Calculus-Based Physics II by Jeffrey W. Schnick q1 q2 r2
F =k
F = qE
E=
kq r2
U = qϕ
τ = µ ×B µ = N IA
1 1 1 = + f o i
FB = ∇(µ ⋅ B)
F = I L×B
M=
F = q v ×B
M =−
B=
ϕ = Ed
µo 3 (µ ⋅ rˆ) rˆ − µ 4π r3
µo I 2π r
W = − q ∆ϕ
B=
kq ϕ= r
E = v ×B
⋅
B = − µ o eo vP × E
V = IR L R=r A P =IV R s = R1 + R 2 1 Rp = 1 1 + R1 R 2
Φ B = B ⋅ dA ΦB = B ⋅ A
E = N ΦB
⋅
E=
1 ⋅ ΦB 2π r
E = E MAX sin( 2πf t ) mλ = d sin θ (m + 12 ) λ = d sin θ E RMS = 12 E MAX Csc =
Q Q ,C= ϕ V
mλ = w sin θ mλ 2 = 2t
U = CV A C = κ eo d 1 Cs = 1 1 + C1 C 2
(m + ) λ 2= 2t n λ 2 = 1 λ1 n2
C p = C1 + C 2
c n= v n1 sin θ 1 = n2 sin θ 2 n sin θ c = 2 n1
1 2
2
τ = RC V = E (1 − e −t / τ ) V = Vo e − t / τ I = I o e −t / τ
h' h i o
E = − ∇ϕ
1 f P = P1 + P2 P=
Φ E = E ⋅ dA
1 1 1 = (n − no ) + f R R 2 1
P
I =Q
dq = λ dx k dq dE = 2 r k dq dϕ = r F = −∇U
o
4π
x sin 2 x 2 ∫ (cos x) dx = 2 + 4 dx 1 + sin x ∫ cos x = 12 ln 1 − sin x dx ∫ (cos x) 2 = tan x dx 2 2 ∫ x 2 + a 2 = ln x + x + a xdx 2 2 ∫ x2 + a2 = x + a
(
∫
x +a 2
1 2
I = I o (cosθ ) 2
µ I dl × r dB =
∫ (cos x) dx = sin x
x 2 dx
=
2
(
∫
∫
dx (x2 + a2 ) xdx
3
(x + a ) 2
2
= 2
3
=− 2
x 2 dx (x2 + a 2 )
3
1 a2
=− 2
E B ⋅ dl = µ o ITHROUGH + µ 0 e 0 Φ Q E ⋅ dA = ENCLOSED eo
)
(
x2 + a2 1 x + a2
ln x + x + a
1 e = 1.60 × 10 −19 C k=
1 4π e o
N ⋅ m2 C2 C2 −12 eo = 8.85 × 10 N ⋅ m2 T⋅m µ o = 4π × 10 − 7 A nH 2 O = 1.33 k = 8.99 × 109
me = 9.11 × 10−31 kg
2
2
x
x2 + a2
)
x
r3
B E ⋅ dl = − Φ B ⋅ dA = 0
x 2 x + a2 − 2
a2 ln x + x 2 + a 2 2
∫
mp = 1.6726 × 10−27 kg
+ 2
)
c = 3.00 × 108
m s
N A = 6.022 × 1023
particles mole