Fatouh - 3er Ano - Sistema Circulatorio Humano

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Fatouh - 3er Ano - Sistema Circulatorio Humano as PDF for free.

More details

  • Words: 4,508
  • Pages: 50
Sistema Circulatorio Humano

Introducción El Sistema Circulatorio (también llamado aparato circulatorio) es el sistema de transporte interno del organismo. Su objetivo es llevar elementos nutritivos, defensivos y oxígeno a todos los tejidos del organismo, eliminar los productos finales del metabolismo (desechos, dióxido de carbono) y llevar las hormonas desde las correspondientes glándulas endocrinas a los órganos sobre los cuales actúan. Durante este proceso, regula la temperatura del cuerpo, debido a que transporta el calor generado en los músculos. El Sistema Circulatorio está compuesto por: 1. Un corazón 2. Vasos Sanguíneos (Venas, Arterias, Capilares) 3. Sangre 4. Vasos Linfáticos 5. Linfa

El Corazón

El Corazón El Corazón es un órgano muscular hueco que recibe sangre de las venas y la impulsa hacia las arterias. Tiene el tamaño y volumen de un puño y está situado en el tórax, entre los dos pulmones y ligeramente desplazado a la izquierda, por delante del esófago y apoyado sobre el diafragma. Las paredes de tejido muscular son reforzadas por bandas de tejido conectivo y todo el órgano está recubierto por tejido conectivo llamado pericardio, saco de pared doble con una capa que envuelve, además, al esternón, el diafragma, y las membranas del tórax. Tanto el corazón como todos los vasos están revestidos por una capa de células aplanadas llamada endotelio que evita que la sangre se coagule.

El Corazón

En su parte interna está dividido en cuatro cavidades: dos aurículas y dos ventrículos (izquierdos y derechos) y la sangre pasa de la aurícula al ventrículo. Por su función de bombeo el corazón está provisto de válvulas (en la conexión aurícula - ventrículo) que al cerrar herméticamente evitan el retroceso de la sangre. La válvula tricúspide se encuentra entre la aurícula y el ventrículo derecho, mientras que la válvula bicúspide o mitral se ubica entre la aurícula y ventrículo izquierdo. Podemos encontrar a las válvulas semilunares (aórtica) en el origen de las arterias aorta y pulmonar que parten de los ventrículos Del corazón salen arterias y a él llegan venas. Su función es impulsar la sangre a todo el cuerpo, permitiendo así que cada tejido corporal reciba la cantidad de oxígeno y nutrientes que necesita y que elimine los desechos o productos celulares.

Circulación de la sangre en el corazón (animación)

Válvulas Cardiacas

Circulación Coronaria

Ciclo Cardiaco Cada latido del corazón desencadena una secuencia de eventos llamados ciclos cardiacos, que constan principalmente de tres etapas: sístole auricular, sístole ventricular y diástole. El ciclo cardíaco hace que el corazón alterne entre una contracción y una relajación aproximadamente 75 veces por minuto, es decir el ciclo cardíaco dura unos 0,8 segundos. Durante la sístole auricular, las aurículas se contraen y proyectan la sangre hacia los ventrículos. Una vez que la sangre ha sido expulsada de las aurículas, las válvulas auriculoventriculares entre las aurículas y los ventrículos se cierran. Esto evita el reflujo de sangre hacia los atrio. El cierre de estas válvulas produce el sonido familiar del latido del corazón. La sístole ventricular implica la contracción de los ventrículos expulsando la sangre hacia el sistema circulatorio. Una vez que la sangre es expulsada, las dos válvulas sigmoideas, la válvula pulmonar en la derecha y la válvula aórtica en la izquierda, se cierran. Por último la diástole es la relajación de todas las partes del corazón para permitir la llegada de nueva sangre. Este movimiento se produce unas 70 veces por minuto. La expulsión rítmica de la sangre provoca el pulso que se puede palpar en las arterias radiales, carótidas, femorales, etc.

