ETC-M2
Digital Communication Homework 1 1- Determine if the following signals are periodic. If yes, calculate the fundamental period for the signals. β5ππ‘
π
i)
π₯(π‘) = |sin (
ii)
π₯(π‘) = sin (
iii)
π₯(π‘) = exp (π
iv) v)
π₯[π] = 5 Γ (β1)π 7ππ 3π π₯[π] = exp (π 4 ) + expβ‘(π 4 )
vi)
π₯[π] = sin (
vii)
π₯[π] = exp (π
8 6ππ‘
+ 2 )|
3π‘
) + 2cosβ‘( 5 )
7 3ππ‘ 8
3ππ
ππ‘
) + expβ‘( ) 86
) + πππ β‘(
8 7ππ 4
63ππ
)
64 4ππ
) + πππ β‘(
7
+ π)
2- Determine if the following signals are even, odd, or neither-even-nor-odd. In the later case, evaluate and sketch the even and odd components of the CT signals. i) ii) iii) iv) v) vi)
π₯(π‘) = 2sinβ‘(2ππ‘)[2 + cosβ‘(4ππ‘)] π₯(π‘) = π‘ 2 + cosβ‘(3π‘) 3π‘ 0β€π‘β€2 6 2β€π‘β€4 π₯(π‘) = { 3(βπ‘ + 6) 4 β€ π‘ β€ 6 β‘β‘β‘β‘β‘β‘β‘β‘0 β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘πππ ππ€βπππ 2ππ π₯[π] = sin(4π) + cosβ‘( 3 ) 7ππ
π₯[π] = expβ‘(π 4 ) + cosβ‘( π π₯[π] = {(β1) π β₯ 0 1 π<0
4ππ 7
+ π)
3- Determine if the following signals are energy or power or neither. Calculate the energy and power of the signals in each case. i)
π₯(π‘) = πππ β‘(2ππ‘)sinβ‘(3ππ‘)β‘
ii)
π₯(π‘) = {
iii)
2016-2017
πππ β‘(2ππ‘) β3 β€ π‘ β€ 3 0 πππ ππ€βπππ π‘ 0β€π‘β€2 π₯(π‘) = {4 β π‘ 2 β€ π‘ β€ 4 0 πππ ππ€βπππ
ETC-M2
iv)
π₯[π] = πππ β‘(ππ)sinβ‘(3ππ)
v)
π₯[π] = (β1)π
vi)
(β1)π π₯[π] = { 1 0
0β€πβ€2 2β€πβ€4 πππ ππ€βπππ
4- Evaluate the following integrals +β
i)
β«ββ (t β 1)Ξ΄(t β 5)dt
ii)
β«ββ ( 3 β 5) Ξ΄ ( 4 β 6) dt
iii)
β«ββ exp(t β 1)sinβ‘(
iv)
β«ββ [sin (
v)
β«ββ [u(t β 6) β u(t β 10)] sin (
+β 2t
3t
+β
+β
3Οt 4
5
Ο(t+5) 4
)Ξ΄(1 β t)dt
) + exp(β2t + 1)]Ξ΄(βt β 5)dt
+β
3Οt 4
) Ξ΄(t β 5)dt
5- Find the Fourier transform of i) ii) iii) iv)
x(t) = teβt u(t)β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘β‘(a > 0) x(t) = sinβ‘(Ο0 t) Ξ΄T (t) = ββ n=ββ Ξ΄(t β nT) x(t) = cosβ‘(Ο0 t) + π ππ2 (Ο0 t)
6- Find the Fundamental period T0 and the Fourier coefficients cn of the signal: i) ii)
2016-2017
1
1
π₯(t) = cos (3 t) + sin (4 t) π₯(t) = cos 4 (t)