6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13 - Digital Circuits (II) MOS Inverter Circuits October 25, 2005
Contents: 1. NMOS inverter with resistor pull-up (cont.)
2. NMOS inverter with current-source pull-up
3. Complementary MOS (CMOS) Inverter Reading assignment: Howe and Sodini, Ch. 5, §5.3
Lecture 13-1
6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13-2
Key questions
• What are the key design trade-offs of the NMOS inverter with resistor pull-up? • How can one improve upon these trade-offs?
• What is special about a CMOS inverter?
Lecture 13-3
6.012 - Microelectronic Devices and Circuits - Fall 2005
1. NMOS inverter with resistor pull-up (cont.)
V+=VDD
VOUT=VDS
VOH=VMAX=VDD
R
IR
slope= Av(VM) VOUT=VIN
VOUT
VM
ID VIN
CL VOL=VMIN 0
0
VT
VM VIL
VDD
VIN=VGS
VIH
2 Noise margins: N ML = VIL − VOL = VM −
N MH = VOH −VIH
VM AX − VM − VM IN |Av (VM )|
1 VM IN = VM AX −VM (1+ )+ |Av (VM )| |Av (VM )|
Need to compute |Av (VM )|.
Lecture 13-4
6.012 - Microelectronic Devices and Circuits - Fall 2005
Small-signal equivalent circuit model at VM (transistor in saturation): R D
G
+
+
vin
vgs
-
-
+
gmvgs
ro
vout -
S
+
+
vin
gmvin
ro//R
-
vout -
vout = −gm vin(ro//R) Then: Av =
vout = −gm(ro //R) −gm R vin
Then: |Av (VM )| = gm (VM )R From here, get N ML and N MH using above formulae.
Lecture 13-5
6.012 - Microelectronic Devices and Circuits - Fall 2005
2 Dynamics
• CL pull-down limited by current through transistor [will study in detail with CMOS] • CL pull-up limited by resistor (tP LH ∼ RCL) • pull-up slowest
VDD
VDD
R
R
VOUT: LO HI
VOUT: HI LO VIN: LO HI
CL
pull-down
VIN: HI LO
CL
pull-up
6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13-6
2 Inverter design issues: noise margins ↑ ⇒ |Av | ↑ ⇒ • R ↑ ⇒ RCL ↑ ⇒ slow switching • gm ↑ ⇒ W ↑ ⇒ big transistor
(slow switching at input)
Trade-off Trade-off between speed speed and noise margin. margin.
During pull-up, need: • high current for fast switching, • but also high resistance for high noise margin.
⇒ use current source as pull-up.
Lecture 13-7
6.012 - Microelectronic Devices and Circuits - Fall 2005
2. NMOS inverter with current-source pull-up
I-V characteristics of current source: iSUP +
vSUP
1 roc
ISUP
iSUP
_
0
0
vSUP
Equivalent circuit models: iSUP +
vSUP
ISUP
roc
roc
_
large-signal model
small-signal model
• high current throughout voltage range: iSU P ISU P • high small-signal resistance, roc.
Lecture 13-8
6.012 - Microelectronic Devices and Circuits - Fall 2005
NMOS inverter with current-source pull-up: load line
VDD
iSUP=ID VGS=VDD
iSUP
ISUP VGS=VIN
VOUT VIN
CL VGS=VT 0 0
VDD
Transfer characteristics: VOUT
VDD
0
0
VT
High roc ⇒ high noise margin
VDD
VIN
VDS
Lecture 13-9
6.012 - Microelectronic Devices and Circuits - Fall 2005
Dynamics: VDD
VDD
iSUP
iSUP VOUT: HI LO
VIN: LO HI
CL
pull-down
VOUT: LO HI VIN: HI LO
CL
pull-up
Fas pull-up because capacitor charged at constant curFaster rent.
