Formulas For The Mfe Exam

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Formulas For The Mfe Exam as PDF for free.

More details

  • Words: 3,688
  • Pages: 17
Formulas for MFE 1 Chapter 9 Parity and Other Relationships

1.1 Options on Stock C(K , T ) = P (K , T ) + [So − PV0,T (Div)] − e−r TK C(K , T ) = P (K , T ) + Soe−δ T − PV0,T (K)

1.2 Options on Currencies From Chapter 5, dollar forward price for a euro is F0,T = x0e(r −re u r o )T , where x0 is the current exchange rate denominated as $/euro. C(K , T ) − P (K , T ) = x0e−re u r o T − Ke−rT

1.3 Options on Bonds C(K , T ) = P (K , T ) + [B0 − PV0,T (Coupons)] − PV0,T (K)

1.4 Generalized Parity and Exchange Options C(ST , QT , 0) = max (0, ST − QT ) P (ST , QT , 0) = max (0, QT − St) P P C(St , Qt , T − t) − P (St , Qt , T − t) = Ft,T (S) − Ft,T (Q)

1.5 Currency Options C$ (x0, K , T ) = x0KP f



1 1 , ,T x0 K



1.6 Maximum and Minimum Options Prices S > CAmer (S , K , T ) > CEur (S , K , T ) > max [0, PV0,T (F0,T ) − PV0,T (K)] K > PAm er (S , K , T ) > PEur (S , K , T ) > max [0, PV0,T (K) − PV0,T (F0,T )]

1.7 Early Exercise Exercise on a call is not optimal when: K − PVt,T (K) > PVt,T (Div) 1

2

Section 2

1.8 Different Strike Prices K1 < K2 < K3 1. C(K1) > C(K2) 2. P (K2) > P (K1) 3. C(K1) − C(K2) 6 K2 − K1 4. P (K2) − P (K1) 6 K2 − K1 5.

C(K1) − C(K2) K2 − K1

>

C(K2) − C(K3) K3 − K2

6.

P (K2) − P (K1) K2 − K1

6

P (K3) − P (K2) K3 − K2

2 Binomial Option Pricing: I 2.1 The Binomial Solution ∆ = e−δh

Cu − Cd

S(u − d)

B = e−rh

uCd − d Cu

u−d

u − e(r −δ)h e(r −δ)h − d ∆S + B = e−rh Cu + Cd u−d u−d (r −δ)h No arbitrage ⇒ u > e >d

2.2 Risk-Neutral Pricing p∗ =

e(r −δ)h − d u−d

C = e−r h[p∗Cu + (1 − p∗)Cd] √

u = e(r −δ)h+σ√h d = e(r −δ)h−σ h

2.3 Options on Currencies √

ux = xe(r −rf )h+σ√h dx = xe(r −rf )h−σ h p∗ =

e

(r −r f )h

u−d

−d

2.4 Options on Futures Contracts √

u = eσ√ h d = eσ h p∗ =

1−d u−d



3

The Black-Scholes Formula

3 Binomial Option Pricing: II √ σh = σ h

σ

Example: σmonthly = √

12

4 The Black-Scholes Formula 4.1 Calls and Puts C(S , K , σ, r, T , δ) = Se−δTN (d1) − Ke−rTN (d2) 1

ln(S/K) + (r − δ + 2 σ 2)T √ σ T √ d2 = d1 − σ T d1 =

P (S , K , σ, r, T , δ) = Ke−r TN ( − d2) − Se−δTN ( − d1)

4.2 Options on Stocks with Discrete Dividends P F0,T (S) = S0 − PV0,T (Div)

4.3 Options on Currencies P F0,T (S) = x0e−rfT

C(x, K , σ, r, T , r f ) = xe−rfTN (d1) − Ke−r TN (d2) 1

ln(x/K) + (r − r f + 2 σ 2)T √ d1 = σ T P (x, K , σ, r, T , r f ) = C(x, K , σ, r, T , r f ) + Ke−r T − xe−rfT

4.4 Options on Futures δ =r This is know as the Black Formula.

4.5 Greek Measures for Portfolios ∆p ortfolio =

n X

ωi∆i

i=1

Holds true for other greeks as well.

