LIPID Soluble in non-polar solvents and insoluble in polar solvents. Lipid is not polymers. Lipids: 1.
Fatty acids
2.
Neutral fats and oils
3.
Waxes
4.
Phospholipid
5.
Sterols
6.
Fat soluble vitamins
Fatty Acids O R C OH #1 Carbon
Acid Group
O R C OH
Polar End - Hydrophilic End
Non-polar End - Hydrophobic End (Fat-soluble tail)
Saturated Fatty Acids
8 5 3 7 4 6 2 CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2
Octanoic Acid
O 1 C OH
Unsaturated Fatty Acids 8 CH 3
7 CH 2
5 6 CH 2 CH 2
4 CH 2
3 2 CH 2 CH 2
O 1 C OH
3 - Octenoic Acid
8 7 CH 3 CH 2
5 3 4 6 2 CH 2 CH 2 CH 2 CH 2 CH 2 3, 6 - Octadienoic Acid
Short hand:
8:1 (∆3) 8:2 (∆3,6)
O 1 C OH
Cis And Trans Fatty Acids H
H CH 3 (CH 2 )7 C C (CH 2 )7 10 9
O C OH
Cis 9 - Octadecenoic Acid (oleic)
H CH 3 (CH 2 )7 C C (CH 2 )7
O C OH
H Trans 9 - Octadecenoic Acid (elaidic acid)
Polyunsaturated Fatty Acids Linoleic acid:
Cis, cis, 9, 12 - Octadecadienoic acid
Linolenic acid:
Cis, cis, cis 9, 12, 15 - Octadecatrienoic acid
Arachidonic acid:
Cis, cis, cis, cis 5, 8, 11, 14 - Eicosatetraenoic acid
Linoleic Acid Linolenic Acid Arachidonic Acid
Naturally-occurring fatty acids O R CH 2
CH CH CH 7
6
5
2
CH CH CH
4
3
1.
Cis form
2.
Not conjugated --- isolated double bond.
3.
Even numbered fatty acids.
2
C OH
CLASSIFICATION OF FATTY ACIDS PRESENT AS GLYCERIDES IN FOOD FATS Common Name
Systematic Name
Formula
Common source
I. Saturated Fatty Acids Butyric
Butanoic
CH3(CH2)2COOH
butterfat
Caproic
Hexanoic
CH3(CH2)4COOH
Caprylic
Octanoic
CH3(CH2)6COOH
Capric
Decanoic
CH3(CH2)8COOH
Lauric
Dodecanoic
CH3(CH2)10COOH
Myristic
Tetradecanoic CH3(CH2)12COOH
Palmitic
Hexadecanoic CH3(CH2)14COOH
Stearic
Octadecanoic
CH3(CH2)16COOH
Arachidic
Eicosanoic
CH3(CH2)18COOH
butterfat, coconut and palm nut oils coconut and palm nut oils, butterfat coconut and palm nut oils, butterfat coconut and palm nut oils, butterfat coconut and Palm nut oil, most animal and plant fats practically all animal and plant fats animal fats and minor component of plant fats peanut oil
Common Name
Systematic Name
Formula
Common source
II. Unsaturated Fatty Acids A. Monoethenoic Acids Oleic
Cis 9-octadecenoic
C17H33COOH
plant and animal fats
Elaidic
Trans 9-Octadecenoic
C17H33COOH
animal fats
C17H31COOH
peanut, linseed, and cottonseed oils
C17H29COOH
linseed and other seed oils peanut seed fats
B. Diethenoic Acids Linoleic
9,12-Octadecadienoic
C. Triethenoid Acids Linolenic
9,12,15-Octadecatrienoic
Eleostearic 9,11,13-Octadecatrienoic
C17H29COOH
D. Tetraethenoid Acids Moroctic Arachidonic
4,8,12,15Octadecatetraenoic 5,8,11,14-
C17H27COOH
fish oils
C19H31COOH
traces in animal fats
Common and Systematic Names of Fatty Acids Common Name
Systematic Name
Formula
Common source
A. Monoethenoic Acids Oleic
Cis 9-octadecenoic
C17H33COOH
plant and animal fats
Elaidic
Trans 9-Octadecenoic
C17H33COOH
animal fats
C17H31COOH
peanut, linseed, and cottonseed oils
C17H29COOH
linseed and other seed oils peanut seed fats
B. Diethenoic Acids Linoleic
9,12-Octadecadienoic
C. Triethenoid Acids Linolenic
9,12,15-Octadecatrienoic
Eleostearic 9,11,13-Octadecatrienoic
C17H29COOH
D. Tetraethenoid Acids Moroctic Arachidonic
4,8,12,15Octadecatetraenoic 5,8,11,14Eicosatetraenoic
C17H27COOH
fish oils
C19H31COOH
traces in animal fats
Melting Points and Solubility in Water of Fatty Acids
Melting Point
Solubility in H O 2 Chain Length
CHARACTERISTICS OF FATTY ACIDS Fatty Acids
M.P.(0C)
mg/100 ml Soluble in H2O
C4
-8
-
C6
-4
970
C8
16
75
C10
31
6
C12
44
0.55
C14
54
0.18
C16
63
0.08
C18
70
0.04
Effects of Double Bonds on the Melting Points F. A.
