STS51C-143-0027 Mississippi River Delta and Coastal Louisiana, U.S.A. January 1985
NASA PHOTO
STS61A-42-0051 Mississippi River Delta, Louisiana, U.S.A. October 1985 N
20 mi NASA PHOTO 78
Outline
Petroleum systems Geologic principles and geologic time Rock and minerals, rock cycle, reservoir properties Hydrocarbon origin, migration and accumulation Sedimentary environments; stratigraphic traps Plate tectonics, structural geology Structural traps Geophysical methods Importance to Schlumberger 2
Cross Section Of A Petroleum System (Foreland Basin Example) Geographic Extent of Petroleum System Extent of Play Reservoir
Stratigraphic Extent of Petroleum System
Active Source Rock
Essential Elements of Petroleum System
Overburden Rock Seal or Cap[Rock Reservoir Rock Source Rock Underburden Rock
Petroleum Reservoir (R) Fold-and-Thrust Belt (arrows indicate relative fault motion)
Sedimentary Basin Fill
R
Basement Rock Top Oil Window Top Gas Window
(modified from Magoon and Dow, 1994) 4
Petroleum System A Petroleum System requires timely convergence of certain geologic factors and geologic events.
These Include: Seal or cap rock Reservoir rock Migration Mature source rock
Petroleum Geology
•Law of cross-cutting relationships. In the figure above, the igneous dike (F) is younger than layers A-E but older than layer G, because a geologic feature is younger than any other geologic feature that it cuts. This is an important law for determining the relative ages of geologic features. • According to the “Law of Superposition,” layer “I” is older than layer “J,” and the rocks beneath the unconformity are older from right to left. From the “Principle of Original Horizonality,” we infer that layers “A” through “F” have been deformed. •Sedimentary rock are deposited in successive layers that record the history of their time, much like the pages in history book. However, the rock record is never complete. Missing layers (gaps in time) result in unconformities. • An unconformity is a surface of non-deposition or erosion that separates younger rocks from older rocks. The slide shows an angular unconformity. A nonconformity is an unconformity in which younger sedimentary rocks overlie older metamorphic or intrusive igneous rocks
The following are basic principles or laws are used to evaluate the relative ages and the relations among rock layers. Uniformitarianism - “The present is the key to the past.” By studying modern geologic processes, we can interpret past geologic events and rock-forming processes. Original Horizonality - “Sedimentary layers are deposited in a horizontal or nearly horizontal position.” If sedimentary layers are tilted or folded, they have been subjected to deforming stresses. Superposition - “Younger sedimentary beds occur on top of older beds, unless they have been overturned or faulted.” Cross-Cutting Relations - “Any geologic feature that cuts another geologic feature is younger than the feature that it cuts.”
Cross-Cutting Relationships K J I H G Angular Unconformity
C
E D il S s ou e Ign
l
Igneous Dike
F B A
6
4
4.6
150
Mesozoic
100
Cretaceous
Jurassic
200
Triassic
250
Permian
300
Pennsylvanian
Recent
0 Pleistocene 10 20
Pliocene Miocene
30 Oligocene 40
Eocene
Cenozoic Era
3
Tertiary
50
50 60 Paleocene
Mississippian
350 400 450
Paleozoic
1
Millions of years ago
Phanerozoic
2
Quaternary
0
Cryptozoic (Precambrian)
Billions of years ago
0
Epoch
Tertiary period
Era Period
Millions of years ago
Eon
Quaternary period
Geologic Time Chart
Devonian Silurian
Ordovician
500 550
Cambrian
600 7
Geologic Time Scale - Biostratigraphy Triassic period
Permian period
Jurassic period
Pennsylvanian period Mississippian period
146 m.y
208 m.y
245 m.y
290 m.y
323 m.y 363 m.y
vonian period 409 m.y
rian period
439 m.y 65 m.y
1 b.y
57 m.y 510 m.y
570 m.y
Evolution of cells with nucleus
35 m.y
23 m.y
2 b.y 5 m.y
3 b.y 0.01 million years ago
4.6 billion years ago
ERA PERIOD EPOCH Holocene epoch
Oldest fossil cells
4 b.y
Oldest rocks dated on Earth
Basic Geologic Principles
Uniformitarianism - “The present is the key to the past.” Original Horizonality - “Sedimentary layers are deposited in a horizontal or nearly horizontal position.” Superposition - “Younger sedimentary beds occur on top of older beds, unless they have been overturned or faulted.” Cross-Cutting Relations - “Any geologic feature that cuts another geologic feature is younger than the feature that it cuts.”
5
Classification of Rocks
Rock-forming Source of material process
IGNEOUS
SEDIMENTARY
METAMORPHIC
Molten materials in deep crust and upper mantle
Weathering and erosion of rocks exposed at surface
Rocks under high temperatures and pressures in deep crust
Crystallization (Solidification of melt)
Sedimentation, burial and lithification
Recrystallization due to heat, pressure, or chemically active fluids
10
The Rock Cycle Magma el
t
g in
M
nd
Co So oling ( C r lid i ys fic a ta liz at a
n io n) t io
(M
Sedimentary Rock
Heat and Pressure We
ath
eri n an g, T d D ran ep spo osi tion rtatio n,
Weathering, Transportation and Deposition Cem entation and Compaction
(Lithification)
Igneous Rock W eat her T ransportai ng, t i on A d D n e p o si ti o n
A nd H e at ure Press or phism) et am
Metamorphic Rock
Sediment
Igneous Rocks
Comprise 95% of the Earth's crust. Originated from the solidification of molten material from deep inside the Earth. There are two types: •Volcanic - glassy in texture due to fast cooling. •Plutonic - slow-cooling, crystalline rocks.
