Chow-analisis_model.pdf

  • Uploaded by: Everth
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chow-analisis_model.pdf as PDF for free.

More details

  • Words: 18,263
  • Pages: 37
WRC RESEARCH REPORT NO. 26

STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS

Ven Te Chow Principal Investigator

F I N A L

R E P O R T

P r o j e c t No. A-029- ILL

The work upon which t h i s p u b l i c a t i o n i s based was s u p p o r t e d by funds p r o v i d e d by t h e U.S. Department o f t h e I n t e r i o r as a u t h o r i z e d under t h e Water Resources Research A c t o f 1964, P.L. 88-379 Agreement No. 14-0 1-000 1 - 1632

UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 3220 C i v i l E n g i n e e r i n g B u i l d i n g Urbana, l l l i n o i s 61801 December, 1969

ABSTRACT STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS

H y d r o l o g i c phenomena a r e i n r e a l i t y s t o c h a s t i c i n nature; t h a t i s , t h e i r behavior changes w i t h t h e t i m e i n accordance w i t h t h e law o f p r o b a b i l i t y as w e l l as w i t h t h e s e q u e n t i a l r e l a t i o n s h i p between t h e occurrences o f t h e phenomenon. I n o r d e r t o analyze t h e h y d r o l o g i c phenomenon, a mathem a t i c model o f t h e s t o c h a s t i c h y d r o l o g i c system t o s i m u l a t e t h e phenomenon must be formulated. I n t h i s study, a watershed i s t r e a t e d as the s t o c h a s t i c h y d r o l o g i c system whose components o f p r e c i p i t a t i o n , r u n o f f , storage and e v a p o t r a n s p i r a t i o n a r e s i m u l a t e d as s t o c h a s t i c processes by time s e r i e s models t o be determined b y correlograms and s p e c t r a l a n a l y s i s . The h y d r o l o g i c system model i s then formulated on t h e basis o f t h e p r i n c i p l e of conservation o f mass and composed o f the component s t o c h a s t i c processes. To demonstrate the p r a c t i c a l a p p l i c a t i o n o f t h e method o f a n a l y s i s so developed, the upper Sangamon River b a s i n above M o n t i c e l l o i n e a s t c e n t r a l I l l i n o i s i s used as the sample watershed. The watershed system model so formulated can be employed t o generate s t o c h a s t i c streamflows f o r p r a c t i c a l use i n the a n a l y s i s o f water resources systems. This i s o f p a r t i c u l a r value i n t h e economic planning o f water supply and i r r i g a t i o n p r o j e c t s which i s concerned w i t h t h e long-range water y i e l d o f the watershed.

Chow, Ven Te STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS Research Report No. 26 , Water Resources Center, U n i v e r s i t y o f I l l i n o i s a t Urbana-Champaign, December 1969, 3 4 pp. KEYWORDS--systems a n a l y s i s / s t o c h a s t i c processes/synthetic hydrology/ water resources development/watershed studies/precipitation/streamflow/ evapotranspiration/storage/water y i e l d / h y d r o l o g i c models/hydrology

CONTENTS

. I1.

I

.

I11

IV

.

V. V I

.

. V I I I. V I I

......................... 1 F o r m u l a t i o n o f t h e H y d r o l o g i c System Model . . . . . . . . . . 3 Mathematical Techniques ................... 5 A . Mathematical Models f o r Time S e r i e s . . . . . . . . . . . 5 1 . Moving-Average Model . . . . . . . . . . . . . . . . . 5 2 . Sum-of-Harmonics Model . . . . . . . . . . . . . . . . 5 3 . A u t o r e g r e s s i o n Model . . . . . . . . . . . . . . . . . 6 B. TheCorrelogram . . . . . . . . . . . . . . . . . . . . . 6 C . The Spectrum A n a l y s i s . . . . . . . . . . . . . . . . . . 8 Analysis o f t h e H y d r o l o g i c S y s t e m . . . . . . . . . . . . . . 1 1 A . The Watershed under Study . . . . . . . . . . . . . . . . 1 1 B. TheHydrologicData . . . . . . . . . . . . . . . . . . . 1 1 1. Precipitation . . . . . . . . . . . . . . . . . . . . 11 2 . Streamflow . . . . . . . . . . . . . . . . . . . . . . 1 1 3 . Temperature . . . . . . . . . . . . . . . . . . . . . 12 4 . P o t e n t i a l E v a p o t r a n s p i r a t i o n . . . . . . . . . . . . . 12 C . E s t a b l i s h i n g t h e Records f o r Conceptual Watershed S t o r a g e and A c t u a l E v a p o t r a n s p i r a t i o n . . . . . . . . . . 13 D . A n a l y s i s o f t h e H y d r o l o g i c Processes . . . . . . . . . . . . 15 E. D e t e r m i n a t i o n o f t h e System Model . . . . . . . . . . . . 17 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . Acknow 1 edgments . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction

'

Figures

...........................

I.

l NTRODUCT I ON

I t i s g e n e r a l l y n o t e d t h a t t h e n a t u r a l h y d r o l o g i c a l system and h y d r o l o g i c process a r e t r u l y "s tochas t i c";

t h a t i s , the behavior o f the

system o r t h e process v a r i e s w i t h a s e q u e n t i a l t i m e f u n c t i o n o f t h e probab i l i t y o f o c c u r r e n c e [1,2].9:

I n o t h e r words, t h e h y d r o l o g i c phenomenon

changes w i t h t h e t i m e i n accordance w i t h t h e law o f p r o b a b i l i t y as w e l l as w i t h t h e s e q u e n t i a l r e l a t i o n s h i p between i t s occurrences.

For example,

t h e o c c u r r e n c e o f a f l o o d i s c o n s i d e r e d t o f o l l o w t h e law o f p r o b a b i l i t y and a l s o t h e r e l a t i o n s h i p w i t h t h e antecedant f l o o d c o n d i t i o n . Most c o n v e n t i o n a l methods f o r h y d r o l o g i c designs a r e " d e t e r ministic,"

t h a t i s , t h e b e h a v i o r o f t h e h y d r o l o g i c system o r process i s

assumed independent o f t i m e v a r i a t i o n s . '

F o r example, a u n i t hydrograph

derived f o r a given r i v e r basin f o r flood-control on h i s t o r i c a l f l o o d records.

p r o j e c t d e s i g n i s based

Once d e r i v e d , t h e u n i t hydrograph i s used

f o r analysis o f f u t u r e design floods.

Thus,

i t i s a u t o m a t i c a l l y assumed

unchanged w i t h t i m e ( f r o m t h e p a s t t o t h e f u t u r e ) and t h e r e f o r e i s deterministic. Some c o n v e n t i o n a l methods employ t h e concept o f p r o b a b i l i t y t o t h e e x t e n t t h a t no s e q u e n t i a l r e l a t i o n s h i p i s i n v o l v e d i n t h e p r o b a b i l i t y . For example, t h e f l o o d r e c o r d i s analyzed and f i t t e d w i t h a c e r t a i n probab i l i t y d i s t r i b u t i o n t o determine t h e r e c u r r e n c e i n t e r v a l s o f t h e f l o o d o r the f l o o d frequencies.

