MAYTAS NAFTOGASBUD JV
CONTENTS 1.0 1.1 1.2 1.3 2.0
GSPL203-73-1505 Rev 1
PAGE NO
INTRODUCTION........................................................................................................................................................... 3 GENERAL ....................................................................................................................................................................... 3 DESIGN PHILOSOPHY ..................................................................................................................................................... 3 REFERENCES .................................................................................................................................................................. 3 DESIGN CALCULATION ............................................................................................................................................ 5
2.1 DESIGN OF PLINTH BEAM .............................................................................................................................................. 7 2.2 DESIGN OF GRADE BEAM ..................................................................................................................................................... 7 2.3 DESIGN OF COLUMN ............................................................................................................................................................ 8 2.4 DESIGN OF RC WALL ....................................................................................................................................................... 11 2.5 DESIGN OF FOOTING .................................................................................................................................................... 14 3..0 CONCLUSION .................................................................................................................................................................. 24
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 2 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
1.0 INTRODUCTION 1.1 General The objective of this document is to define the minimum requirements for the design and engineering of the BHARUCH JAMNAGAR PIPELINE PROJECT. The general scope of work is for engineering procurement and construction of the Bharuch Anand– GSPL pipeline system and related facilities including Despatch Station, SV Stations, Tap-off station and receiving station. This pipeline broadly consists of approximately 103.50 KMs of 30” line pipe from existing station (Receiving Station) at rajkot on GSPL 24” Anand Rajkot Pipe-line to village Pipli at chainage 89.67 Km (Receiving Station at Jamnagar) and subsequently to Reliance Receiving Station (at Reliance premises)
The purpose of this document is for providing the Design and Details of Boundary wall for SV1 Station in Bodi Ghodi at Chainage 21.75 Km which consists of Brick Masonry above and below the Ground Level . Beams are provided at Top of Footing Level, Plinth Level, and at Top of wall over which wire fencing is supported
1.2 Design Philosophy The RCC Wall below the GL is supported on Grade Beam and the Brick Masonry above the GL is supported by Plinth Beam respectively. The tie beam has been designed for wind load and fencing. The brick masonry has been checked for Compressive Stress and Shear Stress as per IS 1905-1987. The external loads are transferred through these beams to Columns and Foundations. The height of wall is 2.5m from FGL. The Column Foundations has been designed as Isolated Footing at a depth of 1.71m below NGL for SBC of 500 KN/ m2 as per Soil Report. Wind Pressure Calculation shall be based on basic wind speed of 50m/s. Seismic Shear has been calculated for Zone IV . Wind load is found to be critical and also Earth Pressure has been considered including Surcharge of 10 KN/ m2.
1.3 References IS : 456-2000
Code of practice of plain and reinforce concrete.
IS 1905-1987
Code of Practice for Structural Use of Un-reinforced Masonry
SP -16
Design Aids for Reinforced Concrete to IS:456-1978
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 3 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
.
IS : 875-1987
(Parts I to V) Code of practice for Design loads (other than earthquake) for Buildings and Structures
IS : 1893 Pt.I-2002 Criteria for Earthquake Resistant Design of Structure. IS :13920
Code of practice for ductile detailing of RCC Structures subjected to Seismic forces
S: 1080-
Code of practice for design and construction of shallow foundations in soils (other than raft, ring and shell).
IS:1904-
Code of practice for design and construction of foundations in soils - General requirements.
IS:6403 -
Code of practice for determination of bearing capacity of shallow foundations.