M. P. (0C)
16:0 16:1 18:0 18:1 18:2 18:3 20:0 20:4
60 1 63 16 -5 -11 75 -50
M.P.
# Double bonds
FAT AND OILS Mostly Triglycerides:
O
O H2C
OH
HC OH H2C
HO C O
OH
Glycerol
+
R
HO C R O HO C R
3 Fatty Acids
H2 C O C O HC
R
O C R O
H2 C O C
R
+ 3 H2O
GLYCERIDES O
H2 C OH HC OH O H2 C O C (CH 2 )16 CH 3 Monoglyceride (α - monostearin) H2 C O HC O H2 C O
H2 C O
C (CH 2 )16 CH 3
HC OH O H2 C O C (CH 2 )16 CH 3
Diglyceride (α, α' - distearin)
O C (CH 2 )16 CH 3 O C (CH 2 )14 CH 3 O C (CH 2 )16 CH 3
( C18 ) (C16 ) (C18 )
Triglyceride (β - palmityl distearin)
Oleic Palmitic
OPP
Palmitic
α - oleodipalmitin 1 - oleodipalmitin Linoleic Oleic
LOO
Oleic
α - Linoleyldiolein 1 - Linoleyldiolein
FATS AND OILS ARE PRIMARILY TRIGLYCERIDES (97-99%)
Vegetable oil - world supply - 68% Cocoa butter - solid fat Oil seeds - liquid oil Animal fat - 28% (from Hogs and Cattle) Marine oil - 4% Whale oil cod liver oil
Fatty Acids (%) of Fats and Oils Fatty Acids 4 6 8 10 12 14 16 16:1 18:0 18:1 18:2 18:3
Butter 3 3 2 3 3 10 26 7 15 29 2 2
Coconut Cottonseed
6 6 44 18 11 6 7 2
1 4 1 3 18 53
Soybean
12 2 24 54 8
MELTING POINTS OF TRIGLYCERIDES Triglyceride
Melting Point (°C)
C6
-15
C12
15
C14
33
C16
45
C18
55
C18:1 (cis)
-32
C18:1 (trans)
15
WAXES Fatty acids + Long chain alcohol Important in fruits: 3. Natural protective layer in fruits, vegetables, etc. 4. Added in some cases for appearance and protection. Beeswax (myricyl palmitate), Spermaceti (cetyl palmitate)
C30 H61
O O C C 15 H31
C16 H33
O O C C 15 H31
PHOSPHOLIPID Lecithin (phosphatidyl choline) O O
H2 C O C R
R C O CH
CH 3
O H2 C O P O CH 2 O_ Phosphatidic Acid
CH 2
+
N CH 3 CH 3 Choline
STEROLS Male & female sex hormones Bile acids Vitamin D Adrenal corticosteroids Cholesterol
21 H 3C 18
H 3C
HO
22 20
12 19 17 H3C 11 13 14 10 1 9 2 8 3 6 7 4 5
16 15
CH 3 CH 3
FAT SOLUBLE VITAMINS Vitamin A:
H3 C
CH3
CH 3 9
8
CH3
7
6
CH3
5 4
3
CH2OH 2
1
CH 3 H 3C H 3C
Vitamin D2: H
CH 3 CH 3
H CH 2
HO
Vitamin E: R1 R2 HO R3
CH 3 CH 3 O (CH 2 CH 2 CH 2 CH 2 )2 CH 2 CH 2CH 2 CH(CH 3 )2
ANALYTICAL METHODS TO MEASURE THE CONSTANTS OF FATS AND OILS 1.