Such methods a r e "probabi 1 i s t i c " b u t n o t i n t h e

t r u e sense " s t o c h a s t i c."

:

Numbers i n parentheses r e f e r t o r e f e r e n c e s l i s t e d a t t h e end o f t h e report.

The s t o c h a s t i c method, t h a t i s t o employ t h e concept o f probab i l i t y as w e l l as i t s s e q u e n t i a l r e l a t i o n s h i p , has n o t been w e l l i n t r o duced i n t h e p r a c t i c a l d e s i g n and p l a n n i n g of h y d r o l o g i c p r o j e c t s , because such methods have n o t been f u l l y developed.

While t h e n a t u r a l h y d r o l o g i c

phenomenon i s s t o c h a s t i c , i t i s i m p o r t a n t t o develop t h e s t o c h a s t i c method o f h y d r o l o g i c a n a l y s i s f o r h y d r o l o g i c system design.

Conventional methods,

d e t e r m i n i s t i c and p r o b a b i l i s t i c , which do no't conform more c l o s e l y t o t h e n a t u r a l phenomenon, w i l l produce r e s u l t s t h a t d e p a r t from t h e t r u e b e h a v i o r o f t h e h y d r o l o g i c phenomenon and hence have t h e p o s s i b i l i t y t o e i t h e r o v e r d e s i g n o r underdes i g n t h e h y d r o l o g i c p r o j e c t

[3].

The o b j e c t i v e o f t h i s s t u d y i s t o f o r m u l a t e t h e mathematical model o f a s t o c h a s t i c h y d r o l o g i c system and t h e mathematical models o f t h e h y d r o l o g i c processes i n t h e system, p l e o f t h e h y d r o l o g i c system.

u s i n g t h e watershed as an exam-

I n t h i s s t u d y , i n o t h e r words, t h e frame-

work o f a method was developed t o u t i l i z e mathematical models t o s i m u l a t e t h e s t o c h a s t i c b e h a v i o r o f a watershed as t h e h y d r o l o g i c system.

The

mathematical models s o developed should have a p ' r a c t i c a l a p p l i c a t i o n t o t h e a n a l y s i s o f h y d r o l o g i c systems i n t h e w a t e r resources p l a n n i n g and development. The i n i t i a l s t e p o f t h e s t u d y i n v o l v e d a comprehensive review o f t h e a p p l i c a t i o n o f t h e t h e o r y o f s t o c h a s t i c process i n h y d r o l o g y .

The

r e s u l t s o f t h i s i n i t i a l s t e p o f i n v e s t i g a t i o n a r e r e p o r t e d s e p a r a t e l y as "Water Resources Systems A n a l y s i s

-

Annotated B i b l i o g r a p h y on S t o c h a s t i c

Processes" [4.] and "Water Resources Sys tems Ana l y s i s Processes''

[5].

-

Review o f S t o c h a s t i c

11.

FORMULATION OF THE HYDROLOGIC SYSTEM MODEL

I n t h e f o r m u l a t i o n o f t h e h y d r o l o g i c system model, a watershed i s used as t h e h y d r o l o g i c system a l t h o u g h t h e mathematical approach would b e e q u a l l y a p p l i c a b l e t o o t h e r k i n d s o f h y d r o l o g i c systems w i t h some modif i c a t i o n s depending on t h e n a t u r e o f t h e system.

The watershed i s t r e a t e d

as a h y d r o l o g i c system w h i c h has an i n p u t , m a i n l y r a i n f a l l , and an o u t p u t , m a i n l y r u n o f f and e v a p o t r a n s p i r a t i o n .

The i n p u t and o u t p u t a r e t o b e

t r e a t e d as t i m e s e r i e s o r s t o c h a s t i c processes which d e s c r i b e t h e stochast i c b e h a v i o r o f t h e i n p u t and o u t p u t processes.

The amount o f w a t e r

s t o r e d i n t h e watershed i s a l s o t r e a t e d as a t i m e s e r i e s o r s t o c h a s t i c process w h i c h d e s c r i b e s t h e s t o c h a s t i c n a t u r e o f i n f i l t r a t i o n , s u b s u r f a c e r u n o f f and t h e s o i l m o i s t u r e and groundwater s t o r a g e s . To f o r m u l a t e a mathematical model f o r t h e watershed h y d r o l o g i c system, t h e r u n o f f i s c o n s i d e r e d as t h e i n t e g r a l p r o d u c t o f t h r e e compon e n t s t o c h a s t i c processes ; namely,

( 1 ) a "conceptual watershed s t o r a g e "

a t t h e end o f t h e t - t h t i m e i n t e r v a l r e p r e s e n t i n g t h e s t o r a g e o f w a t e r on t h e ground s u r f a c e , such as l a k e s , ponds, swamps and streams, as w e l l as below t h e ground s u r f a c e , such as s o i l m o i s t u r e and groundwater r e s e r voirs,

( 2 ) t h e t o t a l r a i n f a l l i n p u t d u r i n g t h e t - t h t i m e i n t e r v a l , and

(3) t h e t o t a l l o s s e s , m a i n l y e v a p o t r a n s p i r a t i o n , d u r i n g t h e t - t h t i m e interval .

These t h r e e component s t o c h a s t i c processes can be mathemat i-

c a l l y r e p r e s e n t e d r e s p e c t i v e l y by t i m e s e r i e s f u n c t i o n s [ ~ ( t )tET], ; [ ~ ( t ;) tET] and [ E ( t ) ; ~ G T where ] T i s t h e t i m e range under c o n s i d e r a t i o n o r the length o f t h e h y d r o l o g i c record. b e s i m p l y denoted by S t ,

X t and E t ,

These s t o c h a s t i c processes can

respectively.

as independent b u t as a s t o c h a s t i c v e c t o r [ S ( t )

They a r e n o t c o n s i d e r e d

, x(t) ,

.

E ( t ) ; ~ C T ] The

t h e o r y o f t i m e s e r i e s can t h e r e f o r e b e used t o f o r m u l a t e t h e s t o c h a s t i c

model o f t h i s v e c t o r .