Diástole

Ciclo Cardiaco

Sístole Ventricular

Automatismo Cardíaco Un sistema de conducción eléctrico único en el corazón provoca los latidos con su ritmo regular. El nodo sino auricular (SA), una pequeña zona de tejido en la pared de la aurícula derecha, envía una señal eléctrica para comenzar la contracción del músculo cardíaco. Este nodo se denomina "marcapasos del corazón", porque fija la velocidad del latido y hace que el resto del corazón se contraiga a su ritmo. Estos impulsos eléctricos hacen contraer primero a las aurículas y después se trasladan hacia abajo en dirección al nodo auriculoventricular (AV), que actúa como una estación de relevo. Desde allí, la señal eléctrica viaja a través de los ventrículos derecho e izquierdo, haciéndolos contraer y expulsando la sangre hacia el interior de las arterias principales.

Automatismo Cardiaco

Los Vasos Sanguíneos

Red de Vasos Sanguíneos y Corazón

Vasos Sanguíneos: Venas Una Vena es un vaso sanguíneo que transporta sangre desoxigenada desde los capilares hasta el corazón. Las venas se localizan más superficialmente que las arterias, prácticamente por debajo de la piel en las venas superficiales. Al igual que las arterias, sus paredes están formadas por tres capas pero son de menor espesor, sobre todo al disminuir la capa del medio. Las venas tienen válvulas que hacen que la sangre fluya desde la periferia hacia el corazón o sea que llevan la circulación centrípeta Existen tres sistemas en los que se agrupan las venas: Venas del sistema general: Por las venas de la circulación sistémica o general circula la sangre pobre en oxígeno desde los capilares o microcirculación sanguínea de los tejidos a la parte derecha del corazón. Las venas de la circulación sistémica también poseen unas válvulas, llamadas válvulas semilunares que impiden el retorno de la sangre hacia los capilares. Venas del sistema pulmonar: Por las venas de la circulación pulmonar circula la sangre oxigenada en los pulmones hacia la parte izquierda del corazón. Venas del sistema portal: Las venas portales reciben sangre procedente de las venas esplénica, mesentérica superior, cística, gástrica y pilórica, entran en el hígado y se ramifican en pequeños capilares que atraviesan todo este órgano.

Vasos Sanguíneos: Arterias Las Arterias son vasos tubulares que conducen la sangre desde el corazón hacia los tejidos del organismo. Su función es llevar la sangre desde el corazón hasta los tejidos. Están formada por tres capas, una capa media de fibras musculares lisas rodeada de dos capas de tejido conectivo; por dentro de ella se encuentra una capa muy delgada de células que constituyen el endotelio. Hay dos arterias con comunicación directa con el corazón: la aorta, que lleva la sangre oxigenada desde el ventrículo izquierdo a todo el organismo, y la arteria pulmonar, que conduce la sangre desde el ventrículo derecho a los pulmones. Las ramas arteriales más pequeñas se comunican con las venas a través de los capilares. Las arterias suelen recibir el nombre de la zona del cuerpo donde se localizan, como la arteria humeral (húmero), o braquial (brazo) o la metacarpiana (muñeca), o del órgano que irrigan, como la arteria hepática (hígado) o la arteria ovárica (ovario). Las arterias se dilatan y después se contraen con cada latido del corazón, un movimiento rítmico perceptible, el pulso.

Vasos Sanguíneos: Capilares Los Capilares (figura de la izquierda) son diminutos vasos sanguíneos que constituyen la conexión entre las arterias y las venas. Estos vasos son muy finos, tienen un diámetro que varía entre unos 0,0127 Mm. y 0,2032 Mm., son muy numerosos y están repartidos por todo el cuerpo. Las paredes de los capilares son extremadamente delgadas y muy permeables; a través de ellas se produce el intercambio constante entre sustancias que están en la sangre y los productos de desecho presentes en el exterior, en los tejidos corporales y en la linfa. Esta característica facilita los procesos de nutrición y excreción, y permite el intercambio de oxígeno y dióxido de carbono. Los capilares linfáticos colaboran con los capilares sanguíneos en este proceso. Sus paredes se componen de una sola capa celular, el endotelio, que se continúa con el mismo tejido de las venas y arterias en sus extremos. La sangre no se pone en contacto directo con las células del organismo, sino que éstas son rodeadas por un líquido intersticial que las baña; las sustancias se difunden desde la sangre por la pared de un capilar y atraviesan el espacio ocupado por líquido intersticial para llegar a las células. Las arterias antes de transformarse en capilares son un poco más pequeñas y se llaman arteriolas y cuando el capilar pasa a ser vena nuevamente hay un paso intermedio en el que son venas más pequeñas llamadas vénulas (figura de la derecha).