12
Igneous Rocks and Reservoirs Igneous rocks can be part of reservoirs. Fractured granites form reservoirs in some parts of the world. Volcanic tuffs are mixed with sand in some reservoirs.
Example: Granite Wash - Elk City, Okla., Northern Alberta,CA
13
Sedimentary Rock Types • Relative abundance
Sandstone and conglomerate ~11% Limestone and dolomite ~13%
Siltstone, mud and shale ~75%
17
Depositional Environments The depositional environment can be: Shallow or deep water. Marine (sea) and lake or continental. This environment determines many of the reservoir characteristics
Frigg Gas Field - North Sea 18
Depositional Environments
Continental deposits are usually dunes. A shallow marine environment has a lot of turbulence hence varied grain sizes. It can also have carbonate and evaporite formation. A deep marine environment produces fine sediments.
19
Clastic Reservoirs
Consolidated and unconsolidate sands
Porosity •
Permeability •
Determined mainly by the packing and mixing of grains.
Determined mainly by grain size and packing, connectivity and shale content.
Fractures may be present.
21
Clastic Sedimentary Rocks Conglomerate
Breccia
Example
Sandstone
Shale
•Some sedimentary rock types •Breccia - Coarse-grained, angular fragments - little transport; •Conglomerate - Coarse-grained, mixture of rounded pebbles and sand ranging widely in size; well rounded pebbles imply some transport in a high energy system •Sandstone - commonly quartz, feldspar, or rock fragments; deposited in many environments •Shale - very fine grained; composed primarily of clay; deposited in low-energy environments such as lakes, bays, lagoons, of deep marine settings
Clastic Rocks Clastic rocks are sands, silts and shales. The difference is in the size of the grains.
Size ?? 24
Average Detrital Mineral Composition of Shale and Sandstone Mineral Composition Shale (%)
Sandstone (%)
Clay Minerals
60
5
Quartz
30
65
4
10-15
<5
15
3
<1
<3
<1
Feldspar Rock Fragments Carbonate Organic Matter, Hematite, and Other Minerals
(modified from Blatt, 1982) 23
Sedimentation
25
Clastic Sedimentary Environments Environment
Agent Of Transportation Deposition
Sediments
Alluvial
Rivers
Sand, gravel, mud
Lake
Lake currents, waves
Sand, mud
Desert
Wind
Sand, dust
Glacial
Ice
Sand, gravel, mud
Delta
River + waves, tides
Sand, mud
Beach
Waves, tides
Sand, gravel
Shallow shelf
Waves, tides
Sand, mud
Deep sea
Ocean currents, settling
Sand, Mud
Organic Material = 27
Depositional Environment - Delta
Sediments are transported to the basins by rivers. A common depositional environment is the delta where the river empties into the sea. A good example of this is the Mississippi (Miocene and Oligocene sands)
28
Rivers
Some types of deposition occur in rivers and sand bars. The river forms a channel where sands are deposited in layers. Rivers carry sediment down from the mountains which is then deposited in the river bed and on the flood plains at either side. Changes in the environment can cause these sands to be overlain with a shale, trapping the reservoir rock. 29
Sandstone Composition Framework Grains Matrix Framework
Qtz Quartz
Qtz Quartz
Pores Qtz Qtz Qtz Quartz
Ankerite
Cement 31
Porosity in Sandstone Pore Throat
Pores Provide the Volume to Contain Hydrocarbon Fluids Pore Throats Restrict Fluid Flow
Scanning Electron Micrograph Norphlet Formation, Offshore Alabama, USA
32
Clay Minerals in Sandstone Reservoirs Fibrous Authigenic Illite Secondary Electron Micrograph Significant Permeability Reduction
Illite
Negligible Porosity Reduction High Irreducible Water Saturation Migration of Fines Problem
Jurassic Norphlet Sandstone Hatters Pond Field, Alabama, USA
(Photograph by R.L. Kugler) 33
Clay Minerals in Sandstone Reservoirs Authigenic Chlorite Secondary Electron Micrograph Iron-Rich Varieties React With Acid Occurs in Several Deeply Buried Sandstones With High Reservoir Quality Occurs as Thin Coats on Detrital Grain Surfaces
34
Clay Minerals in Sandstone Reservoirs Authigenic Kaolinite Secondary Electron Micrograph
Significant Permeability Reduction High Irreducible Water Saturation
Migration of Fines Problem
Carter Sandstone North Blowhorn Creek Oil Unit Black Warrior Basin, Alabama, USA
(Photograph by R.L. Kugler)
35
Effects of Clays on Reservoir Quality Authigenic Chlorite
Authigenic Illite Permeability (md)
100
1000 100
10
10 1 1 0.1
0.1 0.01
0.01 2
6
10
14
2
6
10
14
18
Porosity (%) (modified from Kugler and McHugh, 1990) 36
Carbonate Reservoirs
Carbonates (limestone and dolomite) normally have a very irregular structure. Porosity: •
Permeability: •
Determined by the type of shells, etc. and by depositional and post-depositional events (fracturing, leaching, etc.).
Determined by deposition and post-deposition events, fractures.
Fractures can be very important in carbonate reservoirs.
