LAB MATH 004
2. Encontrar el conjunto soluci´on de las siguientes inecuaciones:
Prof. Rensso Chung
(a) 2x − 5 > 11
[email protected]
(b) x − 9 < 14
Trujillo-Per´ u-Enero 2009
(c) 9 ≤ −5 + x (d) y + 1 > 14
1. Resolver las siguientes ecuaciones:
(e) 3z + 1 ≥ 10
(a) 2x + 5 = 11
(f) 3z + 6 ≤ 12
(b) x + 9 = 14
(g) 2t + 6 > 14
(c) 9 = 5 + x
(h) 3y + 1 < 16
(d) y + 1 = 14
(i) y + 1 ≤ 14
(e) 3z + 1 = 10
(j) 3z − 9 > 12
(f) 3z + 6 = 12
(k) 3y − 1 > 14
(g) t + 5 = 14
(l) 3z − 3 ≤ 15
(h) 3z + 1 = 16
(m) 9 ≤ −5 + 2x
(i) y + 1 = 14
(n) 2y + 1 < 15
(j) 3z − 9 = 12
(o) 3t − 1 > 23
(k) 3y − 1 = 14
(p) 4z + 6 > 14
(l) 3z − 3 = 15
(q) 9 < −5 + x
(m) 9 = −5 + 2x
(r) 3t + 11 ≤ 14
(n) 2y + 1 = 13
(s) 3z + 11 > 14
(o) 3t − 1 = 20
(t) 3z + 16 < 19
(p) 4z + 6 = 10
(u) x + 5 ≥ 10
(q) 9 = −5 + x
(v) 2y + 1 < 15
(r) 3y + 11 = 14
(w) 11y + 1 > 12
(s) 3z + 11 = 14
(x) 2t + 1 > 13
(t) 3z + 16 = 19
(y) 3y + 1 ≥ 16
(u) t + 5 = 10
(z) t + 1 < 15
(v) 2y + 1 = 15 (w) 11y + 1 = 12 (x) 2y + 1 = 13 (y) 3y + 1 = 16 (z) t + 1 = 15
1