Fourier

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fourier as PDF for free.

More details

  • Words: 830
  • Pages: 5
Table of Fourier Transform Pairs Function, f(t) Definition of Inverse Fourier Transform

1 f (t ) = 2p

¥

ò F (w )e

jwt

dw

Fourier Transform, F(w) Definition of Fourier Transform ¥

F (w ) =



ò f (t )e

- jwt

dt



f (t - t 0 )

F (w )e - jwt0

f (t )e jw 0t

F (w - w 0 )

f (at )

1 w F( ) a a

F (t )

2pf (-w )

d n f (t )

( jw ) n F (w )

dt n (- jt ) n f (t )

d n F (w) dw n

t

ò

f (t )dt



F (w ) + pF (0)d (w ) jw

d (t )

1

e jw 0 t

2pd (w - w 0 )

sgn (t)

2 jw

Signals & Systems - Reference Tables

1

j

sgn(w )

1 pt

u (t )

pd (w ) +

¥

¥

å Fn e jnw 0t

2p

t rect ( ) t

tSa(

B Bt Sa( ) 2p 2

w rect ( ) B

tri (t )

w Sa 2 ( ) 2

n = -¥

A cos(

pt t )rect ( ) 2t 2t

1 jw

å Fnd (w - nw 0 )

n = -¥

wt ) 2

Ap cos(wt ) t (p ) 2 - w 2 2t

cos(w 0 t )

p [d (w - w 0 ) + d (w + w 0 )]

sin(w 0 t )

p [d (w - w 0 ) - d (w + w 0 )] j

u (t ) cos(w 0 t )

p [d (w - w 0 ) + d (w + w 0 )] + 2 jw 2 2 w0 - w

u (t ) sin(w 0 t )

2 p [d (w - w 0 ) - d (w + w 0 )] + 2w 2 2j w0 - w

u (t )e -at cos(w 0 t )

Signals & Systems - Reference Tables

(a + jw ) w 02 + (a + jw ) 2

2

w0

u (t )e -at sin(w 0 t )

e

w 02 + (a + jw ) 2 2a

-a t

e -t

a2 +w2 2

/( 2s 2 )

s 2p e -s

2

w2 / 2

1 a + jw

u (t )e -at

1

u (t )te -at

(a + jw ) 2

Ø Trigonometric Fourier Series ¥

f (t ) = a 0 + å (a n cos(w 0 nt ) + bn sin(w 0 nt ) ) n =1

where 1 a0 = T

T

ò0

2T f (t )dt , a n = ò f (t ) cos(w 0 nt )dt , and T0

2T bn = ò f (t ) sin(w 0 nt )dt T 0

Ø Complex Exponential Fourier Series f (t ) =

¥

å Fn e

jwnt

, where

n = -¥

Signals & Systems - Reference Tables

1T Fn = ò f (t )e - jw 0 nt dt T 0

3

Some Useful Mathematical Relationships e jx + e - jx cos( x) = 2 e jx - e - jx sin( x) = 2j cos( x ± y ) = cos( x) cos( y ) m sin( x) sin( y ) sin( x ± y ) = sin( x) cos( y ) ± cos( x) sin( y ) cos(2 x) = cos 2 ( x) - sin 2 ( x) sin( 2 x) = 2 sin( x) cos( x) 2 cos2 ( x) = 1 + cos(2 x) 2 sin 2 ( x) = 1 - cos(2 x) cos 2 ( x) + sin 2 ( x) = 1 2 cos( x) cos( y ) = cos( x - y ) + cos( x + y ) 2 sin( x) sin( y ) = cos( x - y ) - cos( x + y ) 2 sin( x) cos( y ) = sin( x - y ) + sin( x + y )

Signals & Systems - Reference Tables

4

Useful Integrals

ò cos( x)dx

sin(x)

ò sin( x)dx

- cos(x)

ò x cos( x)dx

cos( x) + x sin( x)

ò x sin( x)dx

sin( x) - x cos( x)

òx

2

cos( x)dx

2 x cos( x) + ( x 2 - 2) sin( x)

òx

2

sin( x)dx

2 x sin( x) - ( x 2 - 2) cos( x)

ax

dx

e ax a

òe

ò xe òx

ax

dx

2 ax

éx 1 ù e ax ê - 2 ú ëa a û

e dx

é x 2 2x 2 ù e ax ê - 2 - 3 ú a û ëa a

dx

1 ln a + bx b

ò a + bx dx

ò a 2 + b 2x2

Signals & Systems - Reference Tables

bx 1 tan -1 ( ) ab a

5

Related Documents

Fourier
October 2019 31
Fourier
May 2020 13
Fourier
November 2019 20
Fourier
June 2020 16
Fourier
October 2019 24
Fourier-series
November 2019 17