37
Carbonate types
Chalk is a special form of limestone (CaCO3) and is formed from the skeletons of small creatures (cocoliths). Dolomite (CaMg(CO3)2) is formed by the replacement of some of the calcium by a lesser volume of magnesium in limestone. Magnesium is smaller than calcium, hence the matrix becomes smaller and more porosity is created. •
???
Evaporites such as Salt (NaCl) and Anhydrite (CaSO4) can also form in these environments. •
?? 38
Depositional Environment Carbonates
Carbonates are formed in shallow seas containing features such as: • Reefs. • Lagoons. • Shore-bars.
39
Diagenesis
The environment can also involve subsequent alterations of the rock such as: •
Chemical changes. Diagenesis is the chemical alteration of a rock after burial. An example is the replacement of some of the calcium atoms in limestone by magnesium to form dolomite.
•
Mechanical changes - fracturing in a tectonically-active region.
•
40
Source Rocks
Hydrocarbon originates from minute organisms in seas and lakes. When they die, they sink to the bottom where they form organic-rich "muds" in fine sediments. These "muds" are in a reducing environment or "kitchen", which strips oxygen from the sediments leaving hydrogen and carbon. The sediments are compacted to form organic-rich rocks with very low permeability. The hydrocarbon can migrate very slowly to nearby porous rocks, displacing the original formation water.
42
Hydrocarbon Migration
Hydrocarbon migration takes place in two stages: Primary migration - from the source rock to a porous rock. This is a complex process and not fully understood. It is probably limited to a few hundred metres. Secondary migration - along the porous rock to the trap. This occurs by buoyancy, capillary pressure and hydrodynamics through a continuous water-filled pore system. It can take place over large distances.
43
Structural Hydrocarbon Traps Shale
Oil
Trap
Sea l
Oil/Gas Contact
Gas
Closure
Oil/Water Contact Oil
Fracture Basement
Salt Dome
Fold Trap
Salt Diapir
Oil
(modified from Bjorlykke, 1989)
Organic Matter in Sedimentary Rocks Kerogen
Vitrinite
Disseminated Organic Matter in Sedimentary Rocks That is Insoluble in Oxidizing Acids, Bases, and Organic Solvents.
Vitrinite A nonfluorescent type of organic material in petroleum source rocks derived primarily from woody material. The reflectivity of vitrinite is one of the best indicators of coal rank and thermal maturity of petroleum source rock.
Reflected-Light Micrograph of Coal
44
Interpretation of Total Organic Carbon (TOC) (based on early oil window maturity) Hydrocarbon Generation Potential
TOC in Shale (wt. %)
TOC in Carbonates (wt. %)
Poor
0.0 - 0.5
0.0 - 0.2
Fair
0.5 - 1.0
0.2 - 0.5
Good
1.0 - 2.0
0.5 - 1.0
Very Good
2.0 - 5.0
1.0 - 2.0
>5.0
>2.0
Excellent
45
Basic Elements of Plate Tectonics DIVERGENT BOUNDARY: Seafloor spreading Mid-ocean ridge
CONVERGENT BOUNDARY: Plate subduction
Mountain building
Lithosphere
Magma rising
Asthenosphere Magma forming
• Distribution of earthquakes
Continental crust
Volcanism
Oceanic crust
Sedimentary Basin and Stress Fields Basin Geometries
Fault Types Rift Related Basin (Extensional Stress) Normal fault
Sedimentary Fill
Foreland Basin (Compressive Stress) Thrust fault Pull-apart Basin (Lateral Stress) Wrench fault 48
Folded Structures Convex upward
?? Age
Anticline
Syncline
50
• Definitions –A fold is a bend in the strata. –An anticline is a fold that is convex upward. The oldest beds occur in the center of an anticline. –A syncline is a fold that is concave upward. The youngest beds occur in the center of a syncline. –A monocline (not shown) is composed of strata that dip in one direction and are not known to form a flank of an anticline.
Fold Terminology N b
m Li
m Li
b
Li
b
m
Anticline Syncline Modified from xxx)
Youngest rock Oldest rock
51
Faulting
Strike Slip Fault (Left Lateral)
Dip Angle
St
rik e
N
Fault Plane 54
Faults Normal Fault
Reverse Fault Strike direction
Strike direction
Key bed
F.W.
H.W.
rown
F.W.
Upth
n ow thr
own nthr
arp
Dow
n row
Sc
wn Do
ult
Fa
th Up
Fault scarp
Dip angle
H.W.
Dip angle Fault plane
Fracture: Joint and Fault
Fault plane
52
Geologic Reservoir Heterogeneity
56
Scales of Geological Reservoir Heterogeneity Interwell Area
Field Wide
Well
Well
Determined From Well Logs, Seismic Lines, Statistical Modeling, etc.
100's m
Interwell
1-10 km
Reservoir Sandstone
10's m
Well-Bore
100's m
10-100's µm
Petrographic or Scanning Electron Microscope
1-10's m
10-100's mm
Hand Lens or Binocular Microscope
Unaided Eye
(modified from Weber, 1986) 57
Hydrocarbon Traps
Structural traps
Stratigraphic traps
Combination traps
58
Traps General
Ghawar Oilfield - Saudi Arabia- Ls - 145 mi x 13 mi wide x260 ft produces 11,000 b/d total 82B bbls Gasharan Oilfield - Iran - Ls - 6000ft. Net pay total 8.5 B bbls
59
Structural Hydrocarbon Traps Shale
Oil
Trap
Sea l
Oil/Gas Contact
Gas
Closure
Oil/Water Contact Oil
Fracture Basement
Salt Dome
Fold Trap
Salt Diapir
Oil
(modified from Bjorlykke, 1989) 60
Fault Traps
Faults occur when the rock shears due to stresses. Reservoirs often form in these fault zones. A porous and permeable layer may trap fluids due to its location alongside an impermeable fault or its juxtaposition alongside an impermeable bed. Faults are found in conjunction with other structures such as Normal Reverse Fault??? anticlines, domes and salt or domes.