Circuitos Mayor y Menor El aparato circulatorio está conformado por el corazón y los vasos sanguíneos, incluyendo las arterias, las venas y los capilares. Nuestro cuerpo, en realidad, tiene dos aparatos circulatorios: la circulación pulmonar es un circuito breve que va del corazón a los pulmones y de regreso al corazón y recibe el nombre de Circuito Menor, y la circulación sistémica que envía sangre desde el corazón a todas las partes de nuestro cuerpo y después vuelve a traerla al corazón y recibe el nombre de Circuito Mayor. El circuito mayor comienza en el ventrículo izquierdo, sigue por la arteria aorta y a través de sus ramificaciones llegará a los capilares de todo el cuerpo. Este circuito retorna por las venas que drenan finalmente a las venas cavas, superior e inferior, finalizando el circuito en la aurícula derecha. El circuito menor, comienza en el ventrículo derecho, sale a través del tronco pulmonar sigue por las arterias pulmonares derecha e izquierda, capilarizándose en los pulmones. Este circuito retorna por las vénulas que convergen para formar las cuatro venas pulmonares, dos del pulmón derecho y dos del izquierdo, las que drenan en la aurícula izquierda.

Sentido de la circulación (animación) La sangre que procede de la circulación de todo el cuerpo, entra en la aurícula derecha a través de las venas cava superior e inferior. Por la superior ingresa la sangre que procede de la cabeza y los brazos y por la cava inferior la sangre que proviene de la parte inferior y las piernas. Esta sangre está desoxigenada pues ha dejado todo su oxígeno y nutrientes en el organismo. Ingresa por la aurícula derecha, entra en el ventrículo derecho atravesando la válvula tricúspide y se conduce a los pulmones por la arteria pulmonar, pasando luego por la válvula pulmonar. Esta arteria es la única que lleva en su interior sangre venosa. La arteria pulmonar conduce la sangre a los pulmones en sus ramificaciones izquierda y derecha. La sangre desoxigenada vuelve a oxigenarse en los pulmones (intercambio gaseoso o Hematosis; cambia el anhídrido carbónico por oxígeno, enriqueciéndose), luego regresa por las cuatro venas pulmonares (dos izquierdas y dos derechas) recién oxigenada desde los pulmones a la aurícula izquierda. Estas son las únicas venas del organismo que transportan sangre con oxígeno y nutrientes. Ingresan al ventrículo izquierdo pasando por la válvula mitral y se dirige a la arteria aorta atravesando la válvula aórtica. La arteria aorta enriquecerá con la sangre oxigenada a todos los órganos y tejidos del cuerpo humano.

Modelo Simplificado de la Circulación Mayor y Menor en Humanos

Vasos Linfáticos Los vasos linfáticos representan la vía de retorno del líquido intersticial (líquido que se encuentra en el espacio que hay entre las células) al sistema circulatorio. A lo largo del recorrido de los vasos linfáticos se encuentran los ganglios linfáticos, órganos con forma de riñón que contienen grandes cantidades de leucocitos incluidos en una red de tejido conectivo. Toda la linfa que circula por los vasos linfáticos hacia el torrente sanguíneo debe atravesar varios de estos ganglios, que filtran los materiales tóxicos e infecciosos y los destruyen. Los ganglios funcionan como centro de producción de macrófagos, que ingieren bacterias y demás sustancias. Durante el transcurso de cualquier infección, los ganglios aumentan de tamaño debido a la gran cantidad de macrófagos que forman; estos ganglios suelen estar, durante el proceso infeccioso, inflamados y son dolorosos. Los vasos linfáticos forman una red de conductos que se inician en el espacio intersticial y que en el torrente circulatorio sanguíneo a nivel de la base del cuello, en el ángulo formado por las venas yugular interna y subclavia.