A r i g o r o u s mathematical a n a l y s i s o f t h i s v e c t o r

would r e q u i r e t h e use o f t h e t h e o r y o f m u l t i p l e t i m e s e r i e s a n a l y s i s [61. I n view o f t h e accuracy o f t h e n a t u r a l h y d r o l o g i c d a t a and f o r t h e purpose o f p r a c t i c a l a p p l i c a t i o n w i t h o u t r e s o r t i n g t o e x c e s s i v e mathematical involvement, t h e s t o c h a s t i c v e c t o r i s t o be analyzed by t h e s i n g l e t i m e s e r i e s a n a l y s i s techniques o f c o r r e l o g r a m and spectrum i n combination w i t h t h e cross-spectrum t h e o r y which p r o v i d e s a p o w e r f u l t o o l i n t h e analysis o f m u l t i p l e time series. By t h e b a s i c concept o f system c o n t i n u i t y , t h e r u n o f f , which i s a s t o c h a s t i c process o f t o t a l r u n o f f o u t p u t d u r i n g t h e t - t h t i m e i n t e r v a l . as denoted by [ ~ ( t ) ; t € ~o ]r s i m p l y Y t ,

can be r e l a t e d t o t h e o t h e r t h r e e

component s t o c h a s t i c processes o f t h e h y d r o l o g i c system as f o l l o w s :

where S t m l

i s t h e conceptual watershed s t o r a g e a t t h e b e g i n n i n g o f t - t h

time i n t e r v a l .

111. A.

MATHEMATICAL TECHNIQUES

Mathematical Models f o r Time S e r i e s I n t h i s s t u d y t h r e e models o f t i m e s e r i e s which have been used

i n h y d r o l o g i c s t u d y were reviewed.

These models o r t h e i r combinations

would be employed t o s i m u l a t e t h e h y d r o l o g i c s t o c h a s t i c processes. h y d r o l o g i c t i m e s e r i e s i s denoted by [ u t ;

tET] where u

t

The

i s the hydrologic

v a r i a b l e a t t r i b u t e d t o t h e t - t h t i m e i n t e r v a l and T i s t h e l e n g t h o f t h e h y d r o 1 og ic record.

1.

where

E

Moving-Average Model.

i s a random v a r i a b l e ; al,

T h i s model may be expressed as

..., am a r e

a2,

t h e e x t e n t o f t h e moving average.

t h e w e i g h t s ; and m i s

T h i s e q u a t i o n may be taken as t h e

model r e p r e s e n t i n g t h e r e l a t i o n between, say, annual r u n o f f u and, say, annual e f f e c t i v e p r e c i p i t a t i o n

E,

where m i s t h e e x t e n t o f t h e c a r r y o v e r

due t o t h e w a t e r - r e t a r d a t i o n c h a r a c t e r i s t i c s o f t h e watershed. a model, t h e w e i g h t s al, unity.

a2,

..., am

For such

must be a l l p o s i t i v e and sum t o

By v i r t u e o f t h e moving average on t h e

E'S,

the simulated time

s e r i e s u i s n o t random b u t s t o c h a s t i c .

2.

Sum-of-Harmonics Model.

T h i s model may be expressed as

N

Ut=

where A

j

1

( A . J cos

2IT't -J-+ T

BJ. s i n

2IT-t +)

+

Et

and 0 . a r e t h e amplitudes; 2 r j t / T i s t h e p e r i o d o f c y c l i c i t y J

w i t h j = 1,2,

..., and

N b e i n g t h e number o f r e c o r d i n t e r v a l s i n months,

y e a r s o r o t h e r u n i t s used i n t h e a n a l y s i s ; and

E~

i s a random v a r i a b l e .

T h i s e q u a t i o n may be t a k e n as a model r e p r e s e n t i n g a r e g u l a r o r o s c i l l a t o r y form o f v a r i a t i o n s , such as d i u r n a l , seasonal and s e c u l a r changes t h a t e x i s t f r e q u e n t l y i n h y d r o l o g i c phenomena.

Such v a r i a t i o n s a r e o f

n e a r l y c o n s t a n t p e r i o d and t h e y may be assumed s i n u s o i d a l as s i m u l a t e d i n t h e model.

3.

A u t o r e g r e s s i o n Model.

The g e n e r a l f o r m o f t h i s model may

be expressed as

u

where f (

= f(ut-l,

t

U t-2'

9

U

t-k

)

+

Et

) i s a mathematical f u n c t i o n , k i s an i n t e g e r , and

dom v a r i a b l e .

E~

i s a ran-

A s p e c i a l case o f t h i s model i s t h e l i n e a r a u t o r e g r e s s i v e

model o f t h e n - t h o r d e r :

where a I, a2,

. - a ,

a

n

are the regression c o e f f i c i e n t s .

For n = 1 , t h e

above e q u a t i o n becomes t h e f i r s t - o r d e r Markov process:

where a i s t h e Markov-process c o e f f i c i e n t

.

The a u t o r e g r e s s i o n model may be used as a model r e p r e s e n t i n g h y d r o l o g i c sequences whose nonrandomness i s due t o s t o r a g e i n t h e hydrol o g i c system, such as a watershed.

B.

The C o r r e l o g r a m The c h o i c e o f an a p p r o p r i a t e t i m e s e r i e s model f o r a g i v e n

h y d r o l o g i c process i s n o t an easy t a s k because t h e above-mentioned t h r e e

models a l l e x h i b i t o s c i l l a t i o n s resembling t h e f l u c t u a t i o n s which one u s u a l l y observes on most h y d r o l o g i c d a t a by v i s u a l i n s p e c t i o n .

A well-

known a n a l y t i c a l approach which can h e l p one t o s e l e c t t h e b e s t model i s t h e a n a l y s i s o f t h e sample correlogram. The c o r r e l o g r a m i s a g r a p h i c a l r e p r e s e n t a t i o n o f t h e s e r i a l correlation coefficient r

k

as a f u n c t i o n o f t h e l a g k where t h e values rk

a r e p l o t t e d as o r d i n a t e s a g a i n s t t h e i r r e s p e c t i v e values o f k as abscissas I n order t o reveal the features o f the correlogram b e t t e r , the p l o t t e d p o i n t s a r e j o i n e d each t o t h e n e x t by a s t r a i g h t l i n e .

The s e r i a l c o r r e -

l a t i o n c o e f f i c i e n t o f l a g k i s computed by

.

where c o v ( u t ,

u

t+k

) i s t h e sample a u t o c o v a r i a n c e and v a r ( u t ) and ~ a r ( u ~ + ~ )

a r e t h e sample v a r i a n c e ; o r

and

The c o r r e l o g r a m p r o v i d e s a t h e o r e t i c a l b a s i s f o r d i s t i n g u i s h i n g among t h e t h r e e types o f o s c i l l a t o r y t i m e s e r i e s mentioned p r e v i o u s l y .

I t

has been proved a n a l y t i c a l l y t h a t i f t h e t i m e s e r i e s i s s i m u l a t e d by a moving-average model f o r random elements o f e x t e n t m, then t h e c o r r e l o gram w i l l show a d e c r e a s i n g l i n e a r r e l a ' t i o n s h i p and vanishes f o r a l l v a l u e s o f k > m.

For a sum-of-harmonics

model, t h e c o r r e l o g r a m i t s e l f i s

a harmonic w i t h p e r i o d s equal t o those o f t h e harmonic components o f t h e model and i t w i l l t h e r e f o r e show t h e same o s c i l l a t i o n s .

I n t h e case o f

an a u t o r e g r e s s i o n model, t h e c o r r e l o g r a m w i l l show a damping o s c i l l a t i n g curve.