Drag Faults - Wyoming, most Rocky Mountains Normal Faults - Nigeria, Hibenia (E. Canada), Vicksburg Trends (Victoria, TX)
61
Stratigraphic Traps Michigan - Belle River Mills Devonian reefs (Barriers and Atolls) Alberta CA. (Leduc & Redwater) Midland Basin &Delaware Basin of West TX - Barrier Reefs
Point Bars - Powder River Basin, WY, Clinton SS in Western Ok,
62
Petroleum ExplorationGeophysical Methods
Gravity methods
Magnetic surveys
Seismic surveys
64
Principle of Gravity Surveys Uncorrected Gravity +1 Gravity -1 Value (mgal) -2 -3
Corrected Gravity (Bouguer Anomaly) Meter
Clastics 2.4 gm/cm3
Salt 2.1 gm/cm3
65
Principle of Magnetic Surveys
Sedimentary Basin Basement
+
-
Magnetization Measured (from xxx, 19xx)
66
Seismic Surveys
The seismic tools commonly used in the oil and gas industry are 2-D and 3-D seismic data Seismic data are used to: – Define and map structural folds and faults – Identify stratigraphic variations and map sedimentary facies – Infer the presence of hydrocarbons
67
Pre-Drilling Knowledge Exploration
Structural information obtained from surface seismic data. Rough geological information can be provided by nearby wells or outcrops. Approximate depths estimated from surface seismic data.
68
Marine Acquisition System Boat Sea Surface Source (Airguns) Incident waves
Cable with hydrophones
Reflected waves
Sea bed Sedimentary Layers
69
Crossline 470 (East) N
S Seal (unconformity) Reservoirs
Source
70
Applications of Seismic Data
Make a structural model of the reservoir Delineate and map reservoir-quality rocks Establish gas/water contacts
71
- 12 6 0
0
Structural Map, VLE 196 Field 2
6
0
0
-1
-1
28 0 0
30 00
-1
- 12600
W
-1
22 0
0
-1 2 4 0 0
O
-1 2 4 0 0
Structural interpretation based on 3-D seismic and well log data
-1 1 6 0 0
-1
00
2
4
0
0
26 -1
24
1400
-1
00
-1
0 -12
Top Misoa C-4 Sand Elevation (ft) N
00
00
- 12400
-1
30
00
-12,800 -13,200
00
N
W
-12,400 -12,800
O
-12,000 -12,400
t F a u l 4 0 0 V L E
-11,600 -12,000
-1 26
- 11 6 0 0
- 11800
11,400 -11,600
40
0
60
0
W
O
12
- 1 2
0 40
3000 ft 1000 m
-
-1 2
0
0
- 11 60 0
Sea-level datum
0
80
- 1
28
12
72 00 - 128
Channels
Seismic Amplitude Map of a Horizon 3-D Seismic data define reservoirquality,channel-fill sand deposits
Modified from Brown, 1996
73
Fluid Level Boundaries on 3-D Data Not Interpreted
Flat spot on seismic line indicates petroleum / water contact
Interpreted
Fault Modified from Brown, 1996
74
Exercise 1 1. Oil forms at lower temperatures than gas. T_____ F ______ 2.The law of (original horizontality, uniformitarianism, superpos ition) states that, in a normal sedimentary sequence, younger layers occur on top of olders.layer 3.The largest division of geologic time is the (era, eon, period, epoch). 4.Hydrocarbons are most abundant in (metamorphic, igneous, sedimen tary) rocks. 5. The most abundant sedimentary rock type is shale. T____ F__ ____ 6. Name 3 clay minerals common in sandstone reservoirs A. _____________________ B.____________________ 7.
C. _________ ___________
Clastic rocks are formed from the materials of older rocks the by actions of erosion, transportation and __________________. Clastic rocks are sedimentary. T___ F____
8.
Name two non -clastic sedimentary rocks. A.______________ B.________________
9.
Alluvial, desert, delta, beach and shallow shelf sediment make he best t reservoirs
10.
T_______ F_______
Exercise 2 1.
1. Diagenesis is the chemical alteration of a rock after burial. T___ F ___
2.
(Magnesium, Iron, or Sulfate) must be in the formation water in order to convert limestone to dolomite.
3.
Limestone is (CaCO3 or Ca(CO3)2).
4.
Dolomite is MgCaCO3 or MgCa(CO3)2.
5.
Reef deposits are classified as (clastic, carbonate) sedimentary rocks.
6.
The source rock must contain (organic material, coal, methane).
7.
Fault and anticline traps occur only in gas wells. T___ F___
8.
The oil water contact can be observed using seismic T___ F___
9.
(Historical, structural, tectonic) geology addresses the occurrence and origin of smaller scale deformational features, such as folds and faults, that may be involved in hydrocarbon migration or which may form structural hydrocarbon traps.
10.
Good quality sandstone reservoirs normally contain ~(1-10 or 25-30% silt and clay).