IS:8009 (Part-I)-
Code of practice for settlement of foundations.
IS: 2911(Part-1/Sec2)-1980-
Code of Practice For Design and Construction of pile Foundations
IS: 2911(Part-1/Sec3)-1979 -Code of Practice For Design and Construction of pile Foundations IS: 2911(Part-1/Sec4)-198
- Code of Practice For Design and Construction of pile Foundations
IS: 2911(Part-4)-1985-
Code of Practice For Design and Construction of pile Foundations
IS: 2911(Part-III)-1980-
Code of Practice For Design and Construction of pile Foundations
Job 37/06-07
Geotechnical / Soil Investigation Report of M. K.. Soil Test Laboratory, Ahmedabad-7
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 4 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
2.0 Design Calculation Tie Beam 345x230
Calculation of Wind Load at FGL of Compound Wall
Brick Wall (230 Tk) WIND 2.5 m
PLINTH BEAM (345x300)
GRADE BEAM (345 x 300)
FGL +99.55
RCC Wall (150Tk)
5 KN/m2
1.71 m
27.44 KN/m2 Earth Pressure Diagram
Vb 50 m/s K1= 1.05 K2= 1.05 K3= 1 Design wind speed Vb*K1*K2*K3 Design wind pressure 0.6*Vz2 Force coeffiicient (Table 24)B/h=1.16<12 Total wind pressure Length of wall above FGL Wind shear 2.19*2.27 Shear stress 4.97/0.23 Allowable shear stress
= = = = = = = = = =
0.1+fd/6
Height of wall above FGL Moment at top of Plinth Beam due to wind Self weight of Brick wall Compressive stress on the wall
4.97*(2.27/2) 0.23*20*2.27 10.442/0.23 + 5.64x6/1x0.2302
Slenderness ratio 2.27/0.23 Redn. Factor (as per Tab 9) 2.27/2.655 Height / Width ratio Shape Modification Factor Allowable Compressive Stress ( as per Tab8 of IS 1905) =8.35x0.89x1.2 for Mortar Type M1 CALCULATION OF SEISMIC FORCE ON COMPOUND WALL (As per IS 1893-2002) Zone factor for Zone IV Z Importance factor I Reduction Factor R (as per IS 1893-2002, Tab 7) Sa/g For Rock 1.00/T Time Period=T 0.09*h/d^0.5 Horizontal Seismic Coefficient h=4.21m d=0.23m α = Z*I*Sa/2*R*g Weight of wall 0.23*2.27*20 0.13*10.44 Seismic shear Shear stress Allowable shear stress 0.1+fd/6
1.39/0.23
= = = = = = = =
55.125 1.82 1.2 2.19 3 4.97 21.59 0.022 0.1+0.685/6 0.214 2.27
N/mm2 M
Hence, SAFE
684.76 KN/M2 0.685 N/mm2 9.87 0.89 0.85 1.20 8.92 N/mm2 > 0.685 N/mm2
0.24 1.5 1.5 1.27 0.79
=
0.15
= = = =
KN/M2 M Kn/M 2 Kn/M N/mm2
5.64 KN.M/M 10.442 KN/M
= = = = =
= =
m/s KN/M2
10.44 KN/m 1.59 KN/m 6.90 KN/M2 0.007 N/mm2 0.1+0.224/6 2 0.14 N/mm
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
SAFE
Page 5 of 29
MAYTAS NAFTOGASBUD JV Height of wall above FGL Moment at top of Plinth Beam due to Seismic Compressive stress on the wall
GSPL203-73-1505 Rev 1 = 1.39*(2.27/2) 10.44/0.23 + 1.58x6/1x0.2302
=
2.27 M 1.80 KNm/M 249.57 KN/M2 0.250 N/mm2
=
Wind Shear Governs Design of Brick Masonry: Boundary wall is supported on all four sides Panel size
Length L Height H Height/Length Refer table 14 of IS 1905 Bending moment PL2/24
=
Design of Tie Beam For Vertical Load Assume Size of Tie beam Length of ISA 50X50X6 450+300x1.414 Wt of ISA 50x50x6 @ 3.8 Kg/m Wt of Barbed Wire @ 0.1 Kg/m for 15m Total Wt. of Fence post (ISA 50x50x5) and Barbed wire
For Barbed wire Total area Wind Pressure Total Load 2.19x0.0475 This will act at half of the projected height of fence Projected Ht. of fence Total Moment 0.1*0.375 Size of Tie beam Effective Depth (230-40-10) K= M/bd2 Provide Minimum reinforcement Percentage of reinforcement Area of reinforcment Provide 12 dia 2 nos Area provided 2*3.14*12*12/4 Max. Shear 1.98x1.5+0.05/2 From IS 456, Tab 62 Vus/d 1.5x3/18 Provide stirrups #8 @ 150 c/c Calculation of Earth Pressure Density of Soil w Co-eff. of Earth Pressure at rest Ko for Sand Ko = 1-sin ∅ ∅ = 30 (Assumed) Surcharge q Lateral Earth Pressure due to Surcharge Lateral Earth Pressure due to Earth for a height of 1.71m Average Earth Pressure Design of Brick Masonry below FGL : Shear stress due to 16.29/0.23x2.15
2.7 m 2.27 m 0.84
= 4.97*2.72/24 = 1.51 KNm = 1.51*10^6*6/(2700*(230+15+15)^2) 2 = 0.05 N/mm < 0.05*1.25 = 0.06 N/mm2 Refer Cl 5.4.2 of IS 1905-1987 (Note 2) SAFE
Bending Stress
Self Weight of Tie Beam 0.23*0.345*25 Bending Moment 1.98*3*3/12+0.05*3/4 Factored Moment 1.52*1.5 For Wind Load on Fencing Area of Exposure For ISA 50x50x5
= =
= = = =
= = =
= = = = = = =
345x230 0.87 3.32 1.5 4.82 0.05 1.98 1.52 2.28
0.05x0.75 0.0375 0.002x5 0.01 0.0475 2.19 0.10
= =
m Kg Kg Kg KN KN/m KN .m KN.m
m2 m2 2 m KN/m2 KN
0.75 m 0.039 KN.m = = =
345x230 mm 180 mm 0.20
= =
0.205 % 162.6675 mm2
= =
226.08 mm2 3.00 KN
=
0.25
=
26.4 KN/m3
=
0.5
= = = = = = =
10 0.5x10 5 0.5x26.4x1.71 22.572 (5+27.44)/2 16.286
=
< BM due to Vertical Load
KN/m2 KN/m2 KN/m2 KN/m2
152.24 Kn/M2
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 6 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
