     

        















      

      

 



      p            arco

  



        

3

mp

     mp

rit.  

 

      

     

rit.     



             3

      

     

26

152

 A tempo Fl.  



 



Ob.

 

  



ppp





mp

  





ppp

Cl.

    

  

ppp

        Vln I   A tempo con sord.

pp

 

Vln II

   



Vla



pp

        

con sord.

Db.



  arco  pp



 

  

   

mp



mp



ppp

mp



 



 









mp

                                                    

ppp

 

ppp

ppp

con sord.

con sord. arco

 



 

mp

  













       senza sord. pizz.



p

mp

                                         

 



 



 



 













158

  Fl.  



Ob.

mf

  Vln I     

Vc.



mp pizz.



  

mp

 163

  Cl.   Bsn    Vln I  Vln II

Vla

Db.



 

   

  











  



 













 







              







 



         



mp

  

 mf





 



f senza sord.











f                               mf              mf



















                                      mf                 arco

                

Vc.



    3 3 3 3 3 3 3                                  mp mp

 Cl.   

Db.



        



27







 



 











             f     arco f                f arco



f

                            

        

  

    

              Fl.   cresc. ff                                           Ob.                  

28

  

168

      

mf

mf

Vln I

  

ff

mf

ff

mf

ff

mf

ff

mf



 



   

f

   

  

ff

div.

  

Vln II

 



    

   

 

      

       

 

      

      



    

   

  

Vla

 

cresc.

      

 



      

 



  

  



       

   

 





 

 

  



  

 



   











cresc.

  

 

  

 

  

 



 

 



 



                                                                           

Vc.



cresc.

ff

Db.

 

                                               

Cl.

Bsn

 

   

   

   

 

   

   

   

cresc.

 

cresc.

   

  



 

              





174

Fl.

 



  

 

Ob.

       



 

Cl.



 

 

 







 Vln I 

Vln II



   

      

  

   

        

        unis.

3

  



 



 





    

ff





            

3

f

Bsn



f





29

3





  



  

  3



  

ff

                  

  





        3





3







  

ff













  

ff

Vla

 



 





 

                   Vc.                     Db.   f

















     

f











30 180



 Fl. 











 

   Vln I 

  

 

 



 

f

Vln II



3



Cl.

Bsn

   

 

Ob.



  

 



   







 3

3

   







     



 

3

  















3

    







        









 



















3

3

   

   3

  

3

         3



    





3

 



ff





  



 



3



  

         3

Vc.

 

  

   





  

   

  









  

  





  

Db.

 

  

  





  

   

  









  

  





  



186

 Fl. 

 

Ob.



Cl.

Bsn













 

  Vln I 



 



Vln II

 

Vc.

Db.



 





 





 

























  



 









 

 

 



  

 

 









      

 

 



 



  





 



 3           

















3





  

  





  



        

           



      

 3         



 

31

3

3







  3

mf

  











3

   



   



                      mp















mp







32 192



 Fl.  Cl.

 

 

3

 Vln I  Vln II

Vla

Db.



  3







 





 



  



  







  



  

  

mf



3

3

    3       3

      

























      









         







  





 con sord.           

pp





 

   

 

   



 

       

                 



 





       

     





 

    

 



con sord.          pp con sord.         

        pp      sord.  con     pp

rit. poco a poco





      







 





Vc.

3

3

con sord.

Vla

  



198

Vln II





pp

Db.



mf



         Vln I 



 





Vc.







   

 



   





         3

 





 



     Horn in F        Timpani  

Flute

  

2 Oboes

2 Clarinets in Bb

q = 54

Bassoon

Trumpet in Bb

Violin I

  

Violin II















































































































 

  

          

          

          



p

p

 

mf





p







  

  

  

         

  

  

 

  

                

mf

            



 pizz.           



            3   



      f                   

q = 54

pizz.



  



mf

Double bass

 



mf

pizz.

Violoncello

       

      f    

mf

Viola

33

III.









 



34 210   

Fl.

 

         

  

   

   f





Ob.





     















                3

3



3

3

3

mf

Cl.

Vln I







 





  

    



3

  

             

mf

3

3

          

  

      



f

             3

  3



3





 



    

  

  



















   







    

  

  



















  

Vc.

 



    

  

  



















 



Db.



























 



Vln II

Vla





pizz. p

216

  Fl.  

       

 



35



3

p 3















mf

Ob.

3 3 3       3                        

        











Cl.

3 3       3                        

        











3

3

3

Bsn



 

Vla

Vc.

Db.