4

Section 6

4.6 Option Elasticity ǫ is the change in the stocks price. Ω is option elasticity. Ω≡

% change in option price % change in sto ck price

=

ǫ∆ C ǫ S

=

S∆ C

4.7 Volatility of an option σoption = σsto ck × |Ω|

4.8 Risk Premium of an Option γ is the expected return of the option. γ − r = (α − r) × Ω

4.9 Calendar Spreads Calendar spreads: buy and sell options with different expirations.

5 The Standard Normal Distribution 1 − 1 x2 φ(x) ≡ √ e 2 2π

N (x) ≡

Z

x

φ(x)dx −∞

6 Option Greeks Important identities: N (x) = 1 − N ( − x)

Se−δTN ′(d1) = Ke−rT N ′(d2)

6.1 Delta (∆)

∆call =

∂C(S , K , σ, r, T − t, δ) = e−δ(T −t)N (d1) ∂S

∆put =

∂P (S , K , σ, r, T − t, δ) = e−δ(T −t)N ( − d1) ∂S

6.2 Gamma (Γ)

5

Market-Making and Delta-Hedging

Γcall = Γput =

∂ 2C(S , K , σ, r, T − t, δ) e−δ(T −t)N ′(d1) √ = ∂ 2S Sσ T − t

6.3 Theta (θ) Ke−r(T −t)N ′(d2)σ ∂C(S , K , σ, r, T − t, δ) √ = δSe−δ(T −t)N (d1) − rKe−r(T −t)N (d2) − ∂t 2 T −t ∂P (S, K , σ, r, T − t, δ) θput = = θcall + rKe−r(T −t) − δSe−δ(T −t) ∂t

θcall =

6.4 Vega

Vegacall = Vegaput =

√ ∂C(S , K , σ, r, T − t, δ) = Se−δ(T −t)N ′(d1) T − t ∂σ

6.5 Rho (ρ) ∂C(S , K , σ, r, T − t, δ) = (T − t)Ke−r(T −t)N (d2) ∂r ∂P (S , K , σ, r, T − t, δ) ρput = = (T − t)Ke−r(T −t)N ( − d2) ∂r

ρcall =

6.6 Psi (ψ) ∂C(S , K , σ, r, T − t, δ) = − (T − t)Se−δ(T −t)N (d1) ∂δ ∂P (S , K , σ, r, T − t, δ) ψput = = (T − t)Se−δ(T −t)N ( − d1) ∂δ ψcall =

7 Market-Making and Delta-Hedging 7.1 Understanding Market-Makers Profit 1

∆t(St+h − St) − [∆t(St+h − St) + 2 (St+h − St)2Γt + θh] − rh[∆tSt − C(St)] =   1 − 2 ǫ2Γt + θth + rh[∆tSt − C(St)]

One stardard deviation move: ǫ2 = σ 2St2h. In that case we have   1 Market-maker profit= − 2 σ 2St2Γt + θ + r[∆tSt − C(St)] h. Set profit equal to zero and rearrange terms to get:

6

Section 8

1 2 2 σ St Γt + rSt∆t + θ = rC(St) 2

7.2 Re-hedgeing Re-hedge every h, market has moved xi standard deviations. 1

Rh,i = 2 S 2σ 2Γ(x2i − 1)h 1

Var(Rh,i) = 2 (S 2σ 2Γh)2 Example Variance for a day for a daily re-hedger: 1

Var(R1/365,1) = 2 (S 2σ 2Γ/365)2

7.3 Greeks in the Binomial Model ∆(S , 0) = e−δh Γ(Sh , h) =

Cu − Cd uS − dS

∆(uS , h) − ∆(dS , h) uS − dS

ǫ = udS − S 1

θ(S , 0) =

C(udS , 2h) − ǫ∆(S , 0) − 2 ǫ2Γ(S , 0) − C(S , 0) 2h

8 Exotic Options: I 8.1 Asian Options max [0, ± (G(T ) − K)] where G(T ) is some sort of average and the sign depends on it being a call or put.