2.1 Design of Plinth Beam For lateral earth pressure: Assume Size of Plinth beam Self Weight of Plinth Beam 0.3*0.345*25 Average Earth Pressure Load due to Earth Pressure 16.29 x 1.71/2 Bending Moment 13.92*3*3/10 Factored Moment 12.53*1.5 For vertical Load : Total weight of Brick panel Self Weight of Plinth Beam 0.3*0.345*25 Total Udl 13.03*3*3/10 Bending Moment Size of Plinth beam Effective Depth ( 345-40-8) K= M/bd2 Percentage of reinforcement Area of reinforcement Provide 16 dia 2 nos Area provided 2*3.14*16*16/4 Max. Shear 13.92 x3/2 From IS 456, Tab 62 Vus/d 1.5x20.89/29.7 Provide stirrups #8 @ 150 c/c
= = = = = = = = = = = = = = = = =
345x300 2.59 16.29 13.92 12.53 18.80
KN/m KN/m2 KN/m KN.m KN.m
10.442 KN/m 2.59 KN/m 13.03 11.73 345x300 297 0.71 0.216 192.456
KN/m KN/m mm mm
< BM due to lateral earth pressure
% 2 mm
401.92 mm2 20.89 KN 1.05
2.2 Design of Grade Beam For lateral earth pressure: Assume Size of Grade beam Average Earth Pressure Load due to Earth Pressure
16.29 x 1.71/2
= = =
Total Load Bending Moment Factored Moment
13.92*3*3/10 12.53*1.5
= = =
13.92 KN/m 12.53 KN.m 18.80 KN.m
= =
4.125 KN/m 2.59 KN/m
For vertical Load : Total weight of RCC panel 0.15x1.1x25 Self Weight of Grade Beam 0.3*0.345*25 Total Load Bending Moment 6.71*3*3/12 Size of Grade beam Effective Depth ( 345-40-8) K= M/bd2 From SP 16, Tab 3 Percentage of reinforcement Area of reinforcement Provide 16 dia 2 nos Area provided 2*3.14*16*16/4 Max. Shear 13.92 x3/2 From SP 16, Tab 62 Vus/d 1.5x20.89/29.7 Provide stirrups #8 @ 150 c/c
= = = = =
345x300 16.29 KN/m2 13.92 KN/m
6.71 5.03 345x300 297 0.71
KN/m KN/m mm mm
= =
0.216 % 2 192.456 mm
= =
401.92 mm2 20.89 KN
< BM due to lateral earth pressure
1.05
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 7 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
2.3 Design of Column Self Wt. of Centre column 0.475x0.3x4.0x25 Self Wt. of Centre column @ Expan 0.345x0.3x4x25 Self Wt. of Corner column 0.410x0.410x4.0x25 Moment due to wind at the top of Pile cap 4.97x (2.5/2+1.71) x 3+0.1x4.575 +2.19x3x0.23x(3.98+0.115) Moment due to wind at the top of Plinth Beam 4.97x (2.5/2) x 3+0.1x(2.5+0.375)+ 2.19x0.23x3x2.39 Centre Column 475mm x 300 mm Fx Fy Fz SLS DL+WL+EP 0.00 73.55
100.06
122.20
0
0.00
ULS 1.5DL+1.5WL+1.5EP
150.09
183.30
0
0.00
0
110.33
0
22.53 KN.m
Total Vertical Load on Column 10.35+6.71x1.5+13.03*1.5+1.98x1.5+0.05 Total moment due to Seismic at top of footing at perpendicular direction to wall (50.77+16.22x3x1.71x0.85)/2 Length /depth ratio 2500/300 Size of column 345x300 mm Concrete grade Reinforcement grade 415 N.mm2
My
Mz
122.20 KNm 8.33 Short column (300=parrellel to wall, 475=Perpendicular to wall)
=
110.33 KN 183.30 KNm
= =
2.75 % 3918.75 mm2 0.11
= =
0.11 0.03 0.135 228.45 KNm
3928 mm =
>
Muy
2
47.99 KN
22.53 KNm 5.26
=
71.99 KN 33.80 KN.m
=
1% 1425 mm2 0.04
= =
Short column
0.11 0.02 0.06
=
Fz
64.44
KN KN KN KN.m
73.55 KN
=
Centre Column at Expansion Jt. 345mm x 300 mm Fx Fy SLS DL+WL+EP 0.00 42.96 ULS 1.5DL+1.5WL+1.5EP
=
=
Factored moment perpendicular to wall Muy = Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement = p/Fck UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/475 = Use chart 45 Pu/fck bd 110.33*1000/25*300*475 = Muy1/fckbd2 Muy1= 0.135*25*300*475*475 Hence,Safe Provide 8 # 25 Area of Reinforcement provided = At FGL: Total weight of brick wall and beams at Plinth Level 2.59x3+10.44x3+0.3x0.475x2.5x25 Total moment due to wind at bottom of Plinth beam = 4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39 Length /depth ratio 2500/475 Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu Factored moment perpendicular to wall Muy Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement = p/Fck 1.0/25 UNIAXIAL MOMENT CAPACITY YY direction d'/D 52.5/475 Use chart 45 Pu/fck bD 71.99*1000/25*300*475 = 2 Mux1/fckbD 0.06*25*300*475*475/10^6
14.25 10.35 16.81 50.77
Mx
For Centre Column (Uni-axial bending) Total Vertical Load on Column 14.25+6.71x2.7+13.03*2.7+1.98x3+0.05 Total moment due to Seismic at top of footing at perpendicular direction to wall 50.77+16.29x3x1.71x0.85 Length /depth ratio 2500/300 Size of column 475x300 mm Concrete grade Reinforcement grade 415 N.mm2 Factored Pu
Muy1=
= = =
101.53 KNm
Mx
>
My
Muy
Mz
50.03
61.10
0
0.00
75.05
91.65
0
0.00
=
42.96 KN 61.10 KNm 8.33 Short column (300=parrellel to wall, 345=Perpendicular to wall)
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 8 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Factored Pu
=
Factored moment perpendicular to wall
64.44 KN
=
Muy
91.65 KNm
