Exponential Equations

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exponential Equations as PDF for free.

More details

  • Words: 1,301
  • Pages: 4
Practice - Exponential equations Restriction k >0 Equ at io n Typ e 1

1. 2.

2

0,5 x ⋅ 2 2 x + 2 =

5. 6. 7. 8. 9. 10 .

x

5

1 =  5

0,125 ⋅ 4 3   4

x +1

−3 x − 4

2 x −3

 2  =    8 

−x

2

9  4x ⋅  = 16 3

D=R \ {0}

3 x − 4 ⋅ 27 3− 2 x = 9 3 x −3 9

0 , 25 x 2 − 2 x −8

3

−x 3

4

 3   5

12 . 13 . 14 .

2x

2

6 ⋅  5

6x −4

2− x

=

= 64

2 x − 4 ⋅ 8 3− 2 x = 4 3 x − 3

4

x +5

Z={-2,4}

-x+ =4

1 2

Z={- 3 }

-x2+3x+4=0

Z={-1,4}

3x=18

Z={6}

x2-x-2=0

Z={-1,2}

3 −5 x +5 = 36 x −6

Z={1} Z={-3,11}

1 2

Z={- 3 ,0, 3 } Z={2}

x2-5x+6=0

Z={2,3}

x2-5x+4=0

Z={1,4}

-11x=-11

Z={1}

x −1 2 = x +1 3

1−x

3

x2-2x-8=0

25 36

=1

 1  x +1 =   2

4 3

Z={ }

x -8x-33=0 -x3+3x=0

x 2 −5 x + 6

− 5 x +10

Answe r

2

= 3

 3  ⋅9 =   3   

5x   6

11 .

15 .

1 64

1 3 ⋅   = 81 3 x2

Hints

3x=4

3 5 x −8 = 9 x − 2

3. 4.

Su bst itu ti on

D=R \ {-1}

Z={5} Z={10}

x +17

32 x − 7 = 0,25 ⋅ 128 x −3 Typ e 2

16 . 17 . 18 .

3 x + 2 − 3 x = 72

3x=k

2 x +3 − 2 x = 112 2 x − 2 x −4 = 15

8k=72 7 ⋅ 2 x = 112

2x=k

k=16

k=9 2x=16

Z={2} Z={4} Z={4}

1

19 . 20 . 21 . 22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30 . 31 . 32 . 33 .

5 x + 3 ⋅ 5 x − 2 = 140

5x=k

k=125

Z={3}

3 2 x + 2 + 3 2 x = 30

32x=k

k=3

Z={ }

3 2 x −1 + 3 2 x − 2 − 3 2 x − 4 = 315

32x=k

35k=315*81 k=36

Z={3}

2 x + 2 − 2 x −1 = 14

2x=k

Z={2}

3 x +1 − 3 x − 3 x −1 = 15

3x=k

Z={2}

4

x−2 2

−2

x +1

x +1 3

=8

3 2x +

4 = 2 ⋅ 3 2 x +1 − 9 x 27

Z={2}

1 x ⋅ 2 − 4 ⋅ 2 x + 15 = 0 4

− 15

8 ⋅ 5 x + 7 ⋅ 5 x −1 = 22 + 5 x +1

1 2

5x=k

Z={1}

32x=k

7 ⋅ 4 x − 2 2 x +1 = 26 + 7 ⋅ 4 x −1

4x=k

3 ⋅ 2 x − 20 = 2 x −1

2x=k

1 2

Z={ − 1 } 1 2

Z={ 1 } Z={3} Z={1}

7 x + 2 + 2 ⋅ 7 x −1 = 345 2 x +1 + 3 ⋅ 2 x −1 − 5 ⋅ 2 x + 6 = 0

2x=k

5 ⋅ 2 3 x + 8 x − 2 ⋅ 41,5 x = 16

23x=k

2x 2

2

2

− x+2

+ 5 ⋅ 2x

x −3 x

1 − 5⋅  2

2+

− x −1

= 26

3− x +2 x

= 11

2x 2

2

2 3

Z={ }

=k

Z={-1,2}

=k

Z={-3}

−x

x −3 x

Z={2}

Typ e 3

34 . 35 . 36 . 37 . 38 . 39 . 40 .

