Course: Algorithm Theory Instructor: Christian Schindelhauer
Questions:
Answers: 1) w 0 = 1, notprimitive 8 w1 = e 2Πi / 8 = Cos (Π / 4) + iSin(Π / 4) = 0.707 + i * 0.707 ≠ 1 8 2 w 2 = e ( 2Πi / 8) = Cos (Π / 2) + iSin(Π / 2) = 0 + i * 1 ≠ 1 8 3 w3 = e ( 2Πi / 8) = Cos (3Π / 4) + iSin(3Π / 4) = −0.707 + i * 0.707 ≠ 1 8 4 w 4 = e ( 2Πi / 8) = Cos (Π ) + iSin(Π ) = −1 ≠ 1 8 5 w5 = e ( 2Πi / 8) = Cos (5Π / 4) + iSin(5Π / 4) = −0.707 + i * (−0.707) ≠ 1 8 6 w 6 = e ( 2Πi / 8) = Cos (3Π / 2) + iSin(3Π / 2) = 0 + i * −1 ≠ 1 8 7 w 7 = e ( 2Πi / 8) = Cos (7Π / 4) + iSin(7Π / 4) = 0.707 + i * −0.707 ≠ 1 8 Not all 8-th roots of unity are primitive, e.g. (omega_8^2)^4 = (omega_8^2)^0 = 1 Only w1 , w3 , w5 , w 7 are primitives.
8
8
8
8
2) a)
We calculated for n=4 because degree of pq is 4.
0 1 2 3 b) w = 1 , w = i , w = −1 , w = −i 4
4
4
0 0 4 4 1 1 ( w , p( w )) =(i, 3i-1) 4 4 2 2 ( w , p( w )) =(-1, -4) 4 4 3 3 ( w , p( w )) =(-i, -3i-1) 4 4 ( w , p( w )) =(1, 2)
4
0 0 4 4 1 1 ( w , q( w )) =(i, 2i+5) 4 4 2 2 ( w , q( w )) =(-1,3) 4 4 3 3 ( w , q( w )) =(-i, -2i+5) 4 4 ( w , q( w )) =(1, 7)
0 0 4 4 1 1 ( w , pq( w )) =(i, 13i-11) 4 4 2 2 ( w , pq( w )) =(-1,-12) 4 4 3 3 ( w , pq( w )) =(-i, -13i-11) 4 4 ( w , pq( w )) =(1, 14)
c)
d)