Reinforcement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage = 2.25 % Area of Reinforcement = 2328.75 mm2 p/Fck = 0.09 UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/345 = 0.15 Use chart 45 Pu/fck bd 64.44*1000/25*300*345 = 0.02 2 Muy1/fckbd = 0.115 Muy1= 0.115*25*300*345*345 = 102.66 KNm > Muy Hence,Safe Provide 8 # 20 Area of Reinforcement provided = 2512 mm2 At FGL: Total weight of brick wall and beams at Plinth Level = 26.01 KN 2.59x1.5+10.44x1.5+0.3x0.345x2.5x25 Total moment due to wind at bottom of Plinth beam = (4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39)/2 11.27 KNm Length /depth ratio 2500/345 7.25 Short column Size of column 300x345 mm (300=parrellel to wall, 345=Perpendicular to wall) Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu = 39.02 KN Factored moment parrellel to wall Mux = 16.90 KN.m Factored moment perpendicular to wall Muy = 16.90 KN.m Reinfocement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage Area of Reinforcement p/Fck 1.5/25 UNIAXIAL MOMENT CAPACITY XX direction Use chart 45 Muy1=
d'/D Pu/fck bD Mux1/fckbD2 0.08*25*300*345*345/10^6
Corner Column
410mm x 410 mm
SLS DL+WL+EP
Fx
ULS 1.5DL+1.5WL+1.5EP
=
1.5 %
=
1552.5 mm2 0.06
= =
0.13 0.02 0.08 71.42 KNm
=
52.5/345 = 39.02*1000/25*300*345 =
Fy
Fz
Mx
>
My
Muy
Mz
50.03
82.03
50.03
61.10
0
61.10
75.05
123.05
75.05
91.65
0
91.65
For Corner Column ( Bi- axial bending) Total weight of brick wall and beams at top of Pile Cap 16.81+6.71x3+13.03x3+1.98x3+0.05 Total moment due to wind at top of Pile cap at perpendicular direction to wall (50.77+16.22x3x1.7x0.85)/2 Total moment due to wind at top of Pile cap at perpendicular direction to wall
=
82.03 KN
= 61.10 KNm =
61.10 KNm Length /depth ratio 2500/345 7.25 Short column Size of column 410x410 mm (410=parrellel to wall, 410=Perpendicular to wall) Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu = 123.05 KN Factored moment parrellel to wall Mux = 91.65 KN.m Factored moment perpendicular to wall Muy = 91.65 KN.m Reinfocement will be equally distributed on all four sides with 20 mm bars and eff. cover of 52.5 mm Assume reinforcement percentage = 2.25 % 2 Area of Reinforcement = 3782.25 mm p/Fck 2.3/25 = 0.09 UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/410 = 0.13 Use chart 45 Pu/fck bD 123.05*1000/25*345*345 = 0.03 2 Mux1/fckbD = 0.115 Mux1= 0.115*25*410*410*410/10^6 = 198.15 KNm YY Direction d'/D 52.5/410 = 0.13 Use chart 45 Pu/fck bd 123.05*1000/25*345*345 = 0.03 Muy1/fckbd2 = 0.115 Muy1= 0.115*25*410*410*410/10^6 = 198.15 KNm Refer chart 63 for calculation of Pz
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 9 of 29
MAYTAS NAFTOGASBUD JV p=2.25%
fy=415
Pu/Puz Mux/Mux1 Muy/Muy1 Referring to chart 64 For Muy/Muy1 and Pu/Puz
GSPL203-73-1505 Rev 1 fck=25 Puz/Ag Puz 123.05/2992.18 91.65/198.15 91.65/198.15 Mux/Mux1 Safe
= = = = =
=
17.8 N/mm2 2992.18 KN 0.04 0.46 0.46 0.54
>
0.46
Provide 8 # 25 Dia. Area of Reinforcement provided
= 3928 mm2 At FGL: Total weight of brick wall and beams at top of Pile Cap = 49.59 KN 2.59x3+10.44x3+0.3x0.475x2.5x25 Total moment due to wind at top of Pile cap at perpendicular direction to wall = (4.97x (2.5/2) x 3+0.1x(2.5+0.375)+2.19x0.23x3x2.39)/2 = 11.27 KNm Total moment on top of Pile Cap at parellel direction to wall = 11.27 KNm Length /depth ratio 2500/345 7.25 Short column Size of column 345x345 mm (345=parrellel to wall, 345=Perpendicular to wall) Concrete grade M25 Reinforcement grade 415 N.mm2 Factored Pu = 74.39 KN Factored moment parrellel to wall Mux = 16.90 KN.m Factored moment perpendicular to wall Muy = 16.90 KN.m Reinfocement will be equally distributed on all four sides with eff. cover of 52.5 mm Assume reinforcement percentage = 1.25 % Area of Reinforcement = 1487.8125 mm2 p/Fck 1.25/25 = 0.05 UNIAXIAL MOMENT CAPACITY XX direction d'/D 52.5/345 = 0.15 Use chart 45 Pu/fck bD 74.39*1000/25*410*410 = 0.02 Mux1/fckbD2 = 0.075 Mux1= 0.075*25*410^3/10^6 = 129.23 KNm YY Direction d'/D 52.5/345 = 0.15 Use chart 45 Pu/fck bd 74.39*1000/25*410*410 = 0.03 2 Muy1/fckbd = 0.075 Muy1= 0.075*25*410*410*410/10^6 = 129.23 KNm Refer chart 63 for calculation of Pz p=1.25 fy=415 fck=25 2 Puz/Ag = 14.8 N/mm Puz = 1761.57 KN Pu/Puz 74.39/1761.57 = 0.04 Mux/Mux1 16.9/129.23 = 0.13 Muy/Muy1 16.9/129.23 = 0.13 Referring to chart 64 For Muy/Muy1 and Pu/Puz Mux/Mux1 = 0.85 > 0.13 Safe Provide 8 # 16 Dia. Area of Reinforcement provided = 1600 mm2 Design of Brick Masonry below FGL : Shear stress due to 16.29/0.23x2.15 Earth Pressure Allowable shear stress 0.1+fd/6
= = = = =
Height of wall
Moment at top of Plinth Beam due to wind Self weight of Brick wall Compressive stress on the wall
16.286*(1.71/2) 0.23*20*1.11 5.106/0.23 + 13.92x6/1x0.2302
= =
Kn/M2 N/mm2 N/mm2 M
Hence, SAFE
13.92 KN.M/M 5.106 KN/M 1601.54 KN/M2
= = = =
Slenderness ratio 1.11/0.23 Allowable Compressive Stress ( as per Tab8 of IS 1905) for Mortar Type M1
152.24 0.152 0.1+ 1.602/6 0.367 1.71
1.602 N/mm2 4.78 8.35 N/mm2 > 1.806 N/mm2
Boundary wall is supported on all four sides Panel size
Length L Height H Height/Length Refer table 14 of IS 1905 2 Bending moment PL /24 Bending Stress
= = =
2.7 m 1.1 m 0.41 2
