human eye anatomy The work of the retina » Absolute threshold and minimum stimulus for vision As was indicated earlier, the threshold is best indicated in terms of frequency of seeing since, because of fluctuations in the threshold, there is no definite luminance of a test screen at which it is always seen by the observer, and there is no luminance just below this at which it is never seen. Experiments, in which 60 percent was arbitrarily taken as the frequency of seeing and in which the image of a patch of light covered an area of retina containing about 20,000,000 rods, led to the calculation that the mean threshold stimulus represents 2,500 quanta of light that is actually absorbed per square centimetre of retina. This calculation leads to two important conclusions: namely, that at the threshold only one rod out of thousands comes into operation, and that during the application of a short stimulus the chances are that no rod receives more than a single quantum. A quantum, defined as the product of Planck’s constant (6.63 × 10-27 erg-second) times the frequency of light, is the minimum amount of light energy that can be employed. A rod excited by a single quantum cannot excite a bipolar cell without the simultaneous assistance of one or more other rods. Experiments carried out in the 1940s indicated that a stimulus of about 11 quanta is required; thus it may require 11 excited rods, each receiving one quantum of light, to produce the sensation of light. The work of the retina » Absolute threshold and minimum stimulus for vision » Quantum fluctuations
With such small amounts of energy as those involved in the threshold stimulus, the uncertainty principle becomes important; according to this, there is no certainty that a given flash will have the expected number of quanta in it, but only a probability. Thus, one may speak of a certain average number of quanta and the actual number in any given flash, and one may compute on statistical grounds the shape of curve that is obtained by plotting frequency with which a flash contains, say, four quanta or more against the average number in the flash. One may also plot the frequency with which a flash is seen against the average number of quanta in the flash, and this frequency-of-seeing curve turns out to be similar to the frequency-of-containing-quanta curve when the number of quanta chosen is five to seven, depending on the observer. This congruence strongly suggests that the fluctuations in response to a flash of the same average intensity are caused by fluctuations in the energy content of the stimulus, and not by fluctuations in the sensitivity of the retina. The work of the retina » Absolute threshold and minimum stimulus for vision » Spatial summation
In spatial summation two stimuli falling on nearby areas of the retina add their effects so that either alone may be inadequate to evoke the sensation of light, but, when presented simultaneously, they may do so. Thus, the threshold luminance of a test patch required to be just visible depends, within limits, on its size, a larger patch requiring a lower luminance, and vice versa. Within a small range of limiting area, namely that subtending about 10 to 15 minutes of arc, the relationship called Ricco’s law holds; i.e., threshold intensity multiplied by the area equals a constant. This means that over this area, which embraces several hundreds of rods, light falling on the individual rods summates, or accumulates, its effects completely so that 100 quanta falling on a single rod are as effective as one quantum falling simultaneously on 100 rods. The basis for this summation is clearly the convergence of receptors on ganglion cells, the chemical
effects of the quanta of light falling on individual rods being converted into electrical changes that converge on a single bipolar cell through its branching dendritic processes. Again, the electrical effects induced in the bipolar cells may summate at the dendritic processes of a ganglion cell so that the receptive field of a ganglion cell may embrace many thousands of rods. The work of the retina » Absolute threshold and minimum stimulus for vision » Temporal summation
In temporal summation, two stimuli, each being too weak to excite, cause a sensation of light if presented in rapid succession on the same spot of the retina; thus, over a certain range of times, up to 0.1 second, the Bunsen-Roscoe law holds: namely, that the intensity of light multiplied by the time of exposure equals a constant. Thus it was found that within this time interval (up to 0.1 second), the total number of quanta required to excite vision was 130, irrespective of the manner in which these were supplied. Beyond this time, summation was still evident, but it was not perfect, so that if the duration was increased to one second the total number of quanta required was 220. Temporal summation is consistent with quantum theory; it has been shown that fluctuations in the number of quanta actually in a light flash are responsible for the variable responsiveness of the eye; increasing the duration of a light stimulus increases the probability that it will contain a given number of quanta, and that it will excite.