81
Exercise 3 N 4
Well 4
3
3
4
2 1
a
b Well
c
d 82
• Circle the correct answer or label the drawing as directed. • 1. Figure “a” is a (normal, strike-slip, lateral) fault. • 2. If a well is drilled as shown on block “a” the target sandstone will most likely be missing. T ___ F ___ • 3. Figure “b” is a(n) (lateral fold, anticline, syncline). • 4. In Figure “b,” layer 1 = salt, 2 = sandstone, 3 = shale, and 4=limestone. On the figure, indicate the layer that is most likely have trapped hydrocarbon. • 5. Figure “c” is a(n) (right, left) lateral fault. • 6. On Figure “d,” the structure is a (normal fault, reverse, strike-slip) fault. • 7. A well drilled at the location shown on Figure “d” will find strata (repeated, missing).
Exercise 4 1.
2.
3. 3.
4.
5.
Hydrocarbons reservoirs are normally in (igneous, metamorphic, sedimentary) rocks. Fluorescence of drill cuttings or core indicates (oil, gas, water) is present. Reservoir traps are (very impermeable, highly permeable). What are 2 uses of seismic data in petroleum exploration and development? 1.
________________________________________________
2.
_________________________________________________
In inclined reservoir rocks, what is the significance of a “flat spot” in seismic sections? What is a 4-D seismic evaluation?
83
Basic Geologic Principles
Uniformitarianism - “The present is the key to the past.” Original Horizonality - “Sedimentary layers are deposited in a horizontal or nearly horizontal position.” Superposition - “Younger sedimentary beds occur on top of older beds, unless they have been overturned or faulted.” Cross-Cutting Relations - “Any geologic feature that cuts another geologic feature is younger than the feature that it cuts.”
5
•The following are basic principles or laws are used to evaluate the relative ages and the relations among rock layers. •Uniformitarianism - “The present is the key to the past.” By studying modern geologic processes, we can interpret past geologic events and rock-forming processes. •Original Horizonality - “Sedimentary layers are deposited in a horizontal or nearly horizontal position.” If sedimentary layers are tilted or folded, they have been subjected to deforming stresses. •Superposition - “Younger sedimentary beds occur on top of older beds, unless they have been overturned or faulted.” •Cross-Cutting Relations - “Any geologic feature that cuts another geologic feature is younger than the feature that it cuts.”
KLASIFIKASI BATUAN Batuan merupakan agregat padat yang terdiri dari mineral atau mineraloid, kebanyakan batuan terdiri atas beberapa jenis mineral (mineral, gelas, ubahan mineral organik, dan kombinasi dari komponen-komponen tersebut) (Ernest G. Ehlers & Harvey Blatt, 1980). Batuan didefinisikan juga sebagai kumpulan mineral alamiah yang terkristalkan oleh ‘proses pembentukan batuan’ (Huckenholz, 1982).
•
BERDASARKAN GENESA DAN KOMPOSISI – – – –
Batuan Beku Batuan Piroklastik Batuan Sedimen Batuan Metamorf
Distribusi batuan di bumi : • Batuan beku di kerak bumi bagian atas • Batuan sedimen di permukaan • Batuan metamorf di inti dalam, mantel, kerak bumi bagian bawah
BATUAN BEKU •
Batuan beku adalah batuan yang terbentuk akibat membekunya magma pada waktu perjalannya menuju ke permukaan bumi.
•
Hasil dari pembekuan magma tersebut membentuk berbagai jenis mineral yang mengikuti aturan tingkat diferensiasi dari magma.
•
Magma adalah cairan silikat yang panas dan pijar yang terdiri atas unsur-unsur O, Si, Al, Fe, Mg, Ca, Na, K dan sebagainya.
• Komposisi batuan beku dapat dibedakan dari komposisi secara mineralogi.: – Mineral utama (olivin, piroksen, felspar, kuarsa, plagioklas, dsb) – Mineral tambahan: mineral yang terbentuj dari kristalisasi magma tapi kehadirannya sedikit (contoh: apatit, rutil, mineral bijih, dsb) – Mineral sekunder: mineral hasil ubahan dari mineral-mineral primer (contoh: klorit, epidot, dll)
Kimiawi • Unsur utama (major element): seperti unsur oksoda SiO2, Al2O3, dll. • Unsur jejak (trace element): seperti Sr, Rb, Ba, dll. • Unsur tanah jarang (rare earth element): seperti La, Ce, Pr, dll.
Klasifikasi batuan beku: Pada dasarnya klasifikasi batuan beku didasarkan pada tekstur dan mineralogi.
• a. Berdasarkan tekstur: • IUGS (International Union of Geological Sciences) membagi batuan beku berdasarkan pada besar butir: • Batuan fanerik diklasifikasikan sebagai batuan plutonik, dimana butirannya kasar, sehingga secara individu dapat dibedakan, berbutir kasar-sedang (> 1 mm). Kristal-krital yang lebih besar (fenokris) tertanam dalam masa dasar yang lebih halus (Gambar 2). Klasifikasi batuan fanerik dilakukan oleh IUGS, 1973 (Gambar 3). • Batuan afanitik diklasifikasikan sebagai batuan vulkanik, dimana ukuran mineralnya terlalu kecil untuk dibedakan, umumnya berbutir haus (< 1mm). Klasifikasi batuan ini dapat dilihat pada Gambar 4.