3

           3

3

3

 







  

  



    







  

   

  









mf

p

  Vln I  

Vln II

 



3

3       

         

 

   f 

 

    

          



    

          

     

           

pizz.

p





 

 



 

  

   

  







 



  







  

   

  







 



  









unis. arco  

   f 





36 222

  Ob.     

    Bsn     

Vln I

Vln II

Vla













mf

3         mf

          

         

                                mp

 



        

      

 



        





 

  

 Vc.       





                     

   



                

      



                

    



              mf 3



       



  





 p







230

       



 Fl. 

f

 Bsn  



 

Db.





                                        































  





 

unis. arco



 



  







  

f

unis. arco

    

 

f



Vc.









Vla





mf

 Vln I 

Vln II

                                       

f

                

Ob.

37



 



unis. pizz.





pizz.





mf





mf

































 



 

 









unis. pizz.





mf

   





 



   



   

38

237                       Fl. 



Cl.



 

Vln II

   

 

Vla

  

Vc.



   

 

 Vln I  

Db.



  

 

 

    



 



 

 

     

 mp

 

   



       

mp





mp











 

     

   



        



 

 

 

 

 

 

 

mp

   



3

 

mp

   



   

f

f









 







f

                

Ob.

Bsn





  mp



   

   







    

    

        

  



  

   









  

   

   



             

    







   

 

 

   

 

 

 Cl.      

Bsn





 Vln I 



Vln II



Vla



  

 



          

      

244





 

 



 







 







 













ff

   



      





mf







 





Vc.

Db.





 

 

     

 

 

   

 

 

   

 

 

  





  

 

39







                         



mf



 mf







         





mf

                      

     

   



mf

   



mf





     













 

 

  



  

 

  

40 251

Fl.

   

Cl.

Bsn

Vln I











ff

   

       





mf

3



   



 

Vc.

Db.



       f 



  

 

mf

3



  

        

































       f 















 

  

 

  

  

     

          

      

 

  

  



 

                 



 

  





pizz.

p

  

      

                   



  



  



pizz.

 

  



                 p 

Vla

 

f

    

Vln II

       

p



















259   

 Fl. 

         

   

   f





Ob.



  

  

    













 



p

41



3 3                  3 3



mf

Cl.







 Vln I   

Vln II



Vla

 

Vc.

Db.







 

  

    

  

f

  

3

  

    

mf

3

          

 



              



  

  





divisi da leggii col legno / pizzicato

  

  





divisi da leggii col legno / pizzicato

  

  



      

 divisi da leggii col legno / pizzicato



  





divisi da leggii col legno / pizzicato



p





 

3

3              3









 











 













 













 





























3

42

     

   Fl.   265





    



3   3 3                     

Ob.

3

3                            3

Cl.

Bsn

Vln I



  

Vln II

Vla

Vc.

Db.

 



3

3



 

mf



   



mf































mf

divisi da leggii col legno / pizzicato



                f 



3      





        3

        

 

  

       f 

3

3        mf

      



               

 



p

   

   







       



        

     

 



  

   







      



                 







 3    

  

   







  

   







   







   









arco unis.  

  

       f 







 

mf



43

      Fl.   272

Ob.

Cl.













       









                               f

mf

                                  





Timp.















 















Vln II

Db.



f

 f



unis. arco



f unis. arco



f







                        





 

        





 

 

 

 

 

mf unis. arco

 mf

 

 

unis. pizz.



  

 

 

 



f pizz.



f

   

pizz. f







   

       

Vc.



f

 

                   

Vla

f





         Vln I  



                 f           

                      Bsn                    Hn  Tpt

f

      

  

     







 

     

    



  

    

44

281                       Fl. 



ff

   

                  ff            Bsn   Cl.

 

Tpt

  

 

  

3







  Timp.  Vln I

  

 

 

 

Vln II

 

Vla

  

Vc.

Db.





  

 





  

      



 



 

    

  



  



  



mf

     mf  

  

mf

  

  

mf

  

   

mf

  

  



3

  







     

ff











      







f

3

mf

Hn



     

                 

Ob.



           





   

 



f

  

 

     

   







f

  

f







  

 

 

 



    



  

 



                                                       

  





          

   

288

 Ob.            

Cl.

Bsn

Hn





   

 





 

 

Vla



Vc.





     



                       Vln I  Vln II















   

  

   

    



fff

   



      





fff

 

         

 

         

 







45



                        

                                  



 





 



   

   

   

   

fff





 







f

                                

fff



      

fff

 

Tpt

Db.



 



 

          

      

     

  



  





                          f      

   

f



f

   



f

 

     





 

 

  



  

 

  

46 295

 Fl.  

Ob.



Cl.