Derecha: Sistema linfático mostrando los vasos los ganglios y los órganos. Izquierda: ganglio linfático en corte

Sangre La Sangre es un tejido constituido por células (eritrocitos, leucocitos y plaquetas) y sustancia intercelular líquida (plasma). Mantiene su fluidez mientras circula por vasos que conserven la integridad de sus paredes. Al lesionarse esos vasos, coagula rápidamente. El volumen de sangre total de un adulto de 70 Kg. de peso es de aproximadamente 5,5 litros. Está compuesto por: Plasma sanguíneo: es un líquido amarillento compuesto por agua, iones, glucosa, aminoácidos, proteínas, lípidos, hormonas, vitaminas, etc. Por el plasma sanguíneo se transporta gran cantidad de sustancias que son usadas a distancia por todos los tejidos corporales (hormonas, aminoácidos, etc.). Eritrocitos o Glóbulos rojos Leucocito o Glóbulo blanco Plaquetas La sangre se forma normalmente en un tejido conectivo especializado denominado hemopoyético ubicado en la médula ósea roja dentro de los espacios de los huesos largos jóvenes en la cavidad medular y en el hueso esponjoso.

Composición de la Sangre

Eritrocitos o Glóbulos Rojos Los glóbulos rojos, también denominados eritrocitos o hematíes, se encargan de la distribución del oxígeno molecular (O2). Tienen forma de disco bicóncavo y son tan pequeños que en cada milímetro cúbico hay cuatro a cinco millones. Su citoplasma carece de organelas y ribosomas que desaparecen junto con el núcleo en la célula precursora antes de ser lanzados a la circulación desde su sitio de origen. Contiene hemoglobina, proteína rica en hierro que le permite combinarse con oxígeno y transportarlo al resto de las células del organismo o con dióxido de carbono (CO2), lo que permite su eliminación. Su membrana plasmática permite el pasaje de O2 y CO2.

Eritrocito y Hemoglobina

Estructura química de la hemoglobina y el grupo hemo con su ion Fe en el centro. La hemoglobina es una heteroproteína de la sangre, de peso molecular 68.000, de color rojo característico, que transporta el oxígeno desde los órganos respiratorios hasta los tejidos, en mamíferos y otros animales. La forman cuatro cadenas polipeptídicas (globina) a cada una de las cuales se une un grupo hemo, cuyo átomo de hierro es capaz de unirse de forma reversible al oxígeno. La hemoglobina se encuentra en el interior de los glóbulos rojos.

Hematosis Se llama Hematosis al mecanismo de intercambio de gases respiratorios entre la sangre y los alvéolos pulmonares. Este intercambio se realiza debido a la diferente concentración de gases que hay entre el exterior y el interior de los alvéolos pulmonares; por ello, el O2 pasa al interior de los alvéolos y el CO2 pasa a los conductos respiratorios. Cuando la sangre llega a los pulmones tiene un alto contenido en CO2 y muy escaso en O2. El O2 pasa por difusión a través de las paredes alveolares y capilares a la sangre. Allí es transportada por la hemoglobina que la llevará a todas las células del cuerpo donde por el mismo proceso de difusión pasará al interior para su posterior uso. El mecanismo de intercambio de CO2 es semejante, pero en sentido contrario, pasando el CO2 a los alvéolos. El CO2 se transporta disuelto en el plasma sanguíneo y en los glóbulos rojos.

Relación Entre Sistema Circulatorio y Respiratorio

Leucocitos o Glóbulos Blancos Los Leucocitos o Glóbulo Blancos normalmente se encuentran de 5000 a 10000 por /mm3 en el adulto. Pueden desplazarse y hasta deslizarse a través de los vasos sanguíneos para penetrar en los tejidos corporales y cumplir funciones de protección del organismo (eliminar bacterias, por ejemplo). Se dividen en dos grandes grupos, de acuerdo con la presencia o ausencia de gránulos: granulocitos o agranulocitos. a) Los granulocitos comprenden los siguientes tipos celulares: Neutrófilos: su función es dirigirse a áreas del organismo infectadas y fagocitar el material nocivo para el organismo. Eosinófilos: concurren hacia las áreas en que se acumulan complejos antígeno-anticuerpo, a los que fagocitan y neutralizan, disminuyendo la intensidad de las reacciones alérgicas. Basófilos: fija anticuerpos sobre su membrana plasmática. Cuando penetra en el organismo un antígeno específico, se forma el complejo antígeno-anticuerpo sobre su superficie y la célula puede destruirse. b) los agranulocitos se agrupan en dos tipos: Linfocitos: sintetizan anticuerpos e intervienen en los procesos inmunológicos. Monocitos: migran al tejido conectivo en donde eliminan bacterias, hongos, virus, etc.

