Crypt

  • Uploaded by: uday
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Crypt as PDF for free.

More details

  • Words: 507
  • Pages: 2
ABSTRACT The rising abuse of computers and increasing threat to personal privacy through data banks has stimulated much interest in the technical safeguards for data. There are four kinds of safeguards, each related to but distract from the others. Access controls regulate which users may enter the system and subsequently whmh data sets an active user may read or wrote. Flow controls regulate the dissemination of values among the data sets accessible to a user. Inference controls protect statistical databases by preventing questioners from deducing confidential information by posing carefully designed sequences of statistical queries and correlating the responses. Statlstmal data banks are much less secure than most people believe. Data encryption attempts to prevent unauthorized disclosure of confidential information in transit or m storage. This paper describes the general nature of controls of each type, the kinds of problems they can and cannot solve, and their inherent limitations and weaknesses. The paper is intended for a general audience with little background in the area.

BASIC CRYPTOGRAPHIC ALGORITHMS The method of encryption and decryption is called a cipher. Some cryptographic methods rely on the secrecy of the encryption algorithms; such algorithms are only of historical interest and are not adequate for real-world needs. Instead of the secrecy of the method itself, all modern algorithms base their security on the usage of a key; a message can be decrypted only if the key used for decryption matches the key used for encryption.

There are two classes of key-based encryption algorithms, symmetric (or secret-key) and asymmetric (or public-key) algorithms. The difference is that symmetric algorithms use the same key for encryption and decryption (or the decryption key is easily derived from the encryption key), whereas asymmetric algorithms use a different key for encryption and decryption, and the decryption key cannot be derived from the encryption key.

Symmetric algorithms can be divided into stream ciphers and block ciphers. Stream ciphers encrypt a single bit of plaintext at a time, whereas block ciphers take a number of bits (typically 64 bits in modern ciphers), and encrypt them as a single unit. Asymmetric ciphers (also called public-key algorithms) permit the encryption key to be public (it can even be published to a web site), allowing anyone to encrypt with the key, whereas only the proper recipient (who knows the decryption key) can decrypt the message. The encryption key is also called the public key and the decryption key the private key. The security provided by these ciphers is based on keeping the private key secret. Modern cryptographic algorithms are no longer pencil-and-paper ciphers. Strong cryptographic algorithms are designed to be executed by computers or specialized hardware devices. In most applications, cryptography is done in computer software. Generally, symmetric algorithms are much faster to execute on a computer than asymmetric ones. In practice they are often used together, so that a public-key algorithm is used to encrypt a randomly generated encryption key, and the random key is used to encrypt the actual message using a symmetric algorithm. This is sometimes called hybrid encryption.

Related Documents

Crypt
May 2020 14
Crypt
December 2019 56
Crypt
May 2020 10
A-crypt
October 2019 22
Tutorial True Crypt
June 2020 5
Cola Sist Crypt
June 2020 1

More Documents from ""