• • • •
Berdasarkan mineralogi (Gambar 5) Dasar klasifikasi: Komposisi (%) mineral utama Kimiawi: •
• • •
silika (% SiO2) :
ultrabasa (SiO2 < 45%)
basa (SiO2 45 – 52%) intermediate (SiO2 52 – 66%) asam (SiO2 > 66%) •
alumina saturation – – – –
•
peralumina : jenuh terhadap alumina (Al2O3 > Na2O + K2O +CaO) peralkaline : oksida alkalin > oksida alumina subalumina : oksida alumina =/> oksida alkalin (Na2O + K2O) metalumina : oksida alumina =/> Na2O + K2O +CaO
color index proporsi mineral felsik dan mafik
•
• •
Batuan Piroklastik adalah batuan hasil letusan gunungapi. Terdiri atas material-material piroklastik, yaitu pecahan gelas/abu/debu gunungapi, kristal, lithik. Klasifikasi batuan piroklastik: Pada dasarnya pembagian batuan piroklastik didasarkan pada ukuran butir. Penamaan: tuf, tuf lapili, breksi piroklastik atau breksi vulkanik (Gambar 6). Untuk yang berbutir halus (<4 mm): tuff gelas, tuf kristal, tuf lithik (Tabel 1).
UKURAN CLAST (PECAHAN) > 64 mm
PIROKLAS Bomb Block
2 - 64 mm
Lapillus / Lapili
< 2 – 1/16 mm
Butiran debu kasar Butiran debu halus
< 1/16 mm
ENDAPAN PIROKLASTIK
NAMA BATUAN
Lapisan bom/blok atau tefra bom/blok Lapisan lapili atau tefra lapili Debu kasar
Aglomerat, breksi piroklastik
Debu halus
Tuf debu halus
Lapillitone / tuf lapili Tuf debu kasar
• Selain batuan piroklastik ini juga dikenal batuan epiklastik, yaitu batuan yang terbentuk dari campuran atau rombakan material-material batuan piroklastik (vulkanik) (Gambar 7). Contoh: batupasir vulkanik, tuf pasiran, dll.
BATUAN SEDIMEN •
Batuan sedimen adalah batuan yang berasal dari rombakan batuan yang telah ada yang telah mengalami siklus sedimentasi (pelapukan-transportasisedimentasi-diagenesa) (Gambar 9).
• Komposisi batuan sedimen: – Fragmen mineral/batuan hasil rombakan (terigen) – Material hasil proses kimiawi (material auttigenik), contoh: karbonat, fosfat. – Material allochem (rombakan hasil presipitasi terdahulu), contoh: fosil, mineral organik, dll.
• Penggolongan batuan sedimen • Batuan sedimen dapat diklasifikasikan berdasarkan beberapa cara: » Berdasarkan proses pembentukannya (Gambar 10): » Sedimentasi mekanis, contoh batulanau, batulempung, batupasir, dll. » Sedimentasi organis, contoh batubara, batugamping terumbu, batugamping bioklastik, dll » Sedimentasi kimiawi, contoh batugamping kristalin, dolomit, batugamping oolith, gips, anhidrit, dll.
? Berdasarkan asal-usulnya: Klastik terigenous Rudit, arenit, lutit
Endapan biokimia – Pengendapan biogenik – organik kimia Batugamping, Ironstones, dolomit, rijang, evaporit fosfat, batubara
Volkaniklastik Tufa, aglomerat
Batuan Sedimen Berdasarkan Tekstur •
Berdasarkan teksturnya dibagi menjadi dua, yaitu yang bertekstur klastik (berdasarkan mekanisme pengendapan), dan batuan yang bertekstur non klastik (kristalin).
•
•
Batuan Sedimen Klastik
Terdiri atas material detritus (hasil rombakan / pecahan), memperlihatkan tekstur klastik. Ukuran butir halus – kasar (Gambar 11), dibagi berdasarkan skala yang dinyatakan oleh Wentworth (Gambar 12).
Unsur-unsur tekstur batuan sedimen klastik: • • • • •
• • •
•
Butiran (grain) : klastik yang tertransport yang disebut sebagai fragmen. Matriks (masa dasar) : lebih halus dari fragmen/butiran, mengisi rongga antar fragmen, diendapkan bersama-sama dengan fragmen. Semen : berukuran halus, mengikat butiran/fragmen dan matriks, diendapkan ditempat sedimentasi setelah fragmen dan matriks. Pemilahan (sorting) : derajat kesamaan atau keseragaman butir. Dinyatakan dalam skala baik, sedang, atau buruk. Porositas : perbandingan volume pori terhadap volume batuan secara keseluruhan. Biasanya dinyatakan dalam % atau dalam kualitas (baik, sedang atau buruk). Batuan dengan butir yang seragam (terpilah baik) akan mempunyai porositas yang relatif lebih besar dari batuan dengan pemilahan buruk. Clay memiliki porositas yang paing besar, lalu batupasir dan kemudian breksi atau konglomerat. Kebundaran : menyatakan kebundaran atau ktajaman butiran yang mencerminkan tingkat abrasi selama transportasi. Merupakan sifat permukaan dari butiran yang disebabkan oleh pengaruh transportasi terhadap butiran. Kemas (fabric) : merupakan sifat hubungan antar butir sebagai fungsi orientasi atau packing. Dinyatakan dalam skala terbuka (kontak antar butiran tidak bersentuhan) dan tertutup (kontak antar butiran saling bersentuhan). Permeabilitas : kemampuan batuan meloloskan fluida, yang mencerminkan poriyang saling berhubungan. Batupasir merupakan batuan dengan permeabilitas yang baik, sedangkan clay walaupun memiliki porositas baik tapi permeabilitasnya yang buruk. Karena mineral dalam clay termasuk kedalam minera pirosilika yang bersifat konduktif, sehingga clay ini mengikat kation yang akan mengikat OH. Oleh karena itu clay memiliki sifat swelling (dapat mengembang bila terkena air), yang menyebabkan resistivity dari clay ini sangat rendah (Gambar 13). Struktur sedimen : penyimpangan dari bidang perlapisan. Struktur sedimen ini mencerminkan mekanisme yang mempengaruhi pengendapan batuan sedimen. Contoh: strutur sedimen pada mekanisme arus turbidit yang dinyatakan oleh Bouma dalam Sikuen Bouma.