Acid Value
2.
Saponification Value
3.
Iodine Value
4.
Gas Chromatographic Analysis for Fatty Acids
5.
Liquid Chromatography
6.
Cholesterol Determination
1. Acid Value Number of mgs of KOH required to neutralize the Free Fatty Acids in 1 g of fat.
ml of KOH x N x 56 = mg of KOH AV = Weight of Sample
2. Saponification Value Saponification - hydrolysis of ester under alkaline condition.
H2 C O HC O H2 C O
O C R O C R O C R
H 2 C OH +
3 KOH
HC O H H 2 C OH
O + 3 R C OK
Saponification Value of Fats and Oils Fat
Saponification #
Milk Fat
210-233
Coconut Oil
250-264
Cotton Seed Oil
189-198
Soybean Oil
189-195
Lard
190-202
2. Saponification Value Determination Saponification # --mgs of KOH required to saponify 1 g of fat. 1.
5 g in 250 ml Erlenmeyer.
2.
50 ml KOH in Erlenmeyer.
3.
Boil for saponification.
4.
Titrate with HCl using phenolphthalein.
6.
Conduct blank determination. 56.1(B -S ) x N of HCl S P# = Gram of S ample
B - ml of HCl required by Blank. S - ml of HCl required by Sample.
3. Iodine Number
Number of iodine (g) absorbed by 100 g of oil.
Molecular weight and iodine number can calculate the number of double bonds. 1 g of fat adsorbed 1.5 g of iodine value = 150.
Iodine Value Determination Iodine Value = (ml of Na2S2O3 volume for blank - ml of Na2S2O3 volume for sample) × N of Na2S2O3 × 0.127g/meq × 100 Weight of Sample (g)
CH
CH
CH
+ ICl Iodine chloride
Cl
CH I
Excess unreacted ICl ICl I2 +
+
KI
2 Na2 S 2 O3
KCl
+
Na2 S 4 O6
I2 + 2 NaI
Iodine Numbers of Triglycerides Fatty Acids
# of Double-bonds
Iodine #
Palmitoleic Acid
1
95
Oleic Acid
1
86
Linoleic Acid
2
173
Linolenic Acid
3
261
Arachidonic Acid
4
320
Compositions (%) of Fatty Acids of Fats Fat
C4
C6 C10 C16 C18 C18:1 C18:2 C18:3 C20:4
1
5
5
20
40
2
20
35
3
10
50
4
20
40
40
5
10
20
20
6
30 40
5 40
10
20
20 100
4. GC Analysis for Fatty Acids 1.
Extract fat.
2.
Saponify (hydrolysis under basic condition).
3.
Prepare methyl ester (CH3ONa).
4.
Chromatography methyl ester.
5.
Determine peak areas of fatty acids. Fatty acids are identified by retention time.
6.
Compare with response curve of standard.
Fatty Acids Methyl Esters: Response 18:1
14
16
18
18:2
20
18:3
21:1 22
Time
GC condition: 10% DEGS Column (from supelco) Column temperature 200C.
24
5.
TRIGLYCERIDE ANALYSIS BY LIQUID CHROMATOGRAPHY Soybean Oil Solvent CH3CN/HF Column 84346 (Waters Associates)
RES PONS E
RETENTION TIME
Oleate-containing triglycerides in olive oil Fatty Acid Composition
Total Acyl Carbons: Unsaturation
Equivalent Carbon Number
OL2
54:5
44
O2L
54:4
46
OPL
52:3
46
O3
54:3
48
OSL
54:3
48
O2P
52:2
48
O2S
54:2
50
OPS
52:1
50
OS2
54:1
52
6. CHOLESTEROL DETERMINATION Enzymatic Determination: Cholesterol Oxidase
Cholesterol Oxidase HO
etc. + H2 O2
O
CH3O
H2 O2 +H2N
OCH3 NH2
CH3O
Peroxidase
HN
OCH3 NH
+ H2 O
0-Dianisidine
Oxidized 0-Dianisidine
(Colorless)
(Brown color)At 440 nm
Absorption at 440 nm
µg/ml Cholesterol
Cholesterol by GLC 1.