Linfocitos B: representan cerca del 5-15% de todos los linfocitos circulantes. En el feto, se producen en el hígado y después en la médula ósea. Se distribuyen en los tejidos linfoides secundarios y responden a los estímulos antigénicos dividiéndose y diferenciándose a células plasmáticas, liberadoras de anticuerpos (inmunoglobulinas), gracias a la acción de citocinas secretadas por las células T.

Linfocitos T: se desarrollan en el timo a partir de células madre linfocíticas de la médula ósea de origen embrionario. Después expresan receptores antigénicos específicos y se diferencian en dos subgrupos. Uno expresa el marcador CD4 y el otro el CD8. A su vez, constituyen diferentes poblaciones que son: los linfocitos T helper (auxiliadores), los citotóxicos y los supresores. Sus funciones son: 1) ayudar a las células B a producir anticuerpos; 2) reconocer y destruir a los patógenos; y 3) controlar el nivel y la calidad de la respuesta inmunológica.

Mastocitos: se asocian con las células epiteliales de la mucosa, donde su proliferación depende de las Células T y con el tejido conectivo donde son Tindependientes. Contienen gránulos ricos en mediadores inflamatorios, como la histamina y ante la estimulación también liberan prostaglandinas y leucotrienos. Su función es relacionar la respuesta inmunológica y las reacciones inflamatorias, sobre todo en el caso de la infección por parásitos, pero también participan en las reacciones de hipersensibilidad.

Eosinófilos: constituyen del 2-5% de los leucocitos circulantes en los individuos no alérgicos. Se clasifican como granulocitos debido al núcleo bilobulado y sus abundantes gránulos de una proteína básica, capaz de dañar a numerosos patógenos, particularmente parásitos. También contienen histaminasa y aril-sulfatasa que controlan las reacciones alérgicas e inflamatorias, respectivamente. Son atraídos por productos liberados por las Células T, los mastocitos y los basófilos.

Basófilos: constituyen menos del 0.5% de todos los leucocitos de la sangre. Median las reacciones inflamatorias y se parecen funcionalmente a los mastocitos, si bien se diferencian estructuralmente por la presencia de una abundante cantidad de gránulos citoplasmáticos de color azul violáceo oscuro

Células presentadoras de antígenos: constituyen un grupo de células, definido desde el punto de vista estructural, capaz de fagocitar a los antígenos y presentarlos a los linfocitos en una forma en la que ellos los pueden reconocer. Sobre todo se encuentran en la piel, los nódulos linfáticos, el bazo y el timo. Su arquetipo son las células de Langerhan de la piel. Son ricos en antígenos de histocompatibilidad de clase V

Macrófagos: se trata de células de gran tamaño con función fagocítica, presente en la mayoría de los tejidos y cavidades. Algunos permanecen en los tejidos durante años y otros circulan por los tejidos linfoides secundarios. También pueden actuar como células presentadoras de antígenos.

Neutrófilos: son los leucocitos más abundantes (>70%). Su tamaño es de 10-20m de diámetro y se clasifican como granulocitos debido a sus gránulos citoplasmáticos de lisosomas y de lactoferrina. Pasan menos de 48 horas en la circulación antes de migrar a los tejidos, debido a la influencia de los estímulos quimiotácticos. Es en ellos donde ejercen su acción fagocítica y eventualmente mueren.

Monocitos: células circulares que se originan en la médula ósea y constituyen cerca del 5% del total de leucocitos de la sangre, donde permanencen sólo unos tres días. Después atraviesan las paredes de las vénulas y capilares donde la circulación es lenta. Una vez en los órganos, se transforman en macrófagos, lo que se refleja en el aumento de su capacidad fagocítica, de la síntesis de proteínas, el número de lisosomas y la cantidad de aparato de Golgi, microtúbulos y microfilamentos. Estos últimos se relacionan con la formación de pseudópodos, responsables del movimiento de los macrófagos.