I n t h e case o f a f i r s t - o r d e r Markov process w i t h a s e r i a l c o r r e l a t i o n

c o e f f i c i e n t rl,

i t w i l l o s c i l l a t e w i t h p e r i o d u n i t y above t h e a b s c i s s a

w i t h a decreasing b u t nonvanishing a m p l i t u d e i f r l i s n e g a t i v e

[7].

I t may be n o t e d t h a t , when t h e t i m e s e r i e s i s t o o s h o r t , t h e computed c o r r e l o g r a m may e x h i b i t s u b s t a n t i a l sampling v a r i a t i o n s and thus may conceal i t s a c t u a l form.

C.

The Spectrum A n a l y s i s T h i s method

i s another d i a g n o s t i c t o o l f o r t h e a n a l y s i s o f

t i m e s e r i e s i n t h e frequency domain, which can h e l p develop an a p p r o p r i a t e t i m e s e r i e s model f o r t h e h y d r o l o g i c process. A l l s t a t i o n a r y s t o c h a s t i c processes can be r e p r e s e n t e d i n t h e form

where i =

J-i- and

z(w) i s a complex,

g e n e r a t i n g process,

,

U s i n g t h i s as a

i t can be shown t h a t t h e a u t o c o v a r i a n c e f o r a s t a -

[a]

t i o n a r y process i s

where i =

random f u n c t i o n .

k i s t h e t i m e l a g , w i s t h e a n g u l a r frequency, and F(w)/yo

i s a d i s t r i b u t i o n f u n c t i o n m o n o t o n i c a l l y i n c r e a s i n g and bounded between F(-IT) = 0 and F(IT) =

= o2 where o i s . t h e s t a n d a r d d e v i a t i o n .

The func-

t i o n ~ ( w )i s c a l l e d t h e "power s p e c t r a l d i s t r i b u t i o n f u n c t i o n . "

For k = 0,

Yo

Eq. (12) g i v e s

,

which shows t h a t dF(w) r e p r e s e n t s t h e v a r i a n c e a t t r i b u t e d t o t h e frequency band (w, w+dw)

.

Thus, dF (w) = f (w) dw where f (w) i s ca 1 1 ed t h e "power

spectrum" o f t h e process. I n t h e p r a c t i c a l h y d r o l o g i c a p p l i c a t i o n o f t h e s p e c t r a l theory t h e processes a r e r e a l and t h e imaginary component i s dropped o f f , Eq.

thus

(12) becomes

k

= 2

/IT

coskw f (w)dw

0

The mathematical i n v e r s i o n o f t h e above e q u a t i o n g i v e s t h e power spectrum

For a f i n i t e amount o f d a t a [ u t ;

~ E T ]an e s t i m a t e o f t h e power spectrum i s

where C

k

i s t h e a u t o c o v a r i a n c e f o r a t i m e l a g k. The e s t i m a t e o f t h e power spectrum by Eq.

(16) i s c a l l e d t h e

"raw s p e c t r a l e s t i m a t e " because i t does, n o t g i v e a smooth power s p e c t r a l diagram.

To a d j u s t f o r t h e smoothness,

i t i s common t o use t h e "smoothed

s p e c t r a l e s t i m a t e ' ' i n t h e form

where h k (w) a r e s e l e c t e d w e i g h t i n g f a c t o r s and m i s a number t o be chosen much l e s s than T. weights

A commonly used w e i g h t i n g f a c t o r i s t h e "Tukey-Hamming"

[91: hk(w) = 0.54

+ 0.46 cos 57k

where m i s taken as l e s s than T/10. The s i g n i f i c a n c e o f t h e spectrum i s t h a t i t e x h i b i t s l e s s sampling v a r i a t i o n s than t h e corresponding correlogram.

Consequently, t h e

e s t i m a t e d spectrum would p r o v i d e a b e t t e r e v a l u a t i o n o f t h e v a r i o u s parame t e r s i n v o l v e d i n a model.

I f t h e g e n e r a t i n g process c o n t a i n s p e r i o d i c

terms, t h e f r e q u e n c i e s o f these terms w i l l appear as h i g h and sharp peaks i n t h e e s t i m a t e d spectrum and t h e h e i g h t o f t h e peaks w i l l g i v e a rough e s t i m a t e o f t h e amp1 i t u d e .

IV. A.

ANALYSIS OF THE HYDROLOGIC SYSTEM

The Watershed under Study The watershed chosen as t h e h y d r o l o g i c system t o be analyzed i n

t h i s s t u d y i s t h e upper Sangamon R i v e r b a s i n o f 550 sq. m i . Monticello,

I l l i n o i s , and l o c a t e d i n e a s t c e n t r a l I l l i n o i s .

i n s i z e , above The c r i t e r i a

f o r s e l e c t i n g t h i s watershed a r e t h a t t h e a v a i l a b l e h y d r o l o g i c d a t a such as t h e p r e c i p i t a t i o n , s t r e a m f low and temperature records have a reasonably c o n c u r r e n t p e r i o d and t h a t a d d i t i o n a l d a t a i f needed can be r e l a t i v e l y e a s i l y c o l l e c t e d due t o c o n v e n i e n t access t o i t s l o c a t i o n and t o i t s d a t a c o l l e c t i n g agencies.

F i g u r e 1 shows t h e map o f t h e Sangamon R i v e r

b a s i n above M o n t i c e l l o , I l l i n o i s w i t h t h e l o c a t i o n s o f t h e stream gaging s t a t i o n a t M o n t i c e l l o and t h e p r e c i p i t a t i o n gages where d a t a were observed f o r use i n t h e a n a l y s i s .

B.

The H y d r o l o g i c Data 1.

Precipitation.

The monthly p r e c i p i t a t i o n s i n inches were

used i n t h e a n a l y s i s as t h e h i s t o r i c a l h y d r o l o g i ' c i n p u t s t o t h e watershed system.

The d a t a were taken from t h e " C l i m a t i c Summary o f t h e U n i t e d

S t a t e s " p u b l i s h e d by t h e U.S. Weather Bureau f o r I l l i n o i s .

The p e r i o d

o f records used i n t h e a n a l y s i s extends from October 1914 through September 1965 f o r s t a t i o n s a t Urbana, C l i n t o n , Bloomington and Roberts, f r o m March 1940 through September 1965 f o r t h e s t a t i o n a t R a n t o u l , and f r o m June 1942 through September 1965 a t M o n t i c e l l o .

The average monthly

p r e c i p i t a t i o n s o v e r t h e watershed were computed by t h e Thiessen polygon method. 2.

Streamflow.

The monthly s t r e a m f l o w records f o r t h e

Sangamon R i v e r a t M o n t i c e l l o ,

I l l i n o i s , were used as t h e h i s t o r i c a l

h y d r o l o g i c o u t p u t s o f t h e watershed system i n t h e a n a l y s i s .

The U.S.

