WRC RESEARCH REPORT NO. 26
STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS
Ven Te Chow Principal Investigator
F I N A L
R E P O R T
P r o j e c t No. A-029- ILL
The work upon which t h i s p u b l i c a t i o n i s based was s u p p o r t e d by funds p r o v i d e d by t h e U.S. Department o f t h e I n t e r i o r as a u t h o r i z e d under t h e Water Resources Research A c t o f 1964, P.L. 88-379 Agreement No. 14-0 1-000 1 - 1632
UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 3220 C i v i l E n g i n e e r i n g B u i l d i n g Urbana, l l l i n o i s 61801 December, 1969
ABSTRACT STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS
H y d r o l o g i c phenomena a r e i n r e a l i t y s t o c h a s t i c i n nature; t h a t i s , t h e i r behavior changes w i t h t h e t i m e i n accordance w i t h t h e law o f p r o b a b i l i t y as w e l l as w i t h t h e s e q u e n t i a l r e l a t i o n s h i p between t h e occurrences o f t h e phenomenon. I n o r d e r t o analyze t h e h y d r o l o g i c phenomenon, a mathem a t i c model o f t h e s t o c h a s t i c h y d r o l o g i c system t o s i m u l a t e t h e phenomenon must be formulated. I n t h i s study, a watershed i s t r e a t e d as the s t o c h a s t i c h y d r o l o g i c system whose components o f p r e c i p i t a t i o n , r u n o f f , storage and e v a p o t r a n s p i r a t i o n a r e s i m u l a t e d as s t o c h a s t i c processes by time s e r i e s models t o be determined b y correlograms and s p e c t r a l a n a l y s i s . The h y d r o l o g i c system model i s then formulated on t h e basis o f t h e p r i n c i p l e of conservation o f mass and composed o f the component s t o c h a s t i c processes. To demonstrate the p r a c t i c a l a p p l i c a t i o n o f t h e method o f a n a l y s i s so developed, the upper Sangamon River b a s i n above M o n t i c e l l o i n e a s t c e n t r a l I l l i n o i s i s used as the sample watershed. The watershed system model so formulated can be employed t o generate s t o c h a s t i c streamflows f o r p r a c t i c a l use i n the a n a l y s i s o f water resources systems. This i s o f p a r t i c u l a r value i n t h e economic planning o f water supply and i r r i g a t i o n p r o j e c t s which i s concerned w i t h t h e long-range water y i e l d o f the watershed.
Chow, Ven Te STOCHASTIC ANALYSIS OF HYDROLOGIC SYSTEMS Research Report No. 26 , Water Resources Center, U n i v e r s i t y o f I l l i n o i s a t Urbana-Champaign, December 1969, 3 4 pp. KEYWORDS--systems a n a l y s i s / s t o c h a s t i c processes/synthetic hydrology/ water resources development/watershed studies/precipitation/streamflow/ evapotranspiration/storage/water y i e l d / h y d r o l o g i c models/hydrology
CONTENTS
. I1.
I
.
I11
IV
.
V. V I
.
. V I I I. V I I
......................... 1 F o r m u l a t i o n o f t h e H y d r o l o g i c System Model . . . . . . . . . . 3 Mathematical Techniques ................... 5 A . Mathematical Models f o r Time S e r i e s . . . . . . . . . . . 5 1 . Moving-Average Model . . . . . . . . . . . . . . . . . 5 2 . Sum-of-Harmonics Model . . . . . . . . . . . . . . . . 5 3 . A u t o r e g r e s s i o n Model . . . . . . . . . . . . . . . . . 6 B. TheCorrelogram . . . . . . . . . . . . . . . . . . . . . 6 C . The Spectrum A n a l y s i s . . . . . . . . . . . . . . . . . . 8 Analysis o f t h e H y d r o l o g i c S y s t e m . . . . . . . . . . . . . . 1 1 A . The Watershed under Study . . . . . . . . . . . . . . . . 1 1 B. TheHydrologicData . . . . . . . . . . . . . . . . . . . 1 1 1. Precipitation . . . . . . . . . . . . . . . . . . . . 11 2 . Streamflow . . . . . . . . . . . . . . . . . . . . . . 1 1 3 . Temperature . . . . . . . . . . . . . . . . . . . . . 12 4 . P o t e n t i a l E v a p o t r a n s p i r a t i o n . . . . . . . . . . . . . 12 C . E s t a b l i s h i n g t h e Records f o r Conceptual Watershed S t o r a g e and A c t u a l E v a p o t r a n s p i r a t i o n . . . . . . . . . . 13 D . A n a l y s i s o f t h e H y d r o l o g i c Processes . . . . . . . . . . . . 15 E. D e t e r m i n a t i o n o f t h e System Model . . . . . . . . . . . . 17 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . Acknow 1 edgments . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction
'
Figures
...........................
I.
l NTRODUCT I ON
I t i s g e n e r a l l y n o t e d t h a t t h e n a t u r a l h y d r o l o g i c a l system and h y d r o l o g i c process a r e t r u l y "s tochas t i c";
t h a t i s , the behavior o f the
system o r t h e process v a r i e s w i t h a s e q u e n t i a l t i m e f u n c t i o n o f t h e probab i l i t y o f o c c u r r e n c e [1,2].9:
I n o t h e r words, t h e h y d r o l o g i c phenomenon
changes w i t h t h e t i m e i n accordance w i t h t h e law o f p r o b a b i l i t y as w e l l as w i t h t h e s e q u e n t i a l r e l a t i o n s h i p between i t s occurrences.
