Hm1_16_17.docx

  • Uploaded by: Joseph Naja
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Hm1_16_17.docx as PDF for free.

More details

  • Words: 410
  • Pages: 2
ETC-M2

Digital Communication Homework 1 1- Determine if the following signals are periodic. If yes, calculate the fundamental period for the signals. βˆ’5πœ‹π‘‘

πœ‹

i)

π‘₯(𝑑) = |sin (

ii)

π‘₯(𝑑) = sin (

iii)

π‘₯(𝑑) = exp (𝑗

iv) v)

π‘₯[π‘˜] = 5 Γ— (βˆ’1)π‘˜ 7πœ‹π‘˜ 3π‘˜ π‘₯[π‘˜] = exp (𝑗 4 ) + exp⁑(𝑗 4 )

vi)

π‘₯[π‘˜] = sin (

vii)

π‘₯[π‘˜] = exp (𝑗

8 6πœ‹π‘‘

+ 2 )|

3𝑑

) + 2cos⁑( 5 )

7 3πœ‹π‘‘ 8

3πœ‹π‘˜

πœ‹π‘‘

) + exp⁑( ) 86

) + π‘π‘œπ‘ β‘(

8 7πœ‹π‘˜ 4

63πœ‹π‘˜

)

64 4πœ‹π‘˜

) + π‘π‘œπ‘ β‘(

7

+ πœ‹)

2- Determine if the following signals are even, odd, or neither-even-nor-odd. In the later case, evaluate and sketch the even and odd components of the CT signals. i) ii) iii) iv) v) vi)

π‘₯(𝑑) = 2sin⁑(2πœ‹π‘‘)[2 + cos⁑(4πœ‹π‘‘)] π‘₯(𝑑) = 𝑑 2 + cos⁑(3𝑑) 3𝑑 0≀𝑑≀2 6 2≀𝑑≀4 π‘₯(𝑑) = { 3(βˆ’π‘‘ + 6) 4 ≀ 𝑑 ≀ 6 ⁑⁑⁑⁑⁑⁑⁑⁑0 β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ 2πœ‹π‘˜ π‘₯[π‘˜] = sin(4π‘˜) + cos⁑( 3 ) 7πœ‹π‘˜

π‘₯[π‘˜] = exp⁑(𝑗 4 ) + cos⁑( π‘˜ π‘₯[π‘˜] = {(βˆ’1) π‘˜ β‰₯ 0 1 π‘˜<0

4πœ‹π‘˜ 7

+ πœ‹)

3- Determine if the following signals are energy or power or neither. Calculate the energy and power of the signals in each case. i)

π‘₯(𝑑) = π‘π‘œπ‘ β‘(2πœ‹π‘‘)sin⁑(3πœ‹π‘‘)⁑

ii)

π‘₯(𝑑) = {

iii)

2016-2017

π‘π‘œπ‘ β‘(2πœ‹π‘‘) βˆ’3 ≀ 𝑑 ≀ 3 0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑑 0≀𝑑≀2 π‘₯(𝑑) = {4 βˆ’ 𝑑 2 ≀ 𝑑 ≀ 4 0 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’

ETC-M2

iv)

π‘₯[π‘˜] = π‘π‘œπ‘ β‘(πœ‹π‘˜)sin⁑(3πœ‹π‘˜)

v)

π‘₯[π‘˜] = (βˆ’1)π‘˜

vi)

(βˆ’1)π‘˜ π‘₯[π‘˜] = { 1 0

0β‰€π‘˜β‰€2 2β‰€π‘˜β‰€4 π‘’π‘™π‘ π‘’π‘€β„Žπ‘’π‘Ÿπ‘’

4- Evaluate the following integrals +∞

i)

βˆ«βˆ’βˆž (t βˆ’ 1)Ξ΄(t βˆ’ 5)dt

ii)

βˆ«βˆ’βˆž ( 3 βˆ’ 5) Ξ΄ ( 4 βˆ’ 6) dt

iii)

βˆ«βˆ’βˆž exp(t βˆ’ 1)sin⁑(

iv)

βˆ«βˆ’βˆž [sin (

v)

βˆ«βˆ’βˆž [u(t βˆ’ 6) βˆ’ u(t βˆ’ 10)] sin (

+∞ 2t

3t

+∞

+∞

3Ο€t 4

5

Ο€(t+5) 4

)Ξ΄(1 βˆ’ t)dt

) + exp(βˆ’2t + 1)]Ξ΄(βˆ’t βˆ’ 5)dt

+∞

3Ο€t 4

) Ξ΄(t βˆ’ 5)dt

5- Find the Fourier transform of i) ii) iii) iv)

x(t) = teβˆ’t u(t)⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑⁑(a > 0) x(t) = sin⁑(Ο‰0 t) Ξ΄T (t) = βˆ‘βˆž n=βˆ’βˆž Ξ΄(t βˆ’ nT) x(t) = cos⁑(Ο‰0 t) + 𝑠𝑖𝑛2 (Ο‰0 t)

6- Find the Fundamental period T0 and the Fourier coefficients cn of the signal: i) ii)

2016-2017

1

1

π‘₯(t) = cos (3 t) + sin (4 t) π‘₯(t) = cos 4 (t)

More Documents from "Joseph Naja"