= 16.29*2.7 /24 = 4.95 KNm = 4.95*10^6*6/(1100*(345+15+15)^2) = 0.19 N/mm2 > 0.07*1.25 = 0.0875 N/mm2 Refer Cl 5.4.2 of IS 1905-1987 (Note 2) Hence, unsafe and wall should be designed as RCC
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 10 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
2.4 Design of RC WALL RC wall has been designed as slab discontinuous in all four sides
Thickness of Wall, Thk
=
150
mm
Clear cover
=
30
mm
Top Reinforcement: Assumed Dia of Main bar
=
8
mm
Assumed Dia of secondary bar
=
8
mm
Effective length in shorter-direction, Eff Lx
=
1.41
m
Effective length in Longer direction, Eff Ly
=
2.70
m
3.75
kN/m
2 2
Dead load Live load, LL due to Earth Pressure
=
16.29
kN/m
Unit weight of concrete Grade of concrete,fck
= =
25.00 25.00
kN/m 2 N/mm
Grade of steel,fy
=
415.00
N/mm
Factor of Saftey
=
1.50
Total Factor Load
=
30.06
=
1.91
=
All Edges Discontinous (IS 456-2000 0.0920 Annexure-DTable-26) 0.0560
3
kN/m
2
2
Analysis : Consider One meter breadth of the wall. coefficient calculations for Moments : Ratio of eff.Ly/ eff.Lx,r Condition
=
shorterside of edge2,α x +
=
longer side of edge2,α y+
=
Select sides of the slab : DL+LL+FL
discontinuous
discontinuous
1.41 m in lx-direction
DL + LL+FL
discontinuous
discontinuous
2.70 m in ly-direction
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 11 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1 cl2
discontinuous
cs1
cs2
y 1.41
discontinuous
discontinuous
x
2.70
discontinuous cl1 Note:
Refer to Text Book "R.C Design by unnikrishna pillai & devdas menon"
+
2
Dead load '+ve' bending moment, Mx+
=
αx x w x Lx
Dead load '+ve' bending moment, MY+
= =
5.50 kN m + 2 αy x w x Lx
=
3.35
Dead load Shear force in X-dir
Vu
= =
Dead load Shear force in Y-dir Vu
kN m
w x lx /2 21.19
=
kN
w x ly /2
=
40.58
kN
=
8
mm
Check for wall thickness Assume dia of bar Effective Thickness of the Slab
=
150 - 30 - 8-8 / 2
for shorter direction
=
116
Effective depth required for Slab
=
v(Mux/(0.138 x fck x 1000))
=
32.51
d-reqd
mm
mm
Provided depth is ok Calculation of main steel Effective Depth of slab in X dir
dx
=
116.000
mm
dy
=
108.000
mm
=
( 0.5 fck/fy ) x [ 1-v( 1 - (4.6Mux/(fck x 1000 x d )) ) ] x 1000d mm2 / m 133.91
(150-30-8/2) Effective Depth of slab in Y dir (150-30-8-8/2) (a) Area of Steel Mx+ AstR Required spacing of steel
S
(b) Area of Steel My+
AstR
Required spacing of steel
S
=
2
375.18 =
mm 2
( 0.5 fck/fy ) x [ 1-v( 1 - (4.6Mux/(fck x 1000 x d )) ) ] x 1000d 2
=
87.03
mm / m
=
577.24
mm
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 12 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Minimum percentage of steel is
=
Minimun area of the steel
=
0.12 % x b x D
= =
0.12x 1000 x 150/ 100 mm2 / m 180 mm2 / m 180.00
AstM Higher value of Ast is provided, AstP
=
Maximum allowable spacing
=
0.12
Provide 8 mm dia bar at
on positive and negative reinforcement
mm c/c
200
3d or 300 mm whichever is lesser
Cls 26.3
Spacing is less than maximum spacing, OK Provide8 mm Dia bar @ 200 mm c/c as main steel Provide 8 mm Dia bar @ 250 c/c as Distributor Shear Check Check for shear in X-direction: Designed Shear Force
=
k τc bd , k and τc are calculated below
Ast provided
=
300
Percentage of Steel Provided Pt
=
100xAst/bxd
k τc Vult
Vu
=
0.2586
= =
1.300 0.360
N/mm2
=
50.54
KN
= Vult > Vu
mm
(IS 456-2000-Table -19)
2
Refer Cls 40.2
21.19
KN
(Refer IS 456-2000-Table 19)
Depth
k
300
1.00
275
1.05
175
1.25
150
1.30
`
Therefore No shear reinforcement is required
Check for Deflection (Refer RCC Design by Unnikrishnapillai and devodos menon) Basic span depth ratio for S.S slab fs
= =
240.7
=
Percentage of Steel Provided Pt
=
Modification Factor
=
(Ast provided = Ast required)
1.41 0.259 2
(l/d)max
=
40
(l/d)provided
=
12.16
(l/d)provided
(From IS 456-2000 Clause :23.2.1.a)
0.58 x fy x Ast required / Ast provided
Effective Span length
kt
20
=
(From IS 456-2000-Fig-4 )
< (l/d)max
Hence it is Safe.
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 13 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
2.5 Design of Footing For Corner Footing Fz
Fy
Foundation Dimension: Fx Base
Pedestal
Lx (m)
2.50
Lz (m)
2.50
Px (m)
0.410
Pz (m)
0.410
FGLx
h1 (m)=
0.00
h2 (m)=
2.31
D (m)= 0.60
Design Summary: 2 226.14 KN/m
Max Bearing Press.: Min Bearing Press.:
2 59.75 KN/m
Min Contact Length:
100%
Mz1 X-Axis Mx1
Soil Properties
Z-Axis 500.0
KN/m2
560.5
KN/m2
685.5
KN/m2
Minimum 28 Days Compressive of Concrete : FC
25000
KN/m2
Yield Strength of Reinforcing Steel : FY
415000
KN/m2
Density of Structural fill
26
KN/m3
Density of Concrete
25
KN/m3
Mx
Mz
Safe Bearing Capacity of Soil q
safe =
q safe + γ x h2
At depth h2 q
all =
At depth h2 q
all = 1.25 x q safe + γ x h2
Material Properties:
Load Combination: Unfactored Loads (in KN m) LC No.
Fx
Fy
Fz
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
50.03
82.03
50.03
61.10
61.10
Case III
0
0
0
0
0
0
LC No.
