Table of Fourier Transform Pairs Function, f(t) Definition of Inverse Fourier Transform
1 f (t ) = 2p
¥
ò F (w )e
jwt
dw
Fourier Transform, F(w) Definition of Fourier Transform ¥
F (w ) =
-¥
ò f (t )e
- jwt
dt
-¥
f (t - t 0 )
F (w )e - jwt0
f (t )e jw 0t
F (w - w 0 )
f (at )
1 w F( ) a a
F (t )
2pf (-w )
d n f (t )
( jw ) n F (w )
dt n (- jt ) n f (t )
d n F (w) dw n
t
ò
f (t )dt
-¥
F (w ) + pF (0)d (w ) jw
d (t )
1
e jw 0 t
2pd (w - w 0 )
sgn (t)
2 jw
Signals & Systems - Reference Tables
1
j
sgn(w )
1 pt
u (t )
pd (w ) +
¥
¥
å Fn e jnw 0t
2p
t rect ( ) t
tSa(
B Bt Sa( ) 2p 2
w rect ( ) B
tri (t )
w Sa 2 ( ) 2
n = -¥
A cos(
pt t )rect ( ) 2t 2t
1 jw
å Fnd (w - nw 0 )
n = -¥
wt ) 2
Ap cos(wt ) t (p ) 2 - w 2 2t
cos(w 0 t )
p [d (w - w 0 ) + d (w + w 0 )]
sin(w 0 t )
p [d (w - w 0 ) - d (w + w 0 )] j
u (t ) cos(w 0 t )
p [d (w - w 0 ) + d (w + w 0 )] + 2 jw 2 2 w0 - w
u (t ) sin(w 0 t )
2 p [d (w - w 0 ) - d (w + w 0 )] + 2w 2 2j w0 - w
u (t )e -at cos(w 0 t )
Signals & Systems - Reference Tables
(a + jw ) w 02 + (a + jw ) 2
2
w0
u (t )e -at sin(w 0 t )
e
w 02 + (a + jw ) 2 2a
-a t
e -t
a2 +w2 2
/( 2s 2 )
s 2p e -s
2
w2 / 2
1 a + jw
u (t )e -at
1
u (t )te -at
(a + jw ) 2
Ø Trigonometric Fourier Series ¥
f (t ) = a 0 + å (a n cos(w 0 nt ) + bn sin(w 0 nt ) ) n =1
where 1 a0 = T
T
ò0
2T f (t )dt , a n = ò f (t ) cos(w 0 nt )dt , and T0
2T bn = ò f (t ) sin(w 0 nt )dt T 0
Ø Complex Exponential Fourier Series f (t ) =
¥
å Fn e
jwnt
, where
n = -¥
Signals & Systems - Reference Tables
1T Fn = ò f (t )e - jw 0 nt dt T 0
3
Some Useful Mathematical Relationships e jx + e - jx cos( x) = 2 e jx - e - jx sin( x) = 2j cos( x ± y ) = cos( x) cos( y ) m sin( x) sin( y ) sin( x ± y ) = sin( x) cos( y ) ± cos( x) sin( y ) cos(2 x) = cos 2 ( x) - sin 2 ( x) sin( 2 x) = 2 sin( x) cos( x) 2 cos2 ( x) = 1 + cos(2 x) 2 sin 2 ( x) = 1 - cos(2 x) cos 2 ( x) + sin 2 ( x) = 1 2 cos( x) cos( y ) = cos( x - y ) + cos( x + y ) 2 sin( x) sin( y ) = cos( x - y ) - cos( x + y ) 2 sin( x) cos( y ) = sin( x - y ) + sin( x + y )
Signals & Systems - Reference Tables
4
Useful Integrals
ò cos( x)dx
sin(x)
ò sin( x)dx
- cos(x)
ò x cos( x)dx
cos( x) + x sin( x)
ò x sin( x)dx
sin( x) - x cos( x)
òx
2
cos( x)dx
2 x cos( x) + ( x 2 - 2) sin( x)
òx
2
sin( x)dx
2 x sin( x) - ( x 2 - 2) cos( x)
ax
dx
e ax a
òe
ò xe òx
ax
dx
2 ax
éx 1 ù e ax ê - 2 ú ëa a û
e dx
é x 2 2x 2 ù e ax ê - 2 - 3 ú a û ëa a
dx
1 ln a + bx b
ò a + bx dx
ò a 2 + b 2x2
Signals & Systems - Reference Tables
bx 1 tan -1 ( ) ab a
5