Induction

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Induction as PDF for free.

More details

  • Words: 730
  • Pages: 5
%Design a 2.2KW, 400v, 3-phase, 50Hz, 1500 synchronous rpm, squirrel cage %induction motor. The machine is to be started by a star delta starter. The %efficiency is 0.8 and power factor is 0.825 at full load. %MAIN DIAMENSION disp('***************Main Diamension****************') n=input('Enter synchronous speed in rps:'); f = 50; p = 2*f/n Bav = 0.44; ac = 21000; Kw = 0.955; disp('Output coefficient:') Co = 11*Kw*Bav*ac/10^3 P= input('power handling capacity of motor in KW:'); eff = 0.8; pf = 0.825; disp('KVA input:') Q = P/(eff*pf) D = (Q/(1.18*Co*n))^(1/3) L = 1.18*D t = L/1.5 disp('Net iron length:') Li = 0.9*L

%frequency in Hz %No of poles

%efficiency %power factor

%Length of core

%STATOR DESIGN %winding disp('********************STATOR DESIGN******************') Es = input('Stator voltage per phase:'); disp('Flux per pole:') phi = Bav*t*L disp('Stator turns per phase:') Ts = Es/(4.44*f*phi*Kw) qs = 2; %slots per pole per phase Ss = qs*p*3 %Total stator slots Yss = pi*D*10^3/Ss %Stator slot pitch Total_stator_conductors = 6*Ts Zss = Total_stator_conductors/Ss %Stator conductors per slot Cs = Ss/4 %Coil span theta = pi/6 %Angle of chording Kp = cos(theta/2) Kd = sin(theta)/(2*sin(theta/2)) disp('Stator winding factor:') Kws = Kd*Kp %conductor size

disp('stator current per phase:') Is = P*10^3/(3*Es*eff*pf) Il = Is*sqrt(3) %stator line current Js = 4; %Current density As = Is/Js %Area of stator conductor req d = 0.95; as = pi/4*0.95^2 %Area of stator conductor used js = Is/as %Current density for stator conductors d1 = 1.041; %Slot diamension spreq = Zss*as Aslot = spreq/0.4 %space factor = 0.4 Wts_min = phi/(1.7*(Ss/p)*Li) %Minimum width of stator teeth Wts = 6; h=17; dss = h+4 %depth of slot Lmts = 2*L+2.3*t+Ss disp('Stator teeth') Flux_density = phi/((Ss/p)*Wts*Li) disp('Stator core') Flux = phi/2 Acs = Flux/1.2 %Assumed Flux_density = 1.2 dcsi = Acs/Li; dcs = 17; Bcs = (dcsi/dcs)*1.2 disp('Outside diameter of stator laminations') Do = 1000*D+2*dss+2*dcs %Rotor Design disp('********************Rotor Design********************') lgi= 0.2+ 2*sqrt(D*L) lg=0.3; %length of air-gap Dr = (D*1000 - 2*lg) %Diameter of rotor Sr = 22; %No of rotor slots Ysr = pi*Dr/Sr %Rotor slot pitch at air-gap ms = 3; disp('Rotor bar current') Ib = 2*ms*Kws*Ts*Is*pf/Sr jb = 6; abi = Ib/jb ab=44.6; Wsr = 6.8; Wdr = 9.3; Slot_pitch = pi*(Dr-2*Wdr)/Sr Wt = Slot_pitch-Wsr