Trombocitos o Plaquetas Las Plaquetas o Trombocitos son masas citoplasmáticas sin núcleo, de forma esférica u ovoide. Intervienen en la coagulación sanguínea y además son importantes en la respuesta inmunológica a la inflamación. Después de un daño al endotelio (tejido de revestimiento de los vasos sanguíneos), se adhieren y agregan en su superficie y liberan sustancias, capaces de aumentar la permeabilidad y factores responsables de activar al sistema complemento para atraer leucocitos

Coagulación Sanguínea El proceso de coagulación se inicia inmediatamente después de una herida, cuando las plaquetas (trombocitos) liberadas se pegan a los bordes de la herida. Las siguientes se adhieren a su vez y así se forma un tapón sanguíneo, que toma su rigidez a partir de la formación de unos “hilos” de fibrina, una proteína de coagulación. Para que los hilos de fibrina se puedan formar, son necesarios una serie de iones y factores, llamados factores de coagulación. Todos unidos actúan sobre la enzima tromboquinasa, que transforma la protrombina en la enzima trombina. La trombina puede finalmente formar los hilos de fibrina a partir del fibrinógeno. Cerca de 10 minutos después de la herida se abren de nuevo los vasos sanguíneos y en caso de heridas pequeñas, ya para entonces se ha formado el tapón sanguíneo que cubre la herida. Las personas, a las que les falta alguno de los factores de coagulación tienen en comparación, una coagulación muy lenta, de manera que el sangrado casi no puede detenerse. Esta enfermedad se llama hemofilia y es hereditaria. Esta enfermedad se investigó y estudió en los árboles genealógicos de familias nobles europeas. A estos pacientes se les puede inyectar el factor coagulante de que carecen, de manera que puedan vivir una vida normal.

Tejido Hematopoyético o Hemopoyético El tejido hematopoyético es un tipo de tejido conjuntivo especializado en la producción de las células de la sangre mediante un proceso llamado hematopoyesis. El tejido hematopoyético junto con el tejido adiposo, son los principales componentes tisulares de la médula ósea. La hematopoyesis o hemopoyesis es el proceso de formación, desarrollo y maduración de los elementos celulares de la sangre (eritrocitos, leucocitos y plaquetas) a partir de un precursor celular común e indiferenciado conocido como célula madre hematopoyética pluripotencial, Hemocitoblasto o stem cell. Las células madre que en el adulto se encuentran en la médula ósea son las responsables de formar todas las células y derivados celulares que circulan por la sangre. Las células sanguíneas son degradadas por el bazo y los macrófagos del hígado.

Muestra de sangre mostrando las diferentes células sanguíneas

Sistema ABO El sistema AB0, fue descubierto por Karl Landsteiner en 1901 (fotografía de la izquierda), que estudió los anticuerpos encontrados en el plasma sanguíneo, definiendo tres grupos sanguíneos A,B y 0. En el año 1907 Decastrello y Sturli definieron el cuarto grupo AB. Los grupos sanguíneos están definidos por antígenos. Estos son las glicoproteínas de la membrana de algunos eritrocitos en la sangre. El grupo 0 posee el antígeno H, El grupo A posee el antígeno A, el grupo B el antígeno B y el grupo AB posee ambos. Generalmente no se menciona el antígeno del grupo 0. El grupo AB, tiene antígenos A y B alternados a lo largo en su membrana y no posee antígenos H. Los distintos grupos de sangre presentan anticuerpos en el plasma sanguíneo. El grupo A, tendrá anticuerpos B. El grupo B, tendrá anticuerpos A. El grupo O, tendrá anticuerpos A y B y el grupo AB no poseerá anticuerpos (imagen de la derecha).

Sistema AB0

En el caso de las transfusiones de sangre, si se mezclan dos tipos de sangre de igual grupo lo más probable es que no suceda nada. En cambio si se exponen dos tipos de sangre con grupos diferentes, pueden ocurrir diversas complicaciones asociadas a una respuesta inmune del organismo contra las glicoproteínas de la superficie del eritrocito, produciéndose la aglutinación del glóbulo rojo, la cual consiste en la degradación de la membrana, hasta transformarla en una "grumo". Lo que determina la compatibilidad o la incompatibilidad de dos tipos de sangre es la presencia de antígenos, los cuales desencadenan una seria de reacciones entre ellas la producción de anticuerpos, por ejemplo, si una persona del tipo A dona sangre a una persona tipo B, los antígenos del tipo A al ser extraños al cuerpo del receptor, posibilitaran la producción de anticuerpos anti-A, los cuales atacaran, produciendo su lisis y su eliminación. Dependiendo de las concentraciones y de la cantidad de la transfusión estas reacciones pueden llegar a ser casi imperceptibles, pueden producir insuficiencia renal, o incluso la muerte, ya que el sistema inmunológico no es capaz de fagocitar a todos los grumos generados por los anticuerpos.