8.2 Barrier Options 1. Knock-out. Go out of existence when a barrier is crossed. 2. Knock-in. Go into existence when a barrier is crossed. 3. Rebate. Make a fixed payment if barrier is crossed. “Knock-in” option + “Knock-out” option = Oridinary Option

8.3 Compound Options max [C(St , K , T − t1) − x, 0]. Compound Option Parity:

7

The Lognormal Distribution

CallOnCall(S , K , x, σ, r, t1, t2, δ) − PutOnCall(S , K , x, σ, r, t1, t2, δ) + xe−r t1 = BSCall(S , K , σ, r, t2, δ)

8.4 Gap Options K1 strike. K2 trigger. C(S , K1, K2, σ, r, T , δ) = Se−δTN (d1) − K1e−r TN (d2) 1

ln(Se−δT /K2e−rT ) + 2 σ 2T √ d1 = σ T √ d2 = d1 − σ T

8.5 Exchange Options max (0, ST − Kt) C(S , K , σ, r, T , δ) = Se−δSTN (d1) − K1e−δK TN (d2) 1

ln(Se−δST /Ke−δK T ) + 2 σ 2T √ σ T √ d2 = d1 − σ T d1 =

σ=

p 2 σS2 + σK − 2ρσSσK

9 The Lognormal Distribution

9.1 The Normal Distribution 1

− 1 φ(x; µ, σ) ≡ √ e 2 σ 2π



x− µ σ

2

9.2 Sum of Normal Random Variables xi ∼ N (µi , σi2) and Cov(xi , x j ) = σi, j . σij = ρijσiσ j

E

n X

ωi x i =

i=1

Var

!

n X i=1

!

n X

ωiµi

i=1

ωixi =

n X n X

i=1 j =1

ωiω jσij

8

Section 10

9.3 The Lognormal Distribution

Continously compounded return definition: R(0, t) = ln(St/S0) or St = S0eR(0,t) 1

If x ∼ N (m, v 2) then E(ex) = e

m+ 2 v 2

2

2

and Var(ex) = e2m+v (ev − 1)

ln(St/S0) ∼ N [(α − δ − 0.5σ 2)t, σ 2t]

√ ln(St/S0) = (α − δ − 0.5σ 2)t + σ t z

St = S0e(α−δ −0.5σ

2

√ )t+σ t z

E(St) = S0e(α−δ)t

9.4 Lognormal Probablity Calculations Prob(St < K) = N ( − dˆ2) with r → α. N (St |St < K) = Se(α−δ)t

Prob(St > K) = N (dˆ2) where dˆ2 is the standard Black-Schoes argument

N ( − dˆ1) N ( − dˆ2)

N (St |St > K) = Se(α−δ)t

N (dˆ1) N (dˆ2)

10 Monte Carlo Valuation 10.1 Using Sums of Uniformly Distributed Random Variables

Z˜ =

12 X i=1

ui − 6

10.2 Monte Carlo Valuation ST = S0e

√ P 1 (α−δ − 2 σ 2)T +σ h [ n i=1Z(i)]

1

V (S0, 0) = n e−r T

n X

V (STi , T )

i=1

10.3 Control Variate Method A∗ = A¯ + β(G − G¯ ) where β = Cov(A¯ , G¯ )/Var(G¯ )

√ 1 Pn 1 (α−δ − 2 σ 2)T +σ T [ √ i=1Z(i)]

=e

n

9

ˆ ’s Lemma Brownian Motion and Ito

11 Brownian Motion and Ito ˆ’s Lemma 11.1 Black-Scholes Assumptions about Stock Prices dS(t) S(t)

= αdt + σdZ(t)

ln[S(T )] ∼ N (ln[S(0)] + [α − 0.5σ 2]T , σ 2T )

11.2 Brownian Motion



Z(0) = 0



Z(t + s) − Z(t) ∼ N (0, s)



Z(t + s1) − Z(t) is independant of Z(t) − Z(t − s2)