k2+3k-108=0 k1=9 ; k2=-12

3 x +1 + 9 x = 108

3x = k

2 ⋅ 16 x − 17 ⋅ 4 x + 8 = 0

4x=k

4x − 9 ⋅ 2x + 8 = 0

2x=k

k2-9k+8=0 k1=8 ; k2=1

Z={0,3}

4x − 8⋅ 2x = 0

2x=k

k2-8k=0

Z={3}

2 x +1 + 4 x = 80

2x=k

k2+2k-80=0 k1=-10 ; k2=8

Z={3}

4x + 8 = 6 ⋅ 2x

2x=k

k2-6k+8=0 k1=2 ; k2=4

Z={1,2}

4 x − 10 ⋅ 2 x −1 = 24

2x=k

k2-5k-24=0 k1=-3 ; k2=8

Z={3}

2k2-17k+8=0 k1=8 ; k2=

Z={2} 1 2

3 2

1 2

Z={ ,− }

2

41 4x 5⋅ 2x − =8 . 2 42 8 ⋅ 3 x − 2 + 1 = 9 x −1 . 43 9x-2·3 x −1 -7=0 . 44 9 x − 486 = 3 x + 2 . 45 4 2 x +1 = 65 ⋅ 4 x −1 − 1 . 46 2 2 x + 2 − 3 ⋅ 2 x + 2 + 8 = 0 . 47 3 x + 2 + 9 x +1 = 810 . 48 25 x − 5 x +1 + 5 = 5 x . 49 3 2 x −1 + 3 x +1 = 12 . 50 5 2 x −1 + 5 x +1 = 250 . x x 51 2 2 3 ⋅ 4 − 7 ⋅ 2 = 20 . 2 52  1  3 x − x   + 3⋅8 3 − 4 = 0 . 2

2x=k

k3+3k2-4=0; k1=1 ; k2=-2

53 . 54 . 55 .

  30 − 5 x = 5 − x +3

1   =k 2

5x=k

-k2+30k-125=0 k2=5

9

3x=k

3x + 1   5

3

2x

x +1

=

3x=k 3k2-2k-21=0 ; k1=-

7 3

; k2=3

Z={3}

4x=k

Z={-2,1}

2x=k

Z={1,0}

3x=k

k2+k-90=0 k1=-10 ; k2=9

Z={2}

5x=k

k2-6k+5=0 k1=1 ; k2=5

Z={0,1}

3x=k

k1=-12 ; k2=3

Z={1}

5x=k

k2+25k-1250=0 k2=-50

x

k1=-

x

k1=25 ; Z={2} Z={4}

5 k2=4 3

3k2-28k+3=0 k1=

Z={0}

k1=25 ; Z={2,1} 1 ; k2=9 3

Z={-1,2} Z={-2}

x

=0

Z={1}

3x=k

22 = k

−2

Z={1,3} Z={2}

3x=k

28 3

1 − 24 ⋅ 5 − x −   5

k2-10k+16=0 k1=2 k2=8

1   =k 5

Typ e 4

56 11x −7 = 17 7 − x . 57 7 ⋅ 3 x +1 − 5 x + 2 = 3 x + 4 − 5 x +3 .

11x −7 =

1 17 x −7

(11 ⋅ 17 ) x −7

=1

Z={7}

 3   =k 5

Z={-1}

2x=k

Z={0,2}

x

Bo nus

58 . 59 . 60 .

1 + 21− x = 1 x 2 −2

(2 + 3 ) + (2 − 3 ) x

4

3x

−7⋅4

2x

x

=4

+ 14 ⋅ 4 − 8 = 0 x

(2 + 3 ) x

4 =k

x

=k

k2-4k+1=0 k1= 2 − 3

k2= Z={1,-1}

2+ 3 1 2

Z={ 0, ,1 }

3

61 .

4 sin

62 . 63 .

2 2 sin x cos x = 2

2

1   2

x

= 2 ⋅ 2 cos x

sin2 x

=

1 2

dla cosx=-1

wynik: x1= ∏ +2k ∏ ;

1 2 1 sin2x= 2

∏ ∏ + 2k ∏ ; x3= − + 2k ∏ 3 3 ∏ 5 x1= + k ∏ ; x2= ∏ +k ∏ 12 12

dla cosx=

wynik: x2=

dla

wynik:

dla sinx= dla sinx=-

2 2 2 2

wynik: x1=

∏ 3∏ + 2k ∏ ;x2= + 2k ∏ ; 4 4

wynik: x3=-

∏ 5 + 2k ∏ ;x4= ∏ +2k ∏ 4 4

4

Related Documents

Exponential Equations
June 2020 22
Equations
November 2019 31
Equations
October 2019 28
Equations
July 2020 19
Exponential Smoothing
May 2020 19