G e o l o g i c a l Survey, i n i t s c o o p e r a t i v e program w i t h t h e I l l i n o i s S t a t e Water Survey and o t h e r s t a t e ,

l o c a l and f e d e r a l agencies, c o l l e c t s long-

t e r m s t r e a m f low records t o determine t h e performance of r i v e r s and streams. The gaging s t a t i o n on t h e Sangamon R i v e r about one-half m i l e west o f M o n t i c e l l o had p u b l i s h e d d a t a a v a i l a b l e f o r t h e p e r i o d s o f February 1908 t o December 1912 and June. 1914 t o September 1968.

The monthly stream-

f l o w s from September 1914 through September 1965 were used i n t h e a n a l y s i s .

3.

Temperature.

I n t h e a n a l y s i s , t h e average monthly tempera-

t u r e s from October 1914 through September 1965 were taken from t h e " C l i m a t i c Summary o f t h e U n i t e d S t a t e s " p u b l i s h e d by t h e U.S. Bureau f o r I l l i n o i s .

Weather

The mean o f t h e monthly average temperatures a t t h e

s t a t i o n s i n Urbana and Bloomington was c o n s i d e r e d as t h e average monthly '

temperature o f t h e watershed.

The r e l a t i v e l o c a t i o n o f these two s t a t i o n s

w i t h r e s p e c t t o t h e watershed has suggested t h i s c h o i c e .

4.

P o t e n t i a l Evapotranspi r a t i o n .

Necessary t o t h e a n a l y s i s o f

t h e watershed h y d r o l o g i c system i s t h e e s t i m a t i o n o f t h e monthly p o t e n t i a l evapotranspiration.

There a r e s e v e r a l methods f o r t h e computation o f t h e

p o t e n t i a l evapotranspi r a t ion.

The method proposed by Hamon [ I 0 1 was used

because i t has been t e s t e d i n l I 1 i n o i s [ I I ] w i t h s a t i s f a c t o r y r e s u l t s and t h e computation and t h e d a t a requirement a r e r a t h e r s i m p l e . The f o r m u l a proposed by Hamon i s

where E

P

i s t h e d a i l y p o t e n t i a l e v a p o t r a n s p i r a t i o n i n inches, D i s t h e

p o s s i b l e hours o f sunshine i n u n i t s o f 12 hours and P t i s t h e s a t u r a t i o n

vapor d e n s i t y ( a b s o l u t e h u m i d i t y ) i n grams p e r c u b i c meter a t t h e d a i l y mean temperature.

The v a l u e o f D depends o n t h e l a t i t u d e o f t h e watershed

and t h e month o f t h e year.

The v a l u e o f Pt depends on t h e temperature.

Tables f o r e u a l u a t i n g t h e values o f D and P t a r e p r o v i d e d by Harnon [121. The v a l u e o f D i s e s s e n t i a l l y t h e monthly daytime c o e f f i c i e n t of t h e Hargreaves e v a p o t r a n s p i r a t i o n formula [ 1 3 ] .

The v a l u e of P t can be found

f r o m t h e Smithsonian M e t e o r o l o g i c a l Tables.

For t h e watershed under con-

s i d e r a t i o n , i t s average l a t i t u d e i s 40" N . t w e l v e months a r e 0.64 (Jan.), 1.44 (May),

The v a l u e s o f D~ f o r t h e

0.79 ( ~ e b . ) , 0.99 (Mar.),

1.56 ( ~ u n e ) , 1.51 ( ~ u l y ) , 1.31 (Aug.),

1.22 ( A p r . ) ,

1.08 ( s e p t . ) ,

0.86

( ~ c t . ) , 0.69 ( N O V . ) , and 0.61 ( ~ e c . ) . The monthly p o t e n t i a l e v a p o t r a n s p i r a t i o n can then be computed by

Epm = 0.0055 ~ K D ~ P ~

(20)

where n i s t h e number o f days f o r each month and K i s a c o r r e c t i o n f a c t o r equal t o 1.04 because P t i s e s t i m a t e d f o r t h e monthly mean temperature i n s t e a d o f t h e d a i l y mean temperature.

C.

E s t a b l i s h i n g t h e Records f o r Conceptual Watershed Storage and A c t u a l E v a p o t r a n s p i r a t i o n R e w r i t i n g Eq. (1) g i v e s

Since t h e values o f monthly p r e c i p i t a t i o n X t and monthly r u n o f f Y t a r e known from t h e h i s t o r i c a l records, i t i s obvious f r o m t h e above e q u a t i o n t h a t i f t h e r e c o r d f o r t h e conceptual watershed s t o r a g e S t were known then t h e r e c o r d f o r t h e a c t u a l monthly e v a p o t r a n s p i r a t i o n E t c o u l d be

e a s i l y established.

On t h e o t h e r hand, i f t h e r e c o r d o f E t were known and

an i n i t i a l v a l u e o f S t were assumed, then t h e r e c o r d o f S t c o u l d a l s o be established. manner.

Unfortunately neither S

t

nor E

t

can be computed i n a d i r e c t

r

I t i s known, however, t h a t i n l a t e September and e a r l y October o f each y e a r i n I l l i n o i s t h e amount o f s u r f a c e w a t e r on t h e watershed and t h e s o i l m o i s t u r e a r e a t a minimum.

E s p e c i a l l y i n t h e case o f v e r y low

amount o f p r e c i p i t a t i o n d u r i n g t h e months o f August, September and October, t h e watershed s t o r a g e must be t h e lowest.

T h i s lowest amount o f s t o r a g e can

be considered as t h e r e f e r e n c e p o i n t o f t h e conceptual watershed s t o r a g e . . I n o t h e r words, t h e conceptual watershed s t o r a g e i s taken as z e r o a t t h e b e g i n n i n g o f t h e October o f t h e y e a r h a v i n g v e r y low p r e c i p i t a t i o n d u r i n g t h e months o f August, September and October.

I n the present analysis,

t h i s happens t o be t h e case f o r t h e y e a r o f 1914. Once t h e i n i t i a l s t a g e o f t h e conceptual watershed s t o r a g e i s e s t a b l i s h e d , t h e f o l l o w i n g procedure may be f o l l o w e d t o e s t a b l i s h t h e records o f conceptual watershed s t o r a g e and a c t u a 1 evapot ransp i r a t i o n . I f St-l

+

Xt

-

Y t 2 Ept where E

Pt

i s t h e p o t e n t i a l evapotran-

s p i r a t i o n f o r the t - t h time i n t e r v a l , then the a c t u a l evapotranspirat i o n Et

--

Ept.

Thus, t h e i n i t i a l s t o r a g e S t f o r t h e n e x t t i m e i n t e r v a l

can be computed by Eq. ( 1 ) .

If

+

Xt

-

Y t < Ept,

then E t = S t - l

+

Xt

-

Y t and Eq.