Sistema AB0 Receptor

Donante O-

O+

B-

B+

A-

A+

AB-

AB+

AB+

X

X

X

X

X

X

X

X

AB-

X

A+

X

A-

X

B+

X

B-

X

O+

X

O-

X

X

X

X

X

X X

X

X X

X

X

X

El factor Rhesus o antígeno D fue descubierto por Landsteiner y Wiener en 1940. Este antígeno lo poseen en común el 82 % de los europeos y los monos rhesus. Ellos son rh-positivos. Quien no posee este antígeno, o sea quien es rh-negativo, no produce automáticamente anticuerpos contra ese antígeno como en el sistema ABO. Solamente luego de un contacto sanguíneo con el antígeno D se producen los anticuerpos en una persona rh-negativa. Los anticuerpos son detectables luego de unos meses después del contacto. La producción de anticuerpos se provoca por trasfusiones sanguíneas con diferente factor Rhesus y también en mujeres con factor Rh-negativo que dan a luz a un segundo niño Rh-positivo. En el nacimiento de un niño no se puede evitar que el sistema circulatorio materno entre en contacto con la sangre del niño. Para el primer niño que nace, esto no tiene consecuencias, ya que el sistema inmunológico de la madre producirá después los anticuerpos. Si naciera otro niño, también Rh-positivo, entonces los anticuerpos anti-D pasarían al sistema circulatorio del embrión, dañando y destruyendo los glóbulos rojos. Estos niños nacen, si sobreviven, con una especie de ictericia, la eritroblastosis, y podrán sobrevivir, solamente si se les practica inmediatamente una transfusión total de sangre, con lo que se eliminaría la presencia de los anticuerpos a los antígenos D del cuerpo del niño. Nuevos Rh+ niños nacidos de esa madre no podrían sobrevivir, ya que la producción de anticuerpos se estimuló por el nuevo contacto. Para evitar esas complicaciones, se inyecta actualmente a las madres rhnegativas, que han dado a luz a un niño rh-positivo, un suero con anticuerpos al antígeno D, inmediatamente después del nacimiento del niño. Ellos ocupan los antígenos en los glóbulos que han penetrado y evitan así que el sistema inmunológico materno tenga contacto con el antígeno D y de esa manera no produzca anticuerpos al antígeno D.

Factor Rh

Mono Macaco rhesus. En estos primates se descubrió el antígeno Rh, el mismo que poseen algunos humanos

SISTEMA CIRCULATORIO

Fuentes De Información Utilizadas Curtis, H. Biología. Editorial Panamericana. 2002 Villée, C. Biología. Editorial Interamericana. 2003 Aljanatti, Wolovelsky, Tambussi, Los Códigos de la Vida, Editorial Colihue. L. Testut, A. Laterjet. Tratado de Anatomía Humana. Editorial Salvat. Buenos Aires,1960. P.B. Beeson, W. McDermott. Tratado de Medicina Interna. Editorial Interamericana. Buenos Aires, 1972. Apuntes Personales http://www.ulb.ac.be/sciences/biodic/EPageImages.html http://calphotos.berkeley.edu/ http://pages.unibas.ch/botimage/ http://www.ulb.ac.be/sciences/biodic/EPageImages.html http:// www.elmundosalud.elmundo.es http:// www.librosvivos.net http://www.biologia.edu.ar http://www.biocarampangue.dm.cl http://www.biologia.arizona.edu http:// www.telmeds.org http://www.proyectosalonhogar.com/CuerpoHumano/Cuerpo_humano_circulatorio.htm http://www.highered.mcgraw-hill.com http:// www.bloodbook.com http:// www.visibleheart.com http:// www.pbs.org/wgbh/nova/heart/ http:// www.livefromtheheart.org/students/heart/work1.htm Encarta 2007. Microsoft Corp

Related Documents