Composicion Modular

  • Uploaded by: CESAR LOPEZ
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Composicion Modular as PDF for free.

More details

  • Words: 823
  • Pages: 32
LA COMPOSICIÓN MODULAR. REDES.

COMPOSICIÓN MODULAR

MÓDULO

REDES BIDIMENSIONALES

REDES TRIDIMENSIONALES

Definición

Definición

Definición

Tipos

Tipos

Tipos

Ejemplos

Superposición

Corte y Doblado

Ejemplos

Ejemplos

Definición de Módulo: • • • • • • • • • • • •

(Según la Real Academia Española)

1. m. Dimensión que convencionalmente se toma como unidad de medida, y, más en general, todo lo que sirve de norma o regla. 2. m. Pieza o conjunto unitario de piezas que se repiten en una construcción de cualquier tipo, para hacerla más fácil, regular y económica. 3. m. Arq. Medida que se usa para las proporciones de los cuerpos arquitectónicos. En la antigua Roma, era el semidiámetro del fuste en su parte inferior. 4. m. Fís. Obra o aparato dispuesto para regular la cantidad de agua que se introduce en una acequia o canal, o que pasa por un caño u orificio. 5. m. Geom. Longitud del segmento que define un vector. 6. m. Mat. Valor absoluto de una cantidad. (Símb. | |). 7. m. Mat. Cantidad que sirve de medida o tipo de comparación en determinados cálculos. 8. m. Mat. Divisor común en una congruencia. 9. m. Mat. Razón constante entre los logaritmos de un mismo número tomados en bases diferentes. 10. m. Mús. Acción y efecto de modular. 11. m. Numism. Diámetro de una medalla o moneda. 12. m. Cuba. Equipo de ropa o utensilios de uso personal necesarios para un trabajo o actividad.

Módulo: - En el estudio de la composición de determinados diseños, es normal encontrar elementos que se repiten. Son precisamente estos elementos repetitivos a los que llamamos MÓDULOS. - Se generan a partir de formas geométricas elementales, tales como el triángulo, el cuadrado y el círculo. - En composiciones libres, orden aleatorio. - Ejemplos:

Arco 1, dibujo técnico. A. L Blanco Ventosa

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Redes Bidimensionales: - Bajo una determinada composición siempre suele haber una “red” ó “estructura” subyacente que ordena y rige todo el diseño. Son las denominadas redes bidimensionales. - Estas redes pueden ser Básicas o Mixtas: RED BÁSICA: se crea a partir de polígonos (cuadrados, triángulos equiláteros, etc) capaces de generar mallas poligonales cerradas y continuas. RED MIXTA: se forma combinando dos o tres tipos de polígonos regulares. En ellas pueden surgir nuevos módulos por repetición. - INTERACCIÓN DE REDES: básica + pautas = nueva red.

Red Básica:

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Red Mixta:

Interacción redes:

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Redes Bidimensionales: SUPERPOSICIÓN DE REDES: - Podemos generar nuevos modelos de estructuras, superponiendo varias redes básicas. ¿cómo? Mediante la aplicación de transformaciones lineales a las estructuras repetidas, por ejemplo: - Movimientos de Traslación - Giros - Estas transformaciones pueden realizarse aleatoriamente, o de manera controlada, como veremos en los ejemplos.

Traslación:

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Giro:

aleatorio o controlado

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Superposición:

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Texturas y Volúmenes:

Arco 1, dibujo técnico. A. L Blanco Ventosa.

Embaldosados:

Estampados:

www.educacionplastica.net

Mosaicos:

www.educacionplastica.net

Enrejado:

Bruno Munari, escuela de Ulm.

Mosaico tipo Escher:

www.educacionplastica.net

Redes Tridimensionales: -

Se generan a partir de redes bidimensionales, pero aumentando un grado de libertad, para poder pasar de las dos a las tres dimensiones.

- Los mecanismos utilizados para trasladarnos del plano a las 3D son el corte y el doblado. (nociones de papiroflexia)

- Podemos utilizar soportes tanto digital (PC) como analógico (papel, cartulina y útiles de diseño) para crear redes 3D.

- Estas redes se diseñan en base a poliedros.

POLIEDROS Se llaman poliedros a los cuerpos geométricos cuyas caras son polígonos. Poliedro regular: poliedro en el que todas sus caras son polígonos regulares iguales (aristas, vértices, caras y ángulos). Pueden ser convexos o cóncavos: - Convexos: (sólidos platónicos) · · · · ·

Tetraedro Cubo o hexaedro Octaedro Dodecaedro Icosaedro

Poliedros regulares convexos:

Construcción de poliedros regulares convexos:

POLIEDROS -

Cóncavos: (sólidos de Kepler – Poinsot) · · · ·

Pequeño dodecaedro estrellado Gran dodecaedro estrellado Gran dodecaedro Gran icosaedro

El artista holandés M. C Escher, plasmó parte de su obra e inspiración en los poliedros.

Maurits Cornelis, ESCHER (1898-1973)

Conjunto de sólidos platónicos superpuestos

“Orden y Caos”. Litografía 1950.

Antonio GAUDÍ, también utilizó formas poliédricas en parte de su obra:

Redes tridimensionales

Función estructural

Pérgola estructural para eventos al aire libre.

St. Nave industrial.

3D cine IMAX. Barcelona.

Redes tridimensionales

Arquitectura contemporánea.

Pabellón puente. Expo Zaragoza 2008. Zaha Hadid.

Torre Oficinas Querkin. Londres. Norman Foster

Aplicación informática para crear redes estructurales.

ACTIVIDADES 1) Crear una composición bidimensional generada a partir de una red básica de cuadrados de 1cm de lado, y círculos concéntricos. Aplicación de color, técnica libre. 2) Dibujar y construir dos poliedros regulares a partir de su desarrollo: Poliedros regulares Convexos: (sólidos platónicos) · · · · ·

Tetraedro Cubo o hexaedro Octaedro Dodecaedro Icosaedro

Ejemplos Actividad 1

Ejemplos Actividad 1

Related Documents

Composicion Modular
June 2020 6
Composicion
May 2020 7
Fotografosy Composicion
November 2019 13
Composicion Segunda
August 2019 28
Modular Computing
July 2020 2
Composicion Directiva
May 2020 11

More Documents from ""

June 2020 3
June 2020 2
July 2020 4
Composicion Modular
June 2020 6
June 2020 1
Tablas Nrd4.docx
June 2020 3