Z(t) is continuous

s1, s2 > 0

Above implies that Z(t) is a martingale (i.e. E[Z(t + s)|Z(t)] = Z(t)

small h, Y (t) = { − 1, 1}, E[Y (t)] = 0, Var[Y (t)] = 1, √ Z(t + h) − Z(t) = Y (t + h) h h = T /n " # n √ 1 X Z(T ) − Z(0) = T √ Y (ih) n i=1 √ dZ(t) = Y (t) dt " # Z T n √ 1 X Z(T ) = Z(0) + lim T √ Y (ih) → Z(0) + dZ(t) n→∞ n i=1 0

11.3 Properties of Brownian Motion lim

n→∞

n X i=1

(Z[ih] − Z[(i − 1)/h])2 = lim

n→∞

n  X √ i=1

Thus it has finite quadratic variation so: lim

n→∞

n X i=1

(Z[ih] − Z[(i − 1)/h])n = 0 for n > 2.

h Yih

2

= lim

n→∞

n X i=1

2 hYih =T

10

Section 11

But infinite total variation: lim

n→∞

n X i=1

|Z[ih] − Z[(i − 1)/h]| = ∞

11.4 Arithmetic Brownian Motion

X(T ) − X(0) = αT + σZ(T ) dX(t) = αdt + σdZ(t) X(T ) − X(0) ∼ N (αT , σ 2T )

11.5 The Ornstein-Uhenbeck Process

dX(t) = λ[α − X(t)]dt + σdZ(t)

11.6 Geometric Brownian Motion

dX(t) = α[X(t)]dt + σ[X(t)]dZ(t) dX(t) = αdt + σdZ(t) X(t) ln[X(t)] ∼ N (ln[X(0)] + (α − 0.5σ 2)t, σ 2t) X(t) = X(0)e(α−0.5σ

2

√ )t+σ t Z

E[X(t)] = X(0)eαt

11.7 Multiplication Rules dt × dZ = 0 (dt)2 = 0 (dZ)2 = dt dZ × dZ ′ = ρdt

11.8 The Sharpe Ratio Sharpe ratioi =

αi − r σi

11

The Black-Scholes Equation

11.9 The Risk Neutral Process dS(t) = (α − δ)dt + σdZ(t) S(t) Z˜ (t) generates a martingale in utility terms for a risk-averse investor. dS(t) = (r − δ)dt + σd Z˜ (t) S(t) dZ˜ (t) = dZ(t) + ηdt where η = (α − r)/σ

11.10 Ito ˆ’s Lemma n o dS(t) = αˆ[S(t), t] − δˆ[S(t), t] dt + σˆ[S(t), t]dZ(t) 1

dC(S , t) = CSdS + 2 CS S (dS)2 + Ctdt n o 1 dC(S , t) = [αˆ(S , t) − δˆ(S , t)]CS + 2 σˆ(S , t)2CS S + Ct dt + σˆ(S , t)CSdZ

11.11 Valuing a Claim on S a

P F0,T [S(T )a] = e−rTS(0)ae

1

[a(r −δ)+ 2 a(a−1)σ 2]T 1

F0,T [S(T )a] = S(0)ae

[a(r −δ)+ 2 a(a−1)σ 2]T

12 The Black-Scholes Equation dS = (α − δ)dt + σdZ S Option V [S(t), t]. Invest W in bonds that pay return r. dW = rWdt Total investment in option, stocks (N shares) and bonds should be zero. I = V (S , t) + NS + W = 0 1

dI = dV + N (dS + δSdt) + dW = Vtdt + VSdS + 2 σ 2S 2VSSdt + N (dS + δSdt) + rWdt Delta-hedge so N = − VS . Bonds: W = VSS − V . So, 1

dI = Vt + 2 σ 2S 2VS Sdt − VSδSdt + r(VSS − V )dt

12

Section 13

Zero-investment, zero-risk portfolio so dI = 0. 1

Vt + 2 σ 2S 2VS S + (r − δ)SVS − rV = 0

12.1 Risk Neutral Pricing dS = (r − δ)dt + σdZ˜ S 1 1 E(dV ) = Vt + σ 2S 2VSS + (α − δ)SVS 2 dt E ∗(dS) = (r − δ)dt 1 E ∗(dV dt