(1)

g i v e s S t = 0. The mass curves o f X t ,

Yt,

The d i f f e r e n c e between C X t and C Y t C(st

-

St-l)

E t and S t

-

S t -1

a r e shown i n F i g . 2.

i s e s s e n t i a l l y equal t o C E t s i n c e

i s r e l a t i v e l y s m a l l as p l o t t e d i n an e n l a r g e d s c a l e .

The

mass c u r v e f o r S t

-

St-1

r e p r e s e n t s t h e v a r i a t i o n i n conceptual watershed

s t o r a g e w i t h a mean o f 3.5

D.

inches.

A n a l y s i s o f t h e H y d r o l o g i c Processes I n t h i s a n a l y s i s , t h e s t o c h a s t i c processes of p r e c i p i t a t i o n ,

conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a r e n o t t o be t r e a t e d independently o f each o t h e r b u t they a r e considered as a three-dimensional vector o r a multiple-time series.

Without i n t r o d u c i n g the theory o f

m u l t i p l e - t i m e s e r i e s , which has y e t t o be f u r t h e r developed and r e f i n e d , t h e f o l l o w i n g assumptions a r e t o be made i n t h e p r e s e n t a n a l y s i s : (a)

Each s t o c h a s t i c process c o n s i s t s o f two p a r t s ; namely, one

d e t e r m i n i s t i c and t h e o t h e r random and u n c o r r e l a t e d t o t h e d e t e r m i n i s t i c p a r t and t h e p a r t s o f o t h e r processes. (b)

The d e t e r m i n i s t i c p a r t o f each s t o c h a s t i c process c o n s i s t s

a l s o o f two p a r t s ; one p a r t depending o n l y on t i m e and t h e o t h e r p a r t depending on t h e v e c t o r o f t h e s tochas t i c processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and a c t u a l e v a p o t r a n s p i r a t i o n a t p r e v i o u s time intervals. Based on t h e above assumptions, t h e f i r s t s t e p i s t o determine t h e d e t e r m i n i s t i c p a r t o f each process which depends on time.

From t h e

e x p e r i e n c e i n h y d r o l o g y and t h e e x h i b i t i o n o f h y d r o l o g i c data, t h e d e t e r m i n i s t i c p a r t appears t o be a p e r i o d i c f u n c t i o n r a t h e r than a p o l y nomial o f time.

Hence, t h e sample correlograms can be computed f o r each

process t o t e s t t h e e x i s t e n c e o f harmonic components i n t h e process. The s e r i a l c o r r e l a t i o n c o e f f i c i e n t s r k f o r t i m e l a g k f o r t h e processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and t h e evapot r a n s p i r a t i o n were computed by Eqs.

(7), ( 8 ) , (9)

and (10) f o r t = 1,2,.

. . ,T.

I n t h e p r e s e n t s t u d y , T i s t h e l e n g t h o f t h e records equal t o 612 months and k i s from z e r o t o n/lO,say plots of r

k

60. The correlograms, o r t h e

versus k , f o r p r e c i p i t a t i o n , conceptual watershed s t o r a g e and

e v a p o t r a n s p i r a t i o n a r e shown i n F i g s . 3, 4 and

5 respectively.

For a l l

t h r e e processes these correlograms a r e o s c i l l a t i n g w i t h o u t any i n d i c a t i o n o f damping, thus r e v e a l i n g t h e presence o f harmonic components i n a l l t h e processes

. I n o r d e r t o determine t h e p e r i o d s o f t h e harmonic components

which w i l l be i n c l u d e d i n t h e model t o s i m u l a t e t h e h y d r o l o g i c processes and t h e h y d r o l o g i c system, t h e power spectrum f o r each o f t h e processes s h o u l d be computed. From Eqs.

(16) and ( 1 7 ) , t h e raw and smoothed s p e c t r a l e s t i m a t e s

may be w r i t t e n r e s p e c t i v e l y as

and

Ub,)

=

1

("c0

S u b s t i t u t i n g Eq. and s i m p l i f y i n g ,

c o s r-m k+t X C m m cos IT^)

(18) f o r t h e Tukey-Hamming w e i g h t s i n E q .

(23)

S i nce

COS

Trkt COS "k m m

cos

Trt

cos -~( tr+kl ) m

+

~rk cos -(t-1) m

and

Eq.

=

-.

1 2

[cos Tr(t+l)

+ cos T r ( t - l ) ]

(24) becomes

1

Ck

-Trk (t+l) m

+

Cm cos " ( t + l ) ]

1

Trk Ck cos -(t-1) m

+

Cm cos ~ ( t - 1 ])

m- 1

+

0. 23 [ c 0 2Tr

+ 2

,,,

+= [C

2Tr

0

+ 2

.

COS

m

.

As t h e raw s p e c t r a l e s t i m a t e s can be r e p r e s e n t e d by Eq.

(27)

( 2 2 ) , Eq. (27) may

be w r i t t e n as u(wt) = 0.23 L ( U ~ - ~+ ) 0.54 L(wt) + 0.23 L(ot+,)

Computer programs were w r i t t e n t o compute t h e a u t o c o v a r i a n c e by Eq.

(8) and t h e raw and smoothed s p e c t r a l e s t i m a t e s by Eqs

.

(22) and (28)

.

The smoothed s p e c t r a f o r p r e c i p i t a t i o n , conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a r e shown i n F i g s . 6, 7 and 8, r e s p e c t i v e l y .

The sharp

peaks e x h i b i t e d i n these s p e c t r a i n d i c a t e a s i g n i f i c a n t amount o f t h e v a r i a n c e w i t h , t h e p e r i o d i c i t i e s o f 12-month and 6-month which a r e a p p r o p r i a t e f o r use i n t h e model.

E.

D e t e r m i n a t i o n o f t h e System Model The proposed model f o r t h e h y d r o l o g i c processes i s a combination

o f the sum-of-harmoni cs and. t h e autogress i o n time s e r i e s models.

$ ince

t h e r e s u l t s o f t h e correlogram and s p e c t r a l analyses i n d i c a t e t h e presence of the 12-month and 6-month p e r i o d i c i t i e s , t h e general model f o r t h e h y d r o l o g i c s t o c h a s t i c processes under study may be w r i t t e n i n the form

Ut = c1

+

c

2

2lT t sin -+

+ where cl,

c4 s i n

c2, c3, c4 and c

c3

4lT t

5

COS-

2lT t 12

+ c5 cos

4lT t 12

+

U;

a r e t h e c o e f f i c i e n t s t o be estimated and u ' t

i s t h e r e s i d u a l s t o c h a s t i c process w i t h zero mean.

This model was there-

f o r e used t o f i t t h e h y d r o l o g i c processes o f p r e c i p i t a t i o n , conceptual watershed storage, and e v a p o t r a n s p i r a t i o n by t h e least-square method such as the one described by Brown [14].

The c o e f f i c i e n t s o f t h e model d e t e r -

' mined f o r p r e c i p i t a t ion, conceptual watershed s t o r a g e and evapotranspi ra-

t i o n a r e as f o l l o w s :

The f i r s t f i v e terms i n t h e time s e r i e s model represented by Eq. (29) a r e a p o r t i o n o f t h e d e t e r m i n i s t i c p a r t o f t h e simulated hydrol o g i c s t o c h a s t i c processes.