Fx
Fy
Fz
Mx
Mz
Factored Loads (in KN m)
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
75.05
123.05
75.05
91.65
91.65
Case III
0
0.00
0.00
0.00
0.00
0.00
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 14 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal
=
7.2
KN
Weight of Footing
=
93.8
KN
272.5
KN
373.4
KN
Weight of Imposed Earth above footing
= TOTAL =
Case I: Axial load P = Fy + SubStructure Load
=
373.4 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0.00 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
ex / Lx = ez / Lz =
0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.000
59.75 KN/m2 < q =>
all =
q safe + γ x h2
Hence Satisfactory
Case II: Axial load P = Fy + SubStructure Load
=
455.4 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
176.67 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
176.67 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.388
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.388
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
ex / Lx = ez / Lz =
0.155
From Table, K=
3.10
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.155
226.14 KN/m2 < q =>
q safe + γ x h2
all =1.25*
Hence Satisfactory
Case III: Axial load P = Fy + SubStructure Load
=
373.4 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
0.000 0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
59.75 KN/m2 < q =>
all =
1.25*q safe + γ x h2
Hence Satisfactory
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 15 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =
C
=
2 58.60 KN/m
65.00 mm
Effective Depth d =(D - C - φ/2)=
0.53 m
Projected Length of Base:
ax az
=
1.045 m
=
1.045 m
ax Flexure Section
Case I: Factor for Substructure Load =
Flexure Shear
d
1.5 2 87.90 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
560.1
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0.000
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.000
KNm
qm
qs
qma
Base Pressure Distribution Diagram
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2)=
89.62
= (KN/m2)
89.62
=
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
0.94 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
0.94 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.89 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.89 KN / Unit Width
Case II: Factor for Substructure Load =
1.5 2 87.90 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
683.2
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
265.004 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
265.004 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.388
(m) =
0.388
ex / Lx = e z / Lz =
0.155
From Table,
0.155
qmax qmin
K=
3.10
= K x P / Lx * Lz (KN/m2) = 2
= (KN/m )
=
339.21 -94.22
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 = 2
BM in Z- Direction = (qm - fws) x az / 2 + ( qmax - qm ) x
az2/3
112.27 KNm / Unit Width
=
112.27 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
112.22 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
112.22 KN / Unit Width
Case III: Factor for Substructure Load =
1.5 2 87.90 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
560.1
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0
KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2) =
89.62
= (KN/m2)
89.62
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
=
Page 16 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
0.94 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
0.94 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.89 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.89 KN / Unit Width
Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
112.27 KNm / Unit Width
Required
ρ = ρmin =
0.40 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00115 0.0012
2 609.0 mm
Providing Bar :
2 634.8 mm
Spacing Required = 178.14
# 12 mm
Hence Adopt #12 @ 178mm c/c both sides However, Provide #12 @ 125 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
112.27 KNm / Unit Width
Required
ρ = ρmin =
0.40 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00115 0.0012
2 609.0 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 12 178.14
mm
Hence Adopt #12 @ 178mm c/c both sides However, Provide #12 @ 125c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =
112.22 KN / Unit Width
Nominal Shear Stress
2 0.21 N/mm
Design Shear Srength of Concrete
2 0.26 N/mm
'=> Hence Satisfactory Top Reinforcement: Maximum
fws
=
87.90
KN/m2
BM in X - Direction = (fws x ax /2)
=
47.99 KNm
BM in Z - Direction = (fws x az2/2)
=
47.99 KNm
2
X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
47.99 KNm / Unit Width
Required
ρ = ρmin =
0.17 N/Sqmm. 0.00050 0.0012
Ast = ρ x b x d = Ast (min) =
2 262.9 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 17 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
47.99 KNm / Unit Width
Required
ρ = ρmin =
0.17 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00050 0.0012
2 262.9 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face =
799.57 KN
Punching Shear Stress (N/mm2)
=
0.402
Allowable Shear Stress (N/mm2)
=
1.25
'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' Z' direction=
176.7 KNm
Restoring moment in' Z' direction=
569.3 KNm
Factor of safety=
3.2
>1.5 Hence Satisfactory
Overturning moment in' X' direction=
176.7 KNm
Restoring moment in' X' direction=
569.3 KNm
Factor of safety=
3.2
>1.5 Hence Satisfactory
Sliding check Coefficient of friction=
0.5
Case 2 Total sliding force=
70.8 KN
Resisting frictional force=
227.7 KN Factor of safety=
3.2
>1.5 Hence Satisfactory
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 18 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
For Centre Column Footing Fz
Fy
Foundation Dimension: Fx Lx (m)
Base
Pedestal
2.50
Lz (m)
2.50
Px (m)
0.475
Pz (m)
0.30
FGLx
h1 (m)=
0.00
h2 (m)=
2.31
D (m)= 0.60
Design Summary: 2 275.35 KN/m
Max Bearing Press.:
Mz1
2 59.76 KN/m
Min Bearing Press.: Min Contact Length:
55%
X-Axis Mx1
Soil Properties
Z-Axis 500.0
KN/m2
560.5
KN/m2
685.5
KN/m2
Minimum 28 Days Compressive of Concrete : FC
25000
KN/m2
Yield Strength of Reinforcing Steel : FY
415000
KN/m2
Density of Structural fill
26
KN/m3
Density of Concrete
25
KN/m3
Safe Bearing Capacity of Soil q
safe =
q safe + γ x h2 At depth h2 q all = 1.25 x q safe + γ x h2 At depth h2 q
all =
Material Properties:
Load Combination: Unfactored Loads (in KN m) LC No.
Fx
Fy
Fz
Mx
Mz
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
0.00
73.55
100.06
122.20
0.00
Case III
0
0
0
0
0
0
Factored Loads (in KN m) LC No.