Lecture 13-10
6.012 - Microelectronic Devices and Circuits - Fall 2005
2 PMOS as current-source pull-up I-V characteristics of PMOS: S
G IDp D
-IDp
-IDp
saturation VSGp
VSGp=-VTp 0
0 0
VSDp
0
-VTp
Note: enhancement-mode PMOS has VT p < 0. In saturation: −IDp ∝ (VSG + VT p )2
VSGp
Lecture 13-11
6.012 - Microelectronic Devices and Circuits - Fall 2005
Circuit and load-line diagram of inverter with PMOS current source pull-up: VDD PMOS load line for VSG=VDD-VB
-IDp=IDn
VDD
VB VOUT
VIN
VIN
CL
0 0
VDD
Transfer function: NMOS cutoff PMOS triode
VOUT
NMOS saturation PMOS triode
VDD
NMOS saturation PMOS saturation NMOS triode PMOS saturation
0
0
VTn
VDD
VIN
VOUT
Lecture 13-12
6.012 - Microelectronic Devices and Circuits - Fall 2005
Noise margin: • compute VM = VIN = VOU T • compute |Av (VM )| At VM both transistors saturated: IDn =
−IDp =
Wn µnCox (VM − VT n )2 2Ln
Wp µp Cox(VDD − VB + VT p )2 2Lp
And: IDn = −IDp Then: VM = VT n +
� � � � � � � � �
p µp W Lp
Wn (VDD µn L n
− VB + VT p )
Lecture 13-13
6.012 - Microelectronic Devices and Circuits - Fall 2005
Small-signal equivalent circuit model at VM : S2 +
gmpvsg2
vsg2=0 -
+
vin -
rop
G2
D2
G1 +
D1 +
vgs1
gmnvgs1
ron
-
vout -
S1
+
vin
+
gmnvin
ron//rop
-
vout -
Av = −gmn (ron//rop )
6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13-15
Screen shots of NMOS inverter transfer characteristics: 2 NMOS inverter with resistor pull-up
2 NMOS inverter with current source pull-up
Lecture 13-14
6.012 - Microelectronic Devices and Circuits - Fall 2005
NMOS inverter with current-source pull-up allows fast switching with high noise margins. But... when VIN = VDD , there is a direct current path between supply and ground ⇒ power consumption even if inverter is idling.
VDD
PMOS load line for VSG=VDD-VB
-IDp=IDn
VDD
VB VOUT:LO VIN:HI
VIN
CL 0 0
VDD
VOUT
Would like to have current source that is itself switchable, i.e., it shuts off when input is high ⇒ CMOS!
Lecture 13-16
6.012 - Microelectronic Devices and Circuits - Fall 2005
3. Complementary MOS (CMOS) Inverter
Circuit schematic: VDD
VIN
VOUT CL
Basic operation: •VIN = 0 ⇒ VOU T = VDD VGSn = 0 < VT n ⇒ NMOS OFF VSGp = VDD > −VT p ⇒ PMOS ON •VIN = VDD ⇒ VOU T = 0 VGSn = VDD > VT n ⇒ NMOS ON VSGp = 0 < −VT p ⇒ PMOS OFF power anyy logic state. No p ower consumption while idling in an
Lecture 13-17
6.012 - Microelectronic Devices and Circuits - Fall 2005
Output characteristics of both transistors:
IDn
-IDp
VGSn
VSGp
VGSn=VTn
VSGp=-VTp
0
0 0
VDSn
0
VSDp
Note: VIN = VGSn = VDD − VSGp ⇒ VSGp = VDD − VIN VOU T = VDSn = VDD − VSDp ⇒ VSDp = VDD − VOU T IDn = −IDp Combine into single diagram of ID vs. VOU T with VIN as parameter.
Lecture 13-18
6.012 - Microelectronic Devices and Circuits - Fall 2005
VDD
ID
VIN
VOUT
VDD-VIN
VIN
CL 0 0
VOUT
no current while idling in any logic state. Transfer function: NMOS cutoff PMOS triode
VOUT
NMOS saturation PMOS triode
VDD NMOS saturation PMOS saturation NMOS triode PMOS saturation NMOS triode PMOS cutoff
0
0
VTn
VDD+VTp VDD VIN
”r ”rail-to-rail” ail-to-rail” lo logic: gic: lo logic gic levels are 0 and VDD ound logic logic thresholdd ⇒ go od noise margins highh |A |Av | ar around good
6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13-19
Transfer characteristics of CMOS inverter in WebLab:
6.012 - Microelectronic Devices and Circuits - Fall 2005
Lecture 13-20
Key conclusions
• In NMOS inverter with resistor pull-up: trade-off between noise margin and speed. • Trade-off resolved using current-source pull-up: use PMOS as current source. • In NMOS inverter with current-source pull-up: if VIN = HI, power consumption even if inverter is idling. • Complementary MOS: NMOS and PMOS switch alternatively ⇒ – no power consumption while idling – ”rail-to-rail” logic: logic levels are 0 and VDD – high |Av | around logic threshold ⇒ good noise margins