Batuan Sedimen Non-Klastik •
Umumnya tersusun atas mineral autigenik (terbentuk di tempat sedimentasi). Pada P dan T tertentu seringkali memperlihatkan gejala diagenesa, akibatnya porositas batuan menjadi sangat rendah atau bakhan tidak ada. Porositas primer rendah dan memperlihatkan tekstur mozaik (contoh batugamping). Kadangkadang terdapat butiran yang amorf (seperti kalsedon dan opal) sebagai semen.
Batuan Sedimen Kimiawi •
Terbentuk akibat peranan/pengaruh proses-proses kimia dari larutan. Terdiri atas batuan karbonat dan batuan evaporit.
Batuan Karbonat •
•
Batuan karbonat adalah batuan sedimen yang mempunyai komposisi garam-garam karbonat yang dominan (> 50%). Proses pembentukannya dapat secara insitu, berasal dari larutan yang mengalami proses kimiawi maupun biokimiawi. Komposisi kimia dan mineralogi batuan karbonat: » » » »
Aragonit (CaCO3 orthorombik) Kalsit (CaCO3 hexagonal) Dolomit (CaMg(CO3)2) Magnesit (Mg CO3)
Porositas batuan karbonat: • Ada dua macam klasifikasi porositas dalam batuan karbonat: • menurut Murray (1960) merupakan klasifikasi berdasarkan pada genesa, dibagi menjadi: – Porositas primer : terbentuk pada saat sedimentasi berlangsung. Terdiri atas porositas kerangka framework porosity), porositas lumpur (mud porosity), dan porositas pasir (sand porosity). – Porositas sekunder : terbentuk setelah pengendapan, akibat pelarutan, rekahan atau perubahan yang terjadi setelah proses sedimentasi. – Sucrose dolomite porosity : terbentuk sebagai akibat adanya penggantian kalsit oleh dolomit.
•
menurut Choquette anfd Pray (1970) merupakan klasifikasi deskriptif dan genetik. Unsur-0unsurnya terdiri atas: –
Basic porosity types: • • •
–
fabric selective : interpartikel, intrapartikel, interkristalin, moldic, fenestral, shelter, growth framework. Non fabric selective : fracture, channel, vuggy, cavern Fabric selective or not : breccia, boring, burrow, shrinkage.
Modifying terms : genetic modifiers, size modifiers, abundance modifiers.
Klasifikasi batuan karbonat • Klasifikasi dalam batuan karbonat antara lain dikemukakan oleh Grabau (1913), Folk (1953), Pettijohn (1957), Dunham (1962), Embry and Klovan (1972), dll. • Klasifikasi yang banyak digunakan dalam penggolongan batuan karbonat adalah klasifikasi menurut Dunham, dan Embry and Klovan, karena klasifikasi ini cukup sederhana dan mudah dalam pemnakaiannya.
Klasifikasi Dunham (1962) • Klasifikasi ini didasarkan pada tekstur pengendapan (Gambar 17). Faktor yang penting dalam klasifikasi ini adalah: • Butiran didukung lumpur (mud supported) • Butiran saling menyangga (grain supported) • Sebagian butiran didukung lumpur, sebagian butiran saling menyangga (parteil)
Klasifikasi Embry and Klovan (1972) • Merupakan modifikasi dari klasifikasi Dunham, didasarkan pada terdapatnya lumpur diantara kerangka atau pecahan kerangka (Gambar 14).
Batuan Evaporit •
Merupakan batuan garam yang terbentuj jarena evaporasi air laut.. Mineral penyusunnya bersifat monomineralik, antara lain: garam (CaSO4 2H2O), anhidrit (CaSO4), dan halit (NaCl)
BATUAN METAMORF •
Batuan metamorf adalah batuan yang terbentuk akibat proses perubahan tekanan (P) dan temperatur (T) atau keduanya, dimana batuan memasuki kesetimbangan baru tanpa adanya perubahan komposisi kimia (isokimia) dan tanpa melalui fasa cair (dalam keadaan padat) dengan temperatur berkisar 200-800º C.
Perubahan yang terjadi dalam proses metamorfosa: perubahan tekstur dan struktur (yang merefleksikan sejarah pembentukkannya); dan asosiasi mineral. Struktur batuan metamorf: • Struktur foliasi (schistosity) struktur paralel yang ditimbulkan oleh mineral pipih/mineral prismatik, seringkali terjadi pada metamorfosa regional dan metamorfosa kataklastik. • Struktur non foliasi struktur yang dibentuk oleh mineral-mineral yang equidimensional, seringkali terjadi pada metamorfosa termal.