The f i r s t term i s a constant w h i l e t h e second,

t h i r d , f o u r t h and f i f t h terms a r e d e t e r m i n i s t i c harmonics as f u n c t i o n s o f time.

The l a s t term u;

represents t h e r e s i d u a l s t o c h a s t i c process which

may c o n s i s t o f a d e t e r m i n i s t i c p o r t i o n and the random p a r t o f t h e model.

T h i s d e t e r m i n i s t i c p o r t i o n may be c o r r e l a t e d w i t h t h e v e c t o r o f t h e processes o f precipitation, conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a t p r e v i o u s t i m e i n t e r v a l s , w h i l e t h e random p a r t o f t h e process may be s i m u l a t e d by a r e p r e s e n t a t i v e p r o b a b i l i t y d i s t r i b u t i o n .

The determina-

t i o n o f a s u i t a b l e model f o r t h e r e s i d u a l s t o c h a s t i c process w i l l r e q u i r e further investigation.

i t may be suggested

I n further investigation,

t h a t t h e d e t e r m i n i s t i c p o r t i o n o f t h e r e s i d u a l s t o c h a s t i c processes be analyzed by t h e cross-spect rum t h e o r y

[el.

A 1 though t h e res idual s tochas-

t i c process i s a s i g n i f i c a n t component o f t h e model, i t s magnitude i s o f r e l a t i v e l y low o r d e r .

As a f i r s t a p p r o x i m a t i o n t h e r e s i d u a l s t o c h a s t i c

processes i n t h e watershed system may be considered c o m p l e t e l y random w i t h t h e i r means equal t o zero.

Thus, f o r t h e p r e s e n t study, X;=E;=S;=O

and t h e i r v a r i a n c e s were found t o be 2.754,

0.465 and 4.136 r e s p e c t i v e l y .

T h e i r p r o b a b i l i t y d i s t r i b u t i o n s may be r o u g h l y assumed as normal a t p r e s e n t u n t i l b e t t e r p r o b a b i l i t y d i s t r i b u t i o n models a r e t o be found i n f u t u r e investigation. W i t h t h e h y d r o l o g i c processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n b e i n g determined, t h e r u n o f f process may be f o r m u l a t e d f r o m Eqs. (1) and' (29) as

Y t = 0.8036

+

0.5024 s i n

+ 0.6064 cos

+

nt T +1.7778

nt+ 0.5786 3

0,5583 s i n Tl(t-l) 3

-

cos -g nt

s i n 'm(t-l)

0.1366 cos

3

-

0.0303 s i n

Tl t 3

2.3821 cos n ( t -61 )

+

X;

- E; -

(5;

-

S;-l)

(31)

T h i s i s t h e system model expressed f o r t h e r u n o f f process of t h e upper Sangamon R i v e r b a s i n above M o n t i c e l l o , I l l i n o i s .

T h i s model can be

employed t o g e n e r a t e s t o c h a s t i c monthly s t r e a m f l o w v a l u e s f o r use i n t h e a n a l y s i s o f w a t e r resources systems.

It i s o f p a r t i c u l a r value i n the

economic p l a n n i n g o f w a t e r s u p p l y and i r r i g a t i o n p r o j e c t s which i s concerned w i t h t h e long-range w a t e r y i e l d o f t h e watershed.

V.

CONCLUSIONS

The u l t i m a t e o b j e c t i v e o f t h e r e s e a r c h on t h e s t o c h a s t i c a n a l y s i s o f s t o c h a s t i c h y d r o l o g i c systems i s t o f o r m u l a t e t h e mathematical model f o r a s t o c h a s t i c h y d r o l o g i c system f o r which a watershed i s considered.

The upper Sangamon R i v e r b a s i n above M o n t i c e l l o , I l l i n o i s , i s

taken as an example o f t h e watershed.

T h i s s t u d y has demonstrated t h a t

such a model i s f e a s i b l e and i t s a p p l i c a t i o n t o a p r a c t i c a l problem i s workable. For t h i s s t u d y t h e 1 i t e r a t u r e on s t o c h a s t i c processes and t h e i r a p p l i c a t i o n i n h y d r o l o g y were reviewed.

I t was found t h a t t h e a p p l i c a -

t i o n o f t h e t h e o r y o f s t o c h a s t i c processes i n h y d r o l o g y has b a r e l y begun and t h e t h e o r y has a p p l i e d m o s t l y t o s i n g l e processes b u t n o t t o composite h y d r o l o g i c systems.

The mathematical t h e o r y o f s t o c h a s t i c processes i s

v e r y e x t e n s i v e , b u t u n f o r t u n a t e l y most o f i t i s w r i t t e n n o t f o r p r a c t i c i n g engineers and h y d r o l o g i s t s .

Furthermore, a s y s t e m a t i c t h e o r y f o r

t h e f o r m u l a t i o n o f a s t o c h a s t i c system model i s u n a v a i l a b l e because t h e f o r m u l a t i o n o f t h e model r e q u i r e s t h e p r a c t i c a l knowledge on t h e p h y s i c a l c h a r a c t e r i s t i c s o f t h e process and t h e system which i s u s u a l l y l a c k i n g on t h e p a r t o f t h e mathematician. i n t r o d u c e t h e use

bf

This study t h e r e f o r e attempts t o

a t h e o r e t i c a l model t o the. s i m u l a t i o n o f a p r a c t i -

c a l h y d r o l o g i c system. Based on t h e p r i n c i p l e o f c o n s e r v a t i o n o f mass, t h e watershed system i s represented by t h e mass balance e q u a t i o n i n which t h e system components o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e , e v a p o t r a n s p i r a t i o n and r u n o f f a r e considered as s t o c h a s t i c processes.

Whi l e t h e d a t a

o f p r e c i p i t a t i o n and runoff a r e g i v e n , a method was developed t o estab-

l i s h t h e unknown r e c o r d s o f conceptual watershed s t o r a g e and evapotranspiration.

A d e t e r m i n i s t i c p o r t i o n o f t h e system component process i s analyzed by t h e t h e o r y o f c o r r e l o g r a m and spectrum.

Computer s u b r o u t i n e s

were programmed f o r t h e computation o f correlograms and s p e c t r a o f a discrete time series o f f i n i t e length.

The expected values o f t h e system

components o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and evapotrans p i r a t i o n were thus found t o be b e s t s i m u l a t e d b y harmonics o f 12-month and 6-month p e r i o d i c i t i e s .

T h i s a n a l y s i s c o n s t i t u t e s an i m p o r t a n t s t e p

i n t h e a t t e m p t o f c o n s i d e r i n g t h e n o n s t a t i o n a r i t y o f t h e processes i n v o l v e d i n t h e h y d r o l o g i c system because t h e expected values a r e taken as f u n c t i o n s o f time b u t n o t constants. The h y d r o l o g i c system model so f o r m u l a t e d f o r t h e upper Sangamon

.