Fx
Fy
Fz
Mx
Mz
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
0.00
110.33
150.09
183.30
0.00
Case III
0
0.00
0.00
0.00
0.00
0.00
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 19 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal
=
6.1
KN
Weight of Footing
=
93.8
KN
273.6
KN
373.5
KN
Weight of Imposed Earth above footing
= TOTAL =
Case I: Axial load P = Fy + SubStructure Load
=
373.5 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0.00 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
ex / Lx = ez / Lz =
0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.000
59.76 KN/m2 < q =>
all =
q safe + γ x h2
Hence Satisfactory
Case II: Axial load P = Fy + SubStructure Load
=
447.0 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
353.34 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.790
m > Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
55%
ex / Lx = ez / Lz =
0.000
From Table, K=
3.85
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.316
275.35 KN/m2 < q =>
q safe + γ x h2
all =1.25*
Hence Satisfactory
Case III: Axial load P = Fy + SubStructure Load
=
373.5 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
0.000 0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
59.76 KN/m2 < q =>
all =
1.25*q safe + γ x h2
Hence Satisfactory
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 20 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =
C
=
2 58.78 KN/m
65.00 mm
Effective Depth d =(D - C - φ/2)=
0.53 m
Projected Length of Base:
ax az
=
1.0125 m
=
1.1 m
ax Flexure Section
Case I: Factor for Substructure Load =
Flexure Shear
d
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
560.2
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
=
0.000
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.000
KNm
qm
qs
qma
Base Pressure Distribution Diagram
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2)= 2
= (KN/m )
=
89.63 89.63
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 = 2
BM in Z- Direction = (qm - fws) x az / 2 + ( qmax - qm ) x
az2/3
0.75 KNm / Unit Width
=
0.88 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.71 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.83 KN / Unit Width
Case II: Factor for Substructure Load =
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
670.5
Moment at base Mx1= Mx + Fz x (h1+h2) =
KN
530.0079 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0
KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.790
ex / Lx = e z / Lz =
0.000
From Table,
0.316
qmax qmin
K=
3.85
= K x P / Lx * Lz (KN/m2) =
413.03
= (KN/m2)
-96.24
=
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
147.46 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
130.08 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
144.20 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
136.66 KN / Unit Width
Case III: Factor for Substructure Load =
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
560.2
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0
KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2) =
89.63
= (KN/m2)
89.63
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
=
Page 21 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
0.75 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
0.88 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.71 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.83 KN / Unit Width
Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
147.46 KNm / Unit Width
Required
ρ = ρmin =
0.53 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00152 0.0012
2 801.8 mm
Providing Bar :
2 634.8 mm
Spacing Required = 141.04
# 12 mm
Hence Adopt #12 @ 141mm c/c both sides However, Provide #12 @ 125 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
130.08 KNm / Unit Width
Required
ρ = ρmin =
0.46 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00134 0.0012
2 706.2 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 12 160.12
mm
Hence Adopt #12 @ 160mm c/c both sides However, Provide #12 @ 125c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =
144.20 KN / Unit Width
Nominal Shear Stress
2 0.27 N/mm
Design Shear Srength of Concrete
2 0.29 N/mm
'=> Hence Satisfactory Top Reinforcement: Maximum
fws
=
88.17
KN/m2
BM in X - Direction = (fws x ax2/2)
=
45.19 KNm
BM in Z - Direction = (fws x a
=
53.34 KNm
2 z /2)
X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
45.19 KNm / Unit Width
Required
0.16 N/Sqmm.
ρ = ρmin =
Ast = ρ x b x d = Ast (min) =
0.00047 0.0012
2 248.0 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 22 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
53.34 KNm / Unit Width
Required
ρ = ρmin =
0.19 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00055 0.0012
2 291.4 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face = 2
403.96 KN
Punching Shear Stress (N/mm )
=
0.208
Allowable Shear Stress (N/mm2)
=
1.25
'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' X' direction=
353.3 KNm
Restoring moment in' X' direction=
558.8 KNm
Factor of safety=
1.6
>1.5 Hence Satisfactory
Sliding check Coefficient of friction=
0.5
Case 2 Total sliding force=
100.1 KN
Resisting frictional force=
223.5 KN Factor of safety=
2.2
>1.5 Hence Satisfactory
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 23 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
For Expansion Joint Column Footing Fz
Fy
Foundation Dimension: Fx Base
Pedestal
Lx (m)
2.50
Lz (m)
2.50
Px (m)
0.475
Pz (m)
0.30
FGLx
h1 (m)=
0.00
h2 (m)=
2.31
D (m)= 0.60
Design Summary: 2 261.70 KN/m
Max Bearing Press.:
Mz1
2 59.76 KN/m
Min Bearing Press.: Min Contact Length:
58%
X-Axis Mx1
Soil Properties
Z-Axis 500.0
KN/m2
560.5
KN/m2
685.5
KN/m2
Minimum 28 Days Compressive of Concrete : FC
25000
KN/m2
Yield Strength of Reinforcing Steel : FY
415000
KN/m2
Density of Structural fill
26
KN/m3
Density of Concrete
25
KN/m3
Mx
Mz
Safe Bearing Capacity of Soil q
safe =
q safe + γ x h2 At depth h2 q all = 1.25 x q safe + γ x h2 At depth h2 q
all =
Material Properties:
Load Combination: Unfactored Loads (in KN m) LC No.
Fx
Fy
Fz
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
0.00
85.92
100.06
122.20
0.00
Case III
0
0
0
0
0
0
Factored Loads (in KN m) LC No.