Prepare cholesterol butyrate.
2.
Analyze by GLC. time in GC - 15 min. sensitivity - 10-7 g.
Spectromertic Absorption Standard Curve of Cholesterol
Absorption at 440 nm
µg/ml Cholesterol
Cholesterol by GLC 1.
Prepare cholesterol butyrate.
2.
Analyze by GLC. time in GC - 15 min. sensitivity - 10-7 g.
LIPID CONTENT ANALYSES 1.
Gravimetric Method (1) Wet extraction - Roese Gottliegb & Mojonnier. (2) Dry extraction - Soxhlet Method.
2.
Volumetric Methods (Babcock, Gerber Methods)
1. Gravimetric Method (1) Wet Extraction - Roese Gottlieb & Mojonnier.
For Milk: 1) 10 g milk + 1.25 ml NH4OH mix. solubilizes protein and neutralizes. 2) + 10 ml EtOH - shake. Begins extraction, prevents gelation of proteins. 3) + 25 ml Et2O - shake and mix. 4) + 25 ml petroleum ether, mix and shake.
(2) Dry Extraction - Soxhlet Method.
Sample in thimble is continuously extracted with ether using Soxhlet condenser. After extraction, direct measurement of fat - evaporate ether and weigh the flask.
Indirect measurement - dry thimble and weigh thimble and sample.
Soxhlet Method.
2. Volumetric Method (Babcock, Gerber Methods) Theory: 2. Treat sample with H2SO4 or detergent. 3. Centrifuge to separate fat layer. 4. Measure the fat content using specially calibrated bottles. Methods: 1. Known weight sample. 2. H2SO4 - digest protein, liquefy fat. 3. Add H2O so that fat will be in graduated part of bottle. 4. centrifuge to separate fat from other materials completely.
REACTIONS OF FATS Hydrolytic Rancidity:
1. Triglyceride -> Fatty acids Specially C4 butyric acid (or other short chain fatty acids) are the real problem.
2. By lipase.
LIPID OXIDATION Major flavor problems in food during storage are mainly due to the oxidation of lipid.
Lipid Oxidation - free radical reactions. 1.
Initiation.
2.
Propagation.
3.
Termination.
Pentane Formation from Linolenic Acid 14
CH 3 (CH 2 )3
CH 2
13
12
11
Initiation (metal)
12
11
CH 2
11
.
9 2
n COOH
10
9 2
nCOOH
2n
COOH
+ H.
O
11
10
9
CH 2 CH CH CH CH CH - CH O
Hydroperoxide Decomposition
O
_
H
(CH 2 )3
10
CH CH CH CH CH CH
12
CH 3
COOH
O
Propagation
(CH 2 )3
n
+ O2 12
CH 3
2
CH 2 CH CH CH CH CH CH
Propagation CH 3 (CH 2 )3
CH CH CH
2
- H.
.
CH 3 (CH 2 )3
9
10
CH CH CH
CH 2
12
.OH 11
10
9
CH CH CH CH CH CH
.
2n
COOH
O
CH 3 (CH 2 )3
. CH 2
O
12
11
10
9
+ H C CH CH CH CH CH
.
Termination
+ H CH 3
(CH 2 )3 Pentane
CH 3
2n
COOH
ANALYSIS OF FLAVOR QUALITY & STABILITY OF OIL 1.
Peroxide Value O
O
A.
KI + CH 3
B.
ROOH + 2 HI
I2 +
C.
I2 + 2 Na2 S 2 O3
2 NaI +
C
OH
Peroxide Value = (milliequivalent peroxide/kg of sample)
HI
+ CH 3
H2O +
C
ROH
Na2 S4 O6
ml of Na2S2O3 × N × 1000 Grams of Oil
OK
2. Active Oxygen Method (AOM) Determined the time required to obtain certain peroxide value under specific experimental conditions. The larger the AOM value, the better the flavor stability of the oil.
3. TBA Test. To determine the rancidity degree of meat or fish product. HS
N
OH
O +
N
H
O C CH 2
C H
OH
HS
N N OH
OH CH
HO CH
CH
Colored Pigment
N
SH N
OH
+ 2 H2O