1

) = Vt + 2 σ 2S 2VS S + (r − δ)SVS so

1 E ∗(dV dt

) = rV

13 Exotic Options: II

13.1 All-Or-Nothing Options

CashCall(S , K , σ, r, T − t, δ) = e−r(T −t)N (d2) CashPut(S , K , σ, r, T − t, δ) = e−r(T −t)N ( − d2) AssetCall(S , K , σ, r, T − t, δ) = e−δ(T −t)SN (d1) AssetPut(S , K , σ, r, T − t, δ) = e−δ(T −t)SN ( − d1)

13.2 Ordinary Options and Gap Options

BSCall(S , K , σ, r, T − t, δ) = AssetCall(S , K , σ, r, T − t, δ) − K × CashCall(S , K , σ, r, T − t, δ) BSPut(S , K , σ, r, T − t, δ) = K × CashPut(S , K , σ, r, T − t, δ) − AssetPut(S , K , σ, r, T − t, δ) Gap option that pays S − K1 if S > K2. AssetCall(S , K2, σ, r, T − t, δ) − K1 × CashCall(S , K2, σ, r, T − t, δ)

Interest Rate Models

14 Volatility

dSt/St = (α − δ)dt + σ(St , Xt , t)dZ ǫt+h = ln(St+h/St) n

2 σˆH =

X 1 ǫ2i (n − 1) i=1

14.1 ARCH ln(St/St−h) = (α − δ − 0.5σ 2)h + ǫt Var(ǫt) = σ 2h

15 Interest Rate Models

15.1 Behavior of Bonds and Interest Rates dP = α(r, t)dt + q(r, t)dZ P dr = a(r)dt + σ(r)dZ

15.2 Impossible Bond Pricing Model P (t, T ) = e−r(T −t)

15.3 An Equilibrium Equation for Bonds

dP (r, t, T ) =

  ∂P 1 ∂ 2P ∂P ∂P 1 ∂ 2P ∂P ∂P 2 2 dr + (dr) + dt = a(r) dr + σ(r) + dt + σ(r)dZ ∂r 2 ∂r 2 ∂t ∂r 2 ∂r 2 ∂t ∂r

  ∂P 1 ∂ 2P ∂P 1 2 a(r) dr + σ(r) + α(r, t, T ) = ∂r 2 ∂r 2 ∂t P (r, t, T ) q(r, t, T ) = −

∂P 1 σ(r) P (r, t, T ) ∂r

13

14

Section 16

dP (r, t, T ) = α(r, t, T )dt − q(r, t, T )dZ P (r, t, T ) Delta-hedged portfolio

dI = N [α(r, t, T1)dt − q(r, t, T1)dZ]P (r, t, T1) + [α(r, t, T2)dt − q(r, t, T2)dZ]P (r, t, T2) + rWdt Set N = −

P (r, t, T2) P (r, t, T2) q(r, t, T2) =− r Pr(r, t, T2) P (r, t, T1) q(r, t, T1)

and dI = 0

Thus Sharpe ratio for the two bonds is equal α(r, t, T1) − r α(r, t, T2) − r = q(r, t, T2) q(r, t, T1)

φ(r, t) =

α(r, t, T ) − r q(r, t, T )

1 ∂ 2P ∂P ∂P σ(r)2 2 + [a(r) + σ(r)φ(r, t)] + − rP = 0 2 dr ∂r ∂t The risk-neutral process for the interest rate: dr = [a(r) + σ(r)φ(r, t)]dt + σ(r)dZ P [t, T , r(t)] = Et∗[e−R(t,T )] Z T R(t, T ) = r(s)ds t

15.4 Delta-Gamma Approximations for Bonds 1 ∗ E (dP ) = rP dt

16 Equilibrium Short-Rate Bond Price Models

16.1 The Rendelman-Bartter Model

15

Equilibrium Short-Rate Bond Price Models

dr = adt + σdZ

16.2 The Vasicek Model

dr = a(b − r)dt + σdz 1 2 ∂ 2P ∂P ∂P σ + [a(b − r) − σφ] + − rP = 0 2 ∂r 2 ∂r ∂t P [t, T , r(t)] = A(t, T )e−B(t,T )r(t) A(t, T ) = er¯(B(t,T )+t−T )−B

2 2

σ /4a

B(t, T ) = (1 − e−a(T −t))/a r¯ = b + σφ/a − 0.5σ 2/a2 r¯ is the yield to maturity for an infinite length bond.