Flux_rot_teeth = phi*10^3/((Sr/p)*Li*Wt) Lb = 1000*L+2*15+10 rho = 0.021; rb = rho*Lb/(ab*10^3) copper_loss = Sr*Ib^2*rb %end rings disp('Ring current') Irg = Sr*Ib/(pi*p) je = 6; ae = Irg/je de = 10; tc = 8; ae = de*tc; Dorg = Dr - 2*Wdr Dirg = Dorg - 2*de De = (Dorg+Dirg)/(2*10^3) %Mean diameter or end ring re = rho*pi*De/ae Copper_loss_ring = 2*Irg^2*re Total_copper_loss = Copper_loss_ring+copper_loss s=Total_copper_loss/(Total_copper_loss+P*10^3)*100 dcr = 17; Bcr = 1.185; Di = Dr - 2*Wdr - 2*dcr %No load current %1.Airgap disp('*************Magnetising current****************') disp('Airgap') Wo1 = 2; gap = 0.3; ratio1 = Wo1/gap Kcs1 = 0.68; %Carter's coeff for ratio 6.66 Kgss = Yss/(Yss - Kcs1*Wo1) Wo2 = 1.5; ratio2 = Wo2/gap Kcs2 = 0.6; %Carter's coeff for ratio 5 Kgsr = Ysr/(Ysr- Kcs2*Wo2) Kgs = Kgss*Kgsr Kgd =1; Kg = Kgs*Kgd Ag = pi*D*L/4 Bg6 = 1.36*Bav lge = Kgs*lg ATg = 8*10^5*Bg6*Kg*lg/10^3

%2.Stator tee th disp('stator teeth') Atp = Ss*Wts*Li/p Bts = 1.12; Bts6 = 1.36*Bts at_ts = 1200; mmf_req = at_ts*dss/10^3 %3.stator co re disp('stator core') Acs = Li*dcs Bcs = 1.185; lcs = pi*(D*1000+2*dss+dcs)/(3*p*1000) at_cs = 280; ATcs = 289*lcs %4.Rotor teeth disp('Rotor teeth') Wts3 = pi*(Dr-4*Wdr/3)/Sr - Wsr Atr = (Sr/p)*Wts3*Li/10^3 Btr3 = 1.16; Btr6 = 1.36*Btr3 a_tr = 2000; Atr = a_tr*Wdr/10^3 %5.Rotor core disp('Rotor core') Acr = Li*dcr/10^3 at_sr = 280; lcr = 18/10^3 ATcr = at_sr*lcr AT6 = ATg+ mmf_req + ATcs + Atr + ATcr Im = 0.427*p*AT6/(Kws*Ts) %Los s compon ent disp('Iron loss in stator teeth') Vst = 0.34/10^3; Wst = Vst*7.6*10^3 Max_flux = pi*Bts/2 Iron_loss1 = 11.5*Wst disp('Iron loss in stator core') Vsc = 0.985/10^3; Wsc = Vsc*7.6*10^3 Iron_loss2 = Wsc*4.9 Total_iron_loss = 2*(Iron_loss1+Iron_loss2)

%Friction & Windage Loss disp('Friction & Windage loss') Floss = 1.5*P*10^3/10^2 Total_noload_loss = Total_iron_loss+Floss Il = Total_noload_loss/(3*Es) Io = sqrt(Im^2+Il^2) percent_full_load_current = Io/Is*100 NL_pf = Il/Io %Short circuit current LAMss = 19.7/10^7; LAMsr = 15.7/10^7; LAMs =LAMss+LAMsr xs = 8*pi*f*Ts^2*L*LAMs/(p*qs) LoMo = 1.73/10^7; xo = 8*pi*f*Ts^2*LoMo/(p*qs) Xm = Es/Im qr = Sr/(3*p) xz = (1/(qs^2)+1/(qr^2))*5*Xm/(6*ms^2) Xs = xs+xo+xz rs = rho*Ts*Kcs1/as Total_stator_copper_loss = 3*Is^2*rs rr = Total_copper_loss/(3*Is^2*pf^2) Rs = rs+rr Zs = sqrt(Xs^2+Rs^2) Isc = Es/Zs sc_pf = Rs/Zs Total_lossfull_load=Total_stator_copper_loss+Total_copper_loss+Total_iron_loss+Floss

input = Total_lossfull_load+P*1000 eff_full_load = P*10^3/input*100 %END

Related Documents

Induction
April 2020 18
Induction
May 2020 15
Induction
May 2020 11
Induction-furnace.pptx
April 2020 2
Induction Exercise
June 2020 5
Induction Checklist
July 2020 5