Telephone : PABX : 9661920-73/4980
DEPT. OF APPLIED PHYSICS, ELETRONICS & COMMUNICATION ENGINEERING UNIVERSITY OF DHAKA DHAKA-1000, BANGLADESH FAX: 880-2-8615583 E-MAIL:
[email protected]
! "
March 09, 2009 Dated, the………………………….
Ref. No............................
&
' " ( 2 2 2 ∂ψ ∂ψ ∂ψ 1 ∂ψ + 2 + 2 = 2 2 2 ∂x ∂y ∂z v ∂t ( $ * % + , -. ' /*01%2 " " $ , / "$ ( 1 . * 1% + ' /*01% * % + , -. ' * 1%2 ( " . 0 3% 3 + ,3 . 0 4% 4 + ,4 $ + 30 4 + ,3 . 0 3% 0 ,4 . 0 4% + ,3 . . . 30 3% 0 ,4 + ,3 . 0 ,3 30 ,4 4% 30 ,4 + , . 0 , . + , .0 % + ,3 , 30 ,4 4 + ,3 , 30 ,4 4 ,4 + ,340 ,4404 ,3 ,4 4' 3% E sin α 1 + E02 sin α 2 α = tan −1 01 E 01 cos α 1 + E02 cos α 2 " ( " " " #
)
2
&
5
") ( *' *
*
(
40 4%
. .
#
)
4%
3 4
4 3
6 #!
',7
',3
"
(
'
' '
#
!
" #
$ # "%
Telephone : PABX : 9661920-73/4980
DEPT. OF APPLIED PHYSICS, ELETRONICS & COMMUNICATION ENGINEERING UNIVERSITY OF DHAKA DHAKA-1000, BANGLADESH FAX: 880-2-8615583 E-MAIL:
[email protected]
! "
March 09, 2009 Dated, the………………………….
Ref. No............................
8
,39
9 ,49 9
: 3 ,3 : 4# ' $ ; + 4 ' 3% ;+, <4= <7= # # # ;+<= <>= = # # # #
& 8 8
,4
"
"
( # (
"
3
4
" *" " " " "
(
# (
3
@*
4
3
4
@*
&
$
δ = α 2 − α1 = (kx1 + ε 1 ) − (kx 2 + ε 2 ) 2π = ( x − x ) + (ε 1 − ε 2 ) λ 1 2 *3 A
*4
" ( ") (
(
&
" % %
6 #! 8 )
(
' '
$ /@*
#
( "
(
"#
$ #
( ( + ,3 -. '/ *0@*%2 . '/*% 4 + ,4 + " 2 ,3 ,4 ; + 4' 3 + /@* ( ) E = E1 + E 2
$
( @*%
"
)
3
&
= E 01 sin[ωt − k ( x + ∆x)] + E 02 sin(ωt − kx) = 2 E 01 sin ωt − k x +
@*B B A ∆x =
',7
',4
λ 2
∆x 2
cos k
" "
∆x 2
k=
4 +,# &
,3#
2π
λ
&
( (
#
#
!
" #
$ # "%
Telephone : PABX : 9661920-73/4980
DEPT. OF APPLIED PHYSICS, ELETRONICS & COMMUNICATION ENGINEERING UNIVERSITY OF DHAKA DHAKA-1000, BANGLADESH FAX: 880-2-8615583 E-MAIL:
[email protected]
! "
March 09, 2009 Dated, the………………………….
Ref. No............................
6 #! &
" "$ (
" " N
E=
i =1
(
"
(
"
C
(
" (
(
"
(
# "
(
# )
E 0i cos(α i ± ωt )
= E 01 cos(α 1 ± ωt ) + E 02 cos(α 2 ± ωt ) + E 03 cos(α 3 ± ωt ) + ... = E 01 (cos α 1 cos ωt
sin α 1 sin ωt ) + E 02 (cos α 2 cos ωt sin α 2 sin ωt ) + E 03 (cos α 3 cos ωt sin α 2 sin ωt ) + ...
= ( E 01 cos α 1 + E 02 cos α 2 + E 03 cos α 3 + ...) cos ωt = E 0 cos α cos ωt
E 0 sin α sin ωt
≅ E0 cos(α ± ωt ) + ,3 , + ,3 ,
30 ,4
E 02 =
N
E02i + 2
i =1
N
α = tan
−1 i =1 N i =1
( " (
6
30 ,4 N
N
j >i i =1
E 0i E 0 j cos(α i − α j )
E 0i cos α i
,3
"
"
=
i =1
,3
%
"
" #
)
4
' N
(
( " D % cos[α i (t ) − α j (t )] = 0
"
+C
E 02 =
##
##
E 0i sin α i
( 4
>0# >0#
"
" ,
40 ,> 40 ,>
( E 01 sin α 1 + E 02 sin α 2 + E 03 sin α 3 + ...) sin ωt
E 02i + 2
N i =1
N
N
j > i i =1
$
(
# #
+ D)
E0i E 0 j
2
E 0i
= ( NE 01 ) 2 = N 2 E 012
-E
',7
#! F
',>
5
2
!
" #
$ # "%