R i v e r b a s i n can be used t o generate s t o c h a s t i c s t r e a m f l o w s f o r t h e use i n t h e p l a n n i n g o f w a t e r s u p p l y and i r r i g a t i o n p r o j e c t s i n t h e b a s i n .

The

method developed i n t h i s s t u d y i s t h e r e f o r e formed t o be o f p r a c t i c a l v a l u e i n t h e a n a l y s i s o f w a t e r resources systems;

VI.

ACKNOWLEDGMENT

T h i s r e p o r t i s t h e r e s u l t o f a r e s e a r c h p r o j e c t on " S t o c h a s t i c A n a l y s i s o f H y d r o l o g i c Systems" sponsored by t h e U.S. O f f i c e o f Water Resources Research, which began i n J u l y 1968 and was completed i n June 1969.

Under t h e d i r e c t i o n o f t h e P r o j e c t I n v e s t i g a t o r , t h e h y d r o l o g i c

d a t a used i n t h i s s t u d y were m a i n l y c o l l e c t e d by M r . Gonzalo CortesR i v e r a , Research A s s i s t a n t i n C i v i l E n g i n e e r i n g , and t h e mathematical a n a l y s i s and computations were l a r g e l y performed b y M r . S o t i r i o s J. K a r e l i o t i s , Research A s s i s t a n t i n C i v i 1 Engineering.

VII.

1.

REFERENCES

Chow, V . T., S t a t i s t i c a l and p r o b a b i l i t y a n a l y s i s o f h y d r o l o g i c data: P a r t 1 . Frequency a n a l y s i s , S e c t i o n 8 i n Handbook o f A p p l i e d ed. by V . T. Chow, McGraw-Hi 1 1 Book Co., New York, 1964,

:yd;r-;;gy, -

2.

Chow, V . T., A g e n e r a l r e p o r t on new ideas and s c i e n t i f i c methods i n h y d r o l o g y ( S i m u l a t i o n of t h e h y d r o l o g i c b e h a v i o r of watersheds) , Proceedings,, F o r t C o l l i n s , Colorado, 6-8 September 1967, pp. 50-65.

3.

Chow, V . T., H y d r o l o g i c systems f o r w a t e r resources management, Conference Proceedi ngs o f H y d r o l o g y i n Water Resources Management, Water Resources Research I n s t i t u t e Report No. 4, Clemson U n i v e r s i t y , Clemson, South C a r o l i n a , March 1968, pp. 8-22.

4.

Chow, V . T., and M e r e d i t h , D. D . , Water resources systems a n a l y s i s ~ n n o t a t e db i b 1 iography on s t o c h a s t i c proce;ses, ~ i v1 i ' ~ n ~ i part. I . n e e r i n g S t u d i e s , H y d r a u l i c E n g i n e e r i n g S e r i e s No. 19, U n i v e r s i t y o f Illinois, Urbana, I l l i n o i s , J u l y 1969.

5.

Chow, V . T., and M e r e d i t h , D. D., Water r e s o u r c e s systems a n a l y s i s P a r t I l l . Review o f s t o c h a s t i c processes, C i v i l E n g i n e e r i n g S t u d i e s , H y d r a u l i c E n g i n e e r i n g S e r i e s No. 21, U n i v e r s i t y of I 1 1 i n o i s , Urbana, I l l i n o i s , J u l y 1969.

6.

Q u e n o u i l l e , M. H., The a n a l y s i s o f m u l t i p l e t i m e s e r i e s , Hafner P u b l i s h i n g Co., New York, 1957.

7.

Dawdy, D. R., and M a t a l a s , N. C . , A n a l y s i s o f v a r i a n c e , c o v a r i a n c e , and t i m e s e r i e s , S e c t i o n 8-111, P a r t I l l i n Handbook o f A p p l i e d H y d r o l o g y , ed. b y V. T. Chow, McGraw-Hill Book Co., New York, 1964,

8.

Granger, C. W. J . , and Hatanaka, M., S p e c t r a l a n a l y s i s o f economic t i m e s e r i e s , P r i n c e t o n U n i v e r s i t y P.ress, P r i n c e t o n , New J e r s e y , 1964.

9.

Blackman, R. B . , and Tukey, J . W., The measurement of power s p e c t r a , Dover P u b l i c a t i o n s , I n c . , New York, 1959.

10.

Hamon, W. R., E s t i m a t i n g p o t e n t i a l e v a p o t r a n s p i r a t i o n , Proceedings, American S o c i e t y o f C i v i l Engineers, J o u r n a l o f H y d r a u l i c s D i v i s i o n , V o l . 87, No. H Y 3 , pp. 107-120, May 1961.

11.

Jones, D, M. A., V a r i a b i l i t y o f e v a p o t r a n s p i r a t i o n i n I l l i n o i s , l 1 1 i n o i s S t a t e Water Survey C i r c u l a r 89, 1966.

12.

Hamon, W. R., E s t i m a t i n g p o t e n t i a l e v a p o t r a n s p i r a t i o n , Massachusetts I n s t i t u t e o f Technology Department o f C i v i l and S a n i t a r y E n g i n e e r i n g , u n p u b l i s h e d M.S. t h e s i s , 1960.

-

-

13.

Veihmeyer, F. J., E v a p o t r a n s p i r a t i o n , S e c t i o n 1 1 i n Handbook o f 11-30, A p p l i e d Hydrology, ed. by V. T. Chow, McGraw-Hill Book Co., p. 1964.

14.

Brown, R. C . , Smoothing, f o r e c a s t i n g and p r e d i c t i o n o f d i s c r e t e time s e r i e s , P r e n t i c e H a l l , Inc., Englewood C l i f f s , N.Y., 1962.

VIII. Fig.

1.

F l GURES

Sangamon R i v e r b a s i n above M o n t i c e l l o ,

Illinois

F i g . 2.

Mass curves o f p r e c i p i t a t i o n , e v a p o t r a n s p i r a t i o n , and conceptual watershed s t o r a g e

F i g . 3.

Correlogram f o r p r e c i p i t a t i o n

F i g . 4.

Correlogram f o r conceptual watershed s t o r a g e

F i g . 5.

Correlogram fqr e v a p o t r a n s p i r a t i o n

F i g . 6.

Spectrum o f p r e c i p i t a t i o n

Fig.

7.

F i g . 8.

Spectrum o f conceptual watershed s t o r a g e Spectrum o f e v a p o t r a n s p i r a t i o n

runoff

39VtlOlS 03HSt131VM 1 V f l l d 3 3 N 0 3 ONV JJONfltl JO S3AUfl3 SSVW

' NOIlVUldSNVtllOdVA3 ' NOllVlld133Ud

I '9IJ

More Documents from "Everth"

Declinacion.docx
April 2020 2
Rop.docx
April 2020 3
Seminario.docx
April 2020 1