¥ ²
² ² ²
!"!!# $%&'!&# %# ² ¥
¥%( ² ") *" )+ ²
, ² $ - ² ¥ % ² . /
0. / ² 1 2 2 ² 34 5678634
¥ ¥ ² 0
² ¥ $ ²
² Æ
² ¥ ² ² ² ² ² ²
2 0 $ 9 % ' %& ¥ $ $
²
² ! ² ¥ ² $ ² :
¥ ² $ & *$&+ ² ¥ $ $ *¥$$+ ² ; '2 ² & $ ² 2 ² ¥ ² ¥ ¥
¥
=
"%<" <
$ ~
~ ¥ ¥
~ = ~ ~
¥$ & >3?74 ¥ $ 2 @ 2 *$ % + ² @ $ "- - 2 $& ² !- $& ² ² ² ² ²
¥ ¥ $ $ *¥$$+
² 67634¥ ² 2 2 1 ² ² @ $& ² $ ) ¥ ( ² !->
¥ ; '2 ² 83674 ¥ ² 2 ² ¥ - ² % ² ; ¥ 2 " ² !-" ! " &9 2 2 2
¥ & $¥ ² >34 ¥ ² 2 ² ¥ $& ² 2 ² !
(1 ² ( $-'
¥ 2 ² >3 ¥ 3A ²
² ¥ $& ² : 2 : : ² ! $
#"< ¥"¥ ² ¥ : ² ² ²
² ²
' - 2 ' - 1 2 * + *
+ ¥ 2
ñ¥$ ñ$
ñ$ 1 ñ
Up-Selling Motivating customers to trade up to more profitable products
Customer Retention ñAnalyzing customer attrition
ñUnderstanding why customers have left ñUnderstanding who ñHow do you keep them? ñChurn prediction ñWhat is CHURN?
ehavior Prediction Using modeling and data mining techniques, including Propensity to buy analysis What product is a particular customer likely to buy next
Next sequential purchase What product is a customer likely to buy next
Product affinity analysis Which products will be purchased with other products
Price elasticity modeling and dynamic pricing Determining the optimal price for a given product
¥%""% )!¥ ² ¥ ¥ B
2 $ &- 2 1 ¥ ¥B 1 C6D
¥ E ² ¥% ( 2 ¥ ¥ ; ¥
'&&!!# $!¥ %¥##' ² F !"!¥%$!¥ % ² ;%$ " <$!¥ % ² &##¥!$!¥ % ² " <$ ² )!"$@!#¥!$ ² #$G#¥!$!¥ % ² #H#@$!¥ % ² % ;!$
¥ ")
¥¥
¥
"
0 "
; 0
¥E ²
2 1 ² 2 ¥ ! ) 22 %
¥ E ² ¥
2 ¥ ! %67 1 ! ² 2 37 1 2 22 ¥F& ! ¥"2
;!¥;!¥;< }ncreased Customer Loyalty= }ncreased profit }ntegrated and Personalized interaction That increased value to customer Data enabled processes/tools }ntegrated customer knowledge Customer transaction data silos
;¥ E ² " 2 $ - ) ¥ 2 2 2
¥
2 ¥; ² ! ² : ² !- '2 E; E'
E ² ² :
¥