Genomics And Bioinformatics: The "new" Biology

  • Uploaded by: Brijesh Singh Yadav
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Genomics And Bioinformatics: The "new" Biology as PDF for free.

More details

  • Words: 829
  • Pages: 26
Genomics and Bioinformatics The "new" biology Brijesh Singh Yadav Bioinformatics Research Cell United Research Center Allahabad, India.

06/10/09

URC,Allahabad

1

06/10/09

URC,Allahabad

2

What is genomics 

Genome  All the DNA contained in the cell of an organism



Genomics  The comprehensive study of the interactions and functional dynamics of whole sets of genes and their products. (NIAAA, NIH)  A "scaled-up" version of genetics research in which scientists can look at all of the genes in a living creature at the same time. (NIGMS, NIH)

06/10/09

URC,Allahabad

3

Genome sequencing chronology 

06/10/09

Genome size (bp)

Number of genes

Year

Organism

Significance

1977

Bacteriophage fX174

First genome ever!

5,386 11

1981

Human mitochondria

First organelle

16,500 37

1995

Haemophilus influenzae Rd

First free-living organism

1,830,137 ~3,500

1996

Saccharomyces cerevisiae

First eukaryote

12,086,000 ~6,000

URC,Allahabad

4

Genome sequencing chronology

06/10/09

Organism

Significance

1998

Caenorhabditis elegans

First multicellular organism

97,000,000 ~19,000

1999

Human chromosome 22

First human chromosome

49,000,000 673

2000

Arabidopsis thaliana

First plant genome

2001

Human

First human genome

URC,Allahabad

Genome size (bp)

Number of genes

Year

150,000,000 ~25,000

3,000,000,000 ~30,000

5

Genome sequencing projects (as of 1/26,2007)

06/10/09

URC,Allahabad

6

06/10/09

URC,Allahabad

7

Genome sequencing helps in: • Identifying new genes (“gene discovery”)  • Looking at chromosome organization and structure • Finding gene regulatory sequences • Comparative genomics These in turn lead to advances in:  •Medicine •Agriculture •Biotechnology  •Understanding evolution and other basic science questions

06/10/09

URC,Allahabad

8

Information contents in a genome

06/10/09



Gene  Protein coding genes  RNA genes



Regulatory elements  Gene expression control  Chromatin remodeling  Matrix attachment sites



“Non-functional” elements  Selfish elements  “Junk” DNA  ?? URC,Allahabad

9

The “central dogma” of molecular biology 

Central dogma Replication

DNA Transcription

RNA Translation

Protein

06/10/09

URC,Allahabad

10

Expanded “central dogma” of molecular biology 

A more comprehensive view Replication

DNA Transcription

RNA Translation

Phenotype

Protein

Metabolite 06/10/09

URC,Allahabad

11

New disciplines due to the advance in genomics 

Omics Replication

DNA

Genomic DNA sequences

Structural genomics

Transcript seq Microarray data Cis-elements TF binding sites Epigenetic regulation

Transcriptomics

Transcription

RNA Translation

Phenotype Genetic interactions Systematic KO Disease information

06/10/09

Protein

Shotgun protein seq Subcellular location Post-translational mod Protein interaction Protein structure

Metabolite

Metabolite concn Metabolic flux URC,Allahabad

Proteomics

Metabolomics 12

Transcription factors, binding sites, and target genes identify transcription  genetic screens factors 

one­hybrid assays sequence motifs/homology

identify binding  motif

find all motifs  in genome

computational searching ChIP­chip

bioinformatics (e.g., Gibbs  sampling on microarray data) molecular biology using purified  protein or protein extracts

identify target  genes computational searching microarrays genetic screens 06/10/09

URC,Allahabad

13

Nature omics gateway

06/10/09

URC,Allahabad

14

Three perspectives of our biological world 

The cellular level, the individual, the tree of life

~3x104 genes

06/10/09

~1014 cells per individual

URC,Allahabad

2-100x106 species

15

Further complications

06/10/09



Cell-cell interactions



Cell types



Environmental conditions



Developmental programming



Interactions at the organismal level



Interactions at the population, ecosystem level URC,Allahabad

16

Impact of Genomics on Medicine

  

06/10/09

How to characterize new diseases? What new treatments can be discovered? How do we treat individual patients? Tailoring treatments?

URC,Allahabad

17

Bioinformatics

Conceptualizing biology in terms of molecules and then applying “informatics” techniques from math, computer science, and statistics to understand and organize the information associated with these molecules on a large scale 06/10/09

URC,Allahabad

18

How do we use Bioinformatics?

• Store/retrieve biological information (databases) • Retrieve/compare gene sequences • Predict function of unknown genes/proteins • Search for previously known functions of a gene • Compare data with other researchers • Compile/distribute data for other researchers

06/10/09

URC,Allahabad

19

Example: Sequence alignment 

Align retinol-binding protein and b-lactoglobulin >RBP MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRL LNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADSYSFVFSRDPN GLPPEAQKIVRQRQEELCLARQYRLIV >lactoglobulin MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN GECAQKKIIAEKTKIPAVFKIDALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALKA LPMHIRLSFNPTQLEEQCHI

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV...........QYSC 136 RBP || ||. | :.|||| | . .| 94 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin

06/10/09

137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI....... 178 lactoglobulin URC,Allahabad

20

Microarray data analysis 

A simplified pipeline

06/10/09

URC,Allahabad

21

Example: Microarray 

A solid support (e.g. a membrane or glass slide) on which DNA of known sequence is deposited in a grid-like fashion

06/10/09

URC,Allahabad

22

Example: Identification of cis-elements  

The on-off switches and rheostats of a cell operating at the gene level. They control whether and how vigorously that genes will be transcribed into RNAs.

06/10/09

URC,Allahabad

23

Motif model: Position Frequency Matrix (PFM) 

fb,i : freuqnecy of a base b occurred at the i-th position

06/10/09

URC,Allahabad

24 D’haeseleer (2006) Nature Biotech. 24:42

Final example: Relationships between sequences 

Sanger and colleagues (1950s): 1st sequence



Insulin from various mammals

06/10/09

URC,Allahabad

25

The END 

...

06/10/09

URC,Allahabad

26

Related Documents


More Documents from ""