Fx
Fy
Fz
Mx
Mz
Case I
0
0.00
0.00
0.00
0.00
0.00
Case II (DL+WL+EP)
1
0.00
128.88
150.09
183.30
0.00
Case III
0
0.00
0.00
0.00
0.00
0.00
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 24 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Check For Bearing Pressure: Total Substructure Load: Weight of Pedestal
=
6.1
KN
Weight of Footing
=
93.8
KN
273.6
KN
373.5
KN
Weight of Imposed Earth above footing
= TOTAL =
Case I: Axial load P = Fy + SubStructure Load
=
373.5 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0.00 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
ex / Lx = ez / Lz =
0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.000
59.76 KN/m2 < q =>
all =
q safe + γ x h2
Hence Satisfactory
Case II: Axial load P = Fy + SubStructure Load
=
459.4 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
353.34 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.769
m > Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
58%
ex / Lx = ez / Lz =
0.000
From Table, K=
3.56
Max. Bearing Press.=qmax =K x P / Lx * Lz =
0.308
261.70 KN/m2 < q =>
q safe + γ x h2
all =1.25*
Hence Satisfactory
Case III: Axial load P = Fy + SubStructure Load
=
373.5 KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.00 KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P ex / Lx = ez / Lz =
=
0.000
m < Lx / 6
Contact Length= 3 x (Lx /2 - ex) / Lx =
100%
=
0.000
m < Lz / 6
Contact Length= 3 x (Lz /2 - ez) / Lz =
100%
0.000 0.000
From Table, K=
1.00
Max. Bearing Press.=qmax =K x P / Lx * Lz =
59.76 KN/m2 < q =>
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
all =
1.25*q safe + γ x h2
Hence Satisfactory
Page 25 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Design Of Base (Ref. IS-456) Downward pressure on Base: ws=(Weight of Footing + Weight of Imposed Earth above footing) / Lx . Lz= Cover to Main Reinf. =
C
=
2 58.78 KN/m
65.00 mm
Effective Depth d =(D - C - φ/2)=
0.53 m
Projected Length of Base:
ax az
=
1.0125 m
=
1.1 m
ax Flexure Section
Case I: Factor for Substructure Load =
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
Flexure Shear
d
=
560.2
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0.000
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0.000
KNm
qm
qs
qma
Base Pressure Distribution Diagram
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2)=
89.63
= (KN/m2)
89.63
=
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
0.75 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
0.88 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.71 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.83 KN / Unit Width
Case II: Factor for Substructure Load =
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
689.1
Moment at base Mx1= Mx + Fz x (h1+h2) =
KN
530.0079 KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0
KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.769
ex / Lx = e z / Lz =
0.000
From Table,
0.308
qmax qmin
K=
3.56
= K x P / Lx * Lz (KN/m2) =
392.55
= (KN/m2)
-93.27
=
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
137.91 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
123.78 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
134.93 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
129.44 KN / Unit Width
Case III: Factor for Substructure Load =
1.5 2 88.17 KN/m
Factored ws = fws = Axial load P = Fy + SubStructure Load
=
560.2
KN
Moment at base Mx1= Mx + Fz x (h1+h2) =
0
KNm
Moment at base Mz1= Mz + Fx x (h1+h2) =
0
KNm
Eccentricity,
ex = Mz1 / P ez = Mx1 / P
(m) =
0.000
(m) =
0.000
ex / Lx = e z / Lz =
0.000
From Table,
0.000
qmax qmin
K=
1.00
= K x P / Lx * Lz (KN/m2) =
89.63
= (KN/m2)
89.63
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
=
Page 26 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Moment at face of Pedestal= BM in X- Direction = (qm - fws) x ax 2/ 2 + ( qmax - qm ) x ax2/3 =
0.75 KNm / Unit Width
BM in Z- Direction = (qm - fws) x az 2/ 2 + ( qmax - qm ) x az2/3 =
0.88 KNm / Unit Width
Shear at 'd' distance from face of Pedestal= SF in X- Direction = (qS - fws) x (ax -d) + ( qmax - qS ) x (ax -d)/2 =
0.71 KN / Unit Width
SF in Z- Direction = (qS - fws) x (az -d) + ( qmax - qS ) x (az -d)/2 =
0.83 KN / Unit Width
Bottom Reinforcement: X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
137.91 KNm / Unit Width
Required
ρ = ρmin =
0.49 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00142 0.0012
2 749.2 mm
Providing Bar :
2 634.8 mm
Spacing Required = 150.94
# 12 mm
Hence Adopt #12 @ 151mm c/c both sides However, Provide #12 @ 125 c/c BW Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
123.78 KNm / Unit Width
Required
ρ = ρmin =
0.44 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00127 0.0012
2 671.7 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 12 168.34
mm
Hence Adopt #12 @ 168mm c/c both sides However, Provide #12 @ 125c/c BW One-way Shear Check : Maximum Shear Force at 'd' distance from Pedestal face = V =
134.93 KN / Unit Width
Nominal Shear Stress
2 0.26 N/mm
Design Shear Srength of Concrete
2 0.28 N/mm
'=> Hence Satisfactory Top Reinforcement: Maximum
fws
=
88.17
KN/m2
BM in X - Direction = (fws x ax2/2)
=
45.19 KNm
BM in Z - Direction = (fws x az2/2)
=
53.34 KNm
X-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
45.19 KNm / Unit Width
Required
ρ = ρmin =
0.16 N/Sqmm. 0.00047 0.0012
Ast = ρ x b x d = Ast (min) =
2 248.0 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 27 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
Z-Direction: Maximum Moment Mx = 2 q n = Mu/bd =
53.34 KNm / Unit Width
Required
ρ = ρmin =
0.19 N/Sqmm.
Ast = ρ x b x d = Ast (min) =
0.00055 0.0012
2 291.4 mm
Providing Bar :
2 634.8 mm
Spacing Required =
# 10 123.71
mm
Hence Adopt #10 @ 124mm c/c both sides However, Provide #10 @ 100c/c Punching Shear Check : Shear at 'd/2' distance from the col face = 2
417.28 KN
Punching Shear Stress (N/mm )
=
0.215
Allowable Shear Stress (N/mm2)
=
1.25
'=> Hence Satisfactory. STABILITY CHECK Overturning Check Case 2 Overturning moment in' X' direction=
353.3 KNm
Restoring moment in' X' direction=
574.2 KNm
Factor of safety=
1.6
>1.5 Hence Satisfactory
Sliding check Coefficient of friction=
0.5
Case 2 Total sliding force=
100.1 KN
Resisting frictional force=
229.7 KN Factor of safety=
2.3
>1.5 Hence Satisfactory
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 28 of 29
MAYTAS NAFTOGASBUD JV
GSPL203-73-1505 Rev 1
3..0 CONCLUSION SIZE (IN MM)
AT BOTTOM
AT TOP
FOOTING For all Footings
2500 X 2500 X 600
COLUMNS At Centre At Exp. Jt At Corner
475 X300 475 X300 410 X410
# 12 @ 125 C/C BW
8 # 25 8 # 20 8 # 25
#10 @ 100 C/CBW
Stirrups #8 @ 200 c/c Stirrups #8 @ 200 c/c Stirrups #8 @ 200 c/c
BEAMS PLINTH BEAM
345 X300
2 #16 (TOP & BOTTOM)
Stirrups #8 @ 150 c/c
GRADE BEAM
345 X300
2#16 (TOP & BOTTOM)
Stirrups #8 @ 150 c/c
TIE BEAM
345 X230
2#12 (TOP & BOTTOM)
Stirrups #8 @ 150 c/c
RC WALL
150 Tk.
#8 @ 200 C/C Vertical
#8 @ 250 c/c Horizontal
BOUNDARY WALL DESIGN CALCULATIONS – SV1 STATION AT BODI GHODI
Page 29 of 29