16.3 The Cox-Ingersoll-Ross Model √ dr = a(b − r)dt + σ r dz

√ Sharpe Ratio: φ(r, t) = φ¯ r /σ 1 2 ∂ 2P ∂P ∂P σ + [a(b − r) − rφ¯ ] + − rP = 0 2 ∂r 2 ∂r ∂t P [t, T , r(t)] = A(t, T )e−B(t,T )r(t) "

¯

2γe(a− φ + γ)(T −t)/2 A(t, T ) = (a − φ¯ + γ)(e γ(T −t) − 1) + 2γ B(t, T ) =

γ=

#

2(e γ(T −t) − 1) ¯ (a − φ + γ)(eγ(T −t) − 1) + 2γ

p (a − φ¯ )2 + 2σ 2

16.4 Bond Options, Caps, and The Black Model



Pt(T , T + s) is zero-coupon bond price at time t purchased at time T and paying $1 at time T + s

16

Section 16





If t = T then P (T , T + s) is the spot price If t < T then Pt(T , T + s) is a forward price Ft,T [(P (T , T + s)]

Call option payoff = max [0, P (T , T + s) − K] Ft,T [P (T , T + s)] = P (t, T + s)/P (t, T )

Volatility = Var(ln(Ft,T [P (T , T + s)]))

C[F , P (0, T ), σ, T ] = P (0, T )[FN (d1) − KN (d2)] d1 =

ln(F /K) + 0.5σ 2T √ σ T

√ d2 = d1 − σ T where F = F0,T [P (T , T + s)]

R0(T , T + s) =

P (0, T ) −1 P (0, T + s)

Foward rate agreement (FRA)

Payoff to FRA = RT (T , T + s) − R0(T , T + s) Call option on FRA is a caplet.

Payoff to caplet = max [0, RT (T , T + s) − KR] If settled at time T , the option pays: 1 max [0, RT (T , T + s) − KR] 1 + RT (T , T + s) Let RT = RT (T , T + s)    1 1 R T − KR = (1 + KR)max 0, − (1 + KR)max 0, 1 + KR 1 + R T (1 + KT )(1 + KR) 

cap is a collection of caplets

17

Jensen’s Inequality

Cap payment at time ti+1 = max [0, Rti(ti , ti+1) − KR]

16.5 A Binomial Interest Rate Model Pi(i, i + 1; j) = e−ri(i,i+1; j)h P0(0, 1; 0) = e−r h P0(0, 2; 0) = e−r h[pe−ruh + (1 − p)e−rdh] = e−r h[pP1(1, 2; 1) + (1 − p)P1(1, 2; 0)]   Pn Using risk neutral E ∗ e− i=0rih Yields= − ln(P (0, T ))/T

16.6 The Black-Derman-Toy Model Distance between up node and down node is

√ h √ −σ h Ae

Aeσ

Yield: y[h, T , r(h)] = P [h, T , r(h)]−1/(T −h) − 1   y(h, T , ru) √ / h Yield volatility = 0.5 × ln y(h, T , rd) P (0, 1) × (0.5 × P (1, 2; Ru) + 0.5 × P (1, 2; Rd)) = P (0, 2)

17 Interest Rates Effective annual rate: r in (1 + r)n Continuously compounded rate: r in er n

18 Jensen’s Inequality If f (x) is convex: E[f (x)] > f [E(x)] If f (x) is concave: E[f (x)] 6 f [E(x)]

Related Documents

Formulas For Exam 1-summer
November 2019 13
Formulas
May 2020 26
Formulas
December 2019 37