Beberapa struktur batuan metamorf: Yang bersifat foliasi: • • •
Slaty cleavage planar, dijumpai bidang belah batu sabak/slate. Filitik rekristalisasi lebih kasar dari slaty cleavage. Shistose struktur perulangan dari mineral pipih dan mineral granular dimana mineral pipih orientasinya menerus (tidak terputus). • Gneisose struktur perulangan dari mineral pipih dan mineral granular dimana mineral pipih orientasinya terputus, sering disebut close schistosity. • Milonitik menunjukan goresan-goresan akibat penggerusan yang kuat. • Filonitik gejala dan kenampakan sama dengan milonitik, hanya disini butirannya lebih halus.
Yang bersifat non foliasi: • Granulose terdiri atas mineral granular • Hornfelsik identik dengan granoblastik, tapi mineral equidimensional. Lepidoblastik terdiri atas mineral pipih/tabular • Nematoblastik terdiri atas mineral prismatik • Granoblastik terdiri atas mineral granular • Homeoblastik terdiri atas satu tekstur saja • Heteroblastik terdiri atas beberapa tekstur • Relic (sisa) tekstur sisa yang terbentuk sebelum metamorfosa • Kristaloblastik setiap tekstur yang terbentuk pada saat metamorfosa • Awalan “meta” bila masih dikenali sifat batuan asalnya, seperti metasedimen, metavolkanik, dll.
CONTINENTAL SEDIMENTARY ENVIRONMENTS Copyright ALLUVIAL FAN
1998 Pamela J. W. Gore
FLUVIAL
LACUSTRINE
DESERT (DUNES)
PALUDAL
Rock Type
Breccia, conglomerate, arkose
Conglomerate, sandstone, siltstone, shale
Siltstone, shale, limestone, or evaporites (gypsum)
Quartz arenite (sandstone) or gypsum
Peat, coal, black shale, siltstone
Composition
Terrigenous
Terrigenous
Terrigenous, carbonate, or evaporite
Terrigenous or evaporite
Terrigenous
Color
Brown or red
Brown or red
Black, brown, gray, green
Yellow, red, tan, white
Black, gray, or brown
Grain Size
Clay to gravel
Clay to gravel (Fining upward)
Clay to silt or sand (Coarsening upward)
Sand
Clay to silt
Grain Shape
Angular
Rounded to angular
---
Rounded
---
Sorting
Poor
Variable
Variable
Good
Variable
Inorganic Sedimentary Structures
Cross-bedding and graded bedding
Asymmetrical ripples, crossbedding, graded bedding, tool marks
Symmetrical ripples, lamination, cross-bedding, graded bedding, mudcracks, raindrop prints
Cross-bedding
Laminated to massive
Organic or Biogenic Sedimentary Structures
---
Tracks, trails,burrows
Tracks, trails, burrows, rare stromatolites
Tracks, trails
Root marks, burrows
Fossils
---
Rare freshwater shells, bones, plant fragments
Freshwater shells, fish, bones, plant fragments
---
Plant fossils, rare freshwater shells, bones, fish
MARINE SEDIMENTARY ENVIRONMENTS Copyright REEF
1998 Pamela J. W. Gore
CONTINENTAL SHELF
CONTINENTAL SLOPE AND RISE
ABYSSAL PLAIN
Rock Type
Fossiliferous limestone
Sandstone, shale, siltstone, fossiliferous limestone, oolitic limestone
Litharenite, siltstone, and shale (or limestone)
Shale, chert, micrite, chalk, diatomite
Composition
Carbonate
Terrigenous or carbonate
Terrigenous or carbonate
Terrigenous or carbonate
Color
Gray to white
Gray to brown
Gray, green, brown
Black, white red
Grain Size
Variable, frameworks, few to no grains
Clay to sand
Clay to sand
Clay
Grain Shape
---
---
---
---
Sorting
---
Poor to good
Poor
Good
Inorganic Sedimentary Structures
---
Lamination, crossbedding
Graded bedding, cross-bedding, lamination, flute marks, tool marks (turbidites)
Lamination
Organic or Biogenic Sedimentary Structures
---
Trails, burrows
Trails, burrows
Trails, burrows
Fossils
Corals, marine shells
Marine shells
Marine shells, rare plant fragments
Marine shells (mostly microscopic)
TRANSITIONAL SEDIMENTARY ENVIRONMENTS Copyright DELTA
1998 Pamela J. W. Gore
BARRIER BEACH
LAGOON
TIDAL FLAT
Rock Type
Sandstone, siltstone, shale, coal
Quartz arenite, coquina
Siltstone, shale, limestone, oolitic limestone or gypsum
Siltstone, shale, calcilutite, dolostone or gypsum
Composition
Terrigenous
Terrigenous or carbonate
Terrigenous, carbonate, or evaporite
Terrigenous, carbonate, or evaporite
Color
Brown, black, gray, green, red
White to tan
Dark gray to black
Gray, brown, tan
Grain Size
Clay to sand (Coarsening upward
Sand
Clay to silt
Clay to silt
Grain Shape
---
Rounded to angular
---
---
Sorting
Poor
Good
Poor
Variable
Inorganic Sedimentary Structures
Cross-bedding, graded bedding
Cross-bedding, symmetrical ripples
Lamination, ripples, crossbedding
Lamination, mudcracks, ripples, cross-bedding
Organic or Biogenic Sedimentary Structures
Trails, burrows
Tracks, trails, burrows
Trails, burrows
Stromatolites, trails, tracks, burrows
Fossils
Plant fragments, shells
Marine shells
Marine shells
Marine shells