Tpt

Vln I

ff

     

  

     

  

 Bsn   Hn



   

  

 



           

  





       





   

        

   



  



         

          

   

    

         

          

   

    





 







 





   



  



ff

 ff

 

ff



ff



       





  

      





 

        

  





 





mp

3



























                                                     pp                  pizz.

Vln II

Vla



Vc.

Db.





   

     

 

 

 

   

 

 

       

     

 

 

 

 

     

 

pp



  







pp





        Fl.   302

Ob.



 Vln I 



rit.

         mf





  



 



  

         mf

rit.



         

Vla











mp

3



 









      



       



                

Vc.

   



                  

Vln II

Db.



 



 

  





p

  





47



p

  



pp

unis. arco

 

   







 

   





arco    

 

 



 



 







unis.

unis. arco



arco



pp





 

unis. pizz.



mp unis. pizz.



mp

 

IV. 48

q = 140                    Flute              mf

        

2 Oboes

 

2 Clarinets in Bb

Bassoon



mf

            



                            mf           

  Horn in F  

mf







































 

  











Timpani

   











  





 

 





 

 







 









 









Violin I

Violin II

Viola

Violoncello

Double bass







f

             mf              mf



 

Trumpet in Bb

q = 140



mf

 















 



































 arco   mf arco







arco       mf

 





      

 

 



         



 

         

 

 

 

317

Fl.

 























  



Ob.

Cl.

Bsn

Hn

Vla

 



 

  



   



Vc.

 



Db.

 







   













  





     

mp









      











                 

mp



   

49

mp

mp





 









 







 





 









  

 



 











 



 









































    

  















  

50 326

 Fl. 











Ob.

Cl.

Bsn

Hn



 

  



     

  







 

Vc.

Db.



 









 





 



    









 



    





p

               mp mf

p



  

       

 



       

  

    

 





  









mf











        glis s 3

3

.





         gliss.  3



        glis s

.



p

  

Vla



mf

solo a punta d' arco

 Vln I 



  



  

 

   







 

       

    

  

       

    

  

p



 

p













  



  

336



 Fl.  Ob.

  

















       



  



3



                   Bsn      . s         gliss.  glis      arco   Vln I       Vla              Vc.                Db.      345          Fl.  f             Ob.             mf     Cl.      

Cl.

 

Bsn

  Vla   Vc.

Db.





 

 



 

 



 

 



 

 

3



mf





f



mf



mf











  





  















                           mf                 mf           



  







 

51

mf

    f











3

    

 

     

    

 



 

   

 

  



   





f



                          

          



  

 







     









52 352

  Fl. 

Ob.







Cl.

 

Bsn

  

 



 





 









       





mf

Db.





   

















 





















                                      



mf

                         Vla            

Vc.

     







   





         



  



     

                











360



 Fl. 



Ob.

          

Cl.

 

Bsn

  

 



 



Vc.

Db.

    







 

    









     



         

   



 

 



 



 

    



      

 



     





    









  



 









     gliss.

        



      

 

         

mf

mp





 













f





mf

3

 











    

  



           



Vla







3

 Tpt   Vln II



53



 

mp

  

 pizz.

   mp pizz.

   mp

 

54

     

367

 Fl.  

Cl.

Bsn

Hn

Timp.

   

 







                mf

 







 









 glis

Vln II



Vla



Vc.







 s.



 





         













  

 

  









   





mf







   



      



      

 







   

 

  

mf tutti

  

  

 .    gliss





 





 





 

 

  ss.    gli







mf

    gliss. 

 

   

 



  

f

      





 Vln I 

Db.



  

 

  





f

mf

mf

arco  

mf



arco



mf







3

     3

  

    

 











374

 Fl.  Ob.

Cl.

 Bsn   Hn

Tpt

Timp.

Vc.



  







  



 





 





 











   





     



mf



































  

     



     

    



















































 pizz.  



















 pizz.  

















  

pizz.   

















 





















 

    

 Db.  







  

55

mf





 Vln I  Vla



   

         



 



mf







  



mf









  





mf

mp

mp

mp

  



















  

  

56 385

                      

 Fl. 



































Ob.

Cl.

Bsn

Hn





  

Tpt



Timp.

 



       

      mf





Vln II



 



Vc.







Db.







Vla















      

                mf



Vln I

mf



  







mp

mp

mf



























mf



























 

    

mf























                   



              

                      

     

 







              







           mf            





mf





 

 

pp

















                 mf          arco                            mf  arco                 arco

  Fl.  397



Ob.



Cl.

Bsn

Timp.





  

  









 





ff









       

ff

       









  

ff





 



ff









 

ff



3

    







3



   



 

  

3

3



             













            



           



ff





ff

Vla

Db.





                 

     

                

     

ff



ff



f

f













     f

     

    

     

    

     

f

ff

Vc.

3

       







     





      



 3                







3



Vln II



ff



ff

Vln I



57

f



     

     



     

       



     

     



     

       

58 407

  Fl.  











  

                                  

Ob.

                              

Cl.

  



























        

                              Bsn     Vln I







         

 



















             



    





        





       

        





       

ff

Vln II



ff

Vla

      

     

   

     

         

Vc.

         

    

   

     

                                

         

    

   

     

                                

Db.



              



59 416

Fl.

    

Ob.

Hn

Tpt







  

Cl.

Bsn









 3

 



    



 

  ff

3

       

  

 3

        3

       





















  

















  



 

   



Vln II

Vla

Vc.





 3

 

    

 

    

3

  

 3

 

     

 

3         

       



















ff

            ff 

ff

























ff





ff















   

   



        3

          

       

           

     

     

     

     

   

           

   

     

   

     

   

       

ff



 3



 



 



  Vln I   

Db.



   

ff



ff

   



 ff







     



 

60

 

425

 Fl.   Ob.

 

 

 

 









Tpt







        





 









     











 















 



mf

     

    



  





 



































Vc.







 





 Vln I 













 



                 ff 3

3

3  3             

             ff

  

ff





Vla

 3  3            

3                     





3

3



Vln II

ff 3



 

Timp.

                 3 ff 3                



mf

              Bsn       Hn    Cl.





 Db.  



 



 

        

   

 

 

  





   

  



  



 







 

  











         pizz. 3

3

3         

pizz. 3

ff

3

3









61                                                         Fl.   433

fff

 

Cl.

Bsn



      fff

  

fff



      



   









   









   Vln I  









  









Hn

fff

Tpt

fff

fff

Vln II

     

             























































fff

Vla

   



fff

 

arco



 

 Db.   



Vc.

fff arco

fff

  

 

 





 







 

 











 

 

 





 









  



























  







 

 

  



 



   

  

 



62

                                                                    Fl.  439



Cl.

Bsn



                                      

 

  Hn   Tpt   Vln I

  

Vln II



Vc.



 

 





































3

3

   



   







    





3

   







































 











3







  

Vla

Db.





 

 





   











 







   

3

   





    











3

   

  



     





 









 

  

    

 

  

  

    

  

  







      



fff

      







446

Fl.



Ob.



Cl.

Bsn

Hn

Tpt



 





 



  

 

 

  Vln I 

 

 

Vln II



   

Vla

Vc.

  

Db.

 



 



  















   











   

  



 

 





































 





3













 

ff

         3    3      3          



63

f









  





















     



f



f

 



 

 



 







































    

    

f





 

 



    

     



  



  



 



 



  

64

 







                                     



















454

Fl.

Ob.

Cl.

Bsn







 Hn  





mp

 



    





 





 



 







 

















 



























Vln I

 







































Vla

    

Vc.

Db.



 



       mp

          



ff



     







  



                                        f

Tpt

Vln II

ff



f

 

3







  

div.

     

 

  

  

   









































 



    



  

ff



ff tutti





ff



       

ff



ff





462

Fl.

  



   

Ob.

fff

fff

    

Cl.

fff

Bsn



  

     fff   Tpt    Hn

fff

   Timp.       Vln I       

fff

Vln II

fff

   

Vla

  

Db.



  



  





 

  



 

                fff        



            



3

3

3

3

 

   

 



 

 

  fff  fff

                   3

3

3

3

 

 

fff

fff

Vc.



  



















  





 

 



  

3 3                                  3                   3













3 3              

     

3

3

  

 

 

 

   

 

 







           

   

  

65

     









66 466

Fl.

  



 



 



Ob.

Cl.

Bsn



 

  Hn   Tpt



  

  Timp.   p

3

 

 





  

3

  

 

 





 





 





Vla

 

              p arco 3               Db.  Vc.

arco

p

3

3

3







 

 

 

 

3

 

3

 

 

 



 

fff



 fff 

3

 

fff

fff

 



   

   



  Vln I   Vln II

 



fff



3

p

3

3



              3

    

 

       

fff

        3

     3

    3

   

   

 fff    

fff

fff



fff



fff



fff

           

Related Documents

Little Symphony
April 2020 19
Little
May 2020 43
Sunrise Symphony
June 2020 6
Zoin Symphony
May 2020 12
Magnetom Symphony Tim Coils
December 2019 11

More Documents from ""