For example,
t h e o c c u r r e n c e o f a f l o o d i s c o n s i d e r e d t o f o l l o w t h e law o f p r o b a b i l i t y and a l s o t h e r e l a t i o n s h i p w i t h t h e antecedant f l o o d c o n d i t i o n . Most c o n v e n t i o n a l methods f o r h y d r o l o g i c designs a r e " d e t e r ministic,"
t h a t i s , t h e b e h a v i o r o f t h e h y d r o l o g i c system o r process i s
assumed independent o f t i m e v a r i a t i o n s . '
F o r example, a u n i t hydrograph
derived f o r a given r i v e r basin f o r flood-control on h i s t o r i c a l f l o o d records.
p r o j e c t d e s i g n i s based
Once d e r i v e d , t h e u n i t hydrograph i s used
f o r analysis o f f u t u r e design floods.
Thus,
i t i s a u t o m a t i c a l l y assumed
unchanged w i t h t i m e ( f r o m t h e p a s t t o t h e f u t u r e ) and t h e r e f o r e i s deterministic. Some c o n v e n t i o n a l methods employ t h e concept o f p r o b a b i l i t y t o t h e e x t e n t t h a t no s e q u e n t i a l r e l a t i o n s h i p i s i n v o l v e d i n t h e p r o b a b i l i t y . For example, t h e f l o o d r e c o r d i s analyzed and f i t t e d w i t h a c e r t a i n probab i l i t y d i s t r i b u t i o n t o determine t h e r e c u r r e n c e i n t e r v a l s o f t h e f l o o d o r the f l o o d frequencies.
Such methods a r e "probabi 1 i s t i c " b u t n o t i n t h e
t r u e sense " s t o c h a s t i c."
:
Numbers i n parentheses r e f e r t o r e f e r e n c e s l i s t e d a t t h e end o f t h e report.
The s t o c h a s t i c method, t h a t i s t o employ t h e concept o f probab i l i t y as w e l l as i t s s e q u e n t i a l r e l a t i o n s h i p , has n o t been w e l l i n t r o duced i n t h e p r a c t i c a l d e s i g n and p l a n n i n g of h y d r o l o g i c p r o j e c t s , because such methods have n o t been f u l l y developed.
While t h e n a t u r a l h y d r o l o g i c
phenomenon i s s t o c h a s t i c , i t i s i m p o r t a n t t o develop t h e s t o c h a s t i c method o f h y d r o l o g i c a n a l y s i s f o r h y d r o l o g i c system design.
Conventional methods,
d e t e r m i n i s t i c and p r o b a b i l i s t i c , which do no't conform more c l o s e l y t o t h e n a t u r a l phenomenon, w i l l produce r e s u l t s t h a t d e p a r t from t h e t r u e b e h a v i o r o f t h e h y d r o l o g i c phenomenon and hence have t h e p o s s i b i l i t y t o e i t h e r o v e r d e s i g n o r underdes i g n t h e h y d r o l o g i c p r o j e c t
[3].
The o b j e c t i v e o f t h i s s t u d y i s t o f o r m u l a t e t h e mathematical model o f a s t o c h a s t i c h y d r o l o g i c system and t h e mathematical models o f t h e h y d r o l o g i c processes i n t h e system, p l e o f t h e h y d r o l o g i c system.
u s i n g t h e watershed as an exam-
I n t h i s s t u d y , i n o t h e r words, t h e frame-
work o f a method was developed t o u t i l i z e mathematical models t o s i m u l a t e t h e s t o c h a s t i c b e h a v i o r o f a watershed as t h e h y d r o l o g i c system.
The
mathematical models s o developed should have a p ' r a c t i c a l a p p l i c a t i o n t o t h e a n a l y s i s o f h y d r o l o g i c systems i n t h e w a t e r resources p l a n n i n g and development. The i n i t i a l s t e p o f t h e s t u d y i n v o l v e d a comprehensive review o f t h e a p p l i c a t i o n o f t h e t h e o r y o f s t o c h a s t i c process i n h y d r o l o g y .
The
r e s u l t s o f t h i s i n i t i a l s t e p o f i n v e s t i g a t i o n a r e r e p o r t e d s e p a r a t e l y as "Water Resources Systems A n a l y s i s
-
Annotated B i b l i o g r a p h y on S t o c h a s t i c
Processes" [4.] and "Water Resources Sys tems Ana l y s i s Processes''
[5].
-
Review o f S t o c h a s t i c
11.
FORMULATION OF THE HYDROLOGIC SYSTEM MODEL
I n t h e f o r m u l a t i o n o f t h e h y d r o l o g i c system model, a watershed i s used as t h e h y d r o l o g i c system a l t h o u g h t h e mathematical approach would b e e q u a l l y a p p l i c a b l e t o o t h e r k i n d s o f h y d r o l o g i c systems w i t h some modif i c a t i o n s depending on t h e n a t u r e o f t h e system.
The watershed i s t r e a t e d
as a h y d r o l o g i c system w h i c h has an i n p u t , m a i n l y r a i n f a l l , and an o u t p u t , m a i n l y r u n o f f and e v a p o t r a n s p i r a t i o n .
The i n p u t and o u t p u t a r e t o b e
t r e a t e d as t i m e s e r i e s o r s t o c h a s t i c processes which d e s c r i b e t h e stochast i c b e h a v i o r o f t h e i n p u t and o u t p u t processes.
The amount o f w a t e r
s t o r e d i n t h e watershed i s a l s o t r e a t e d as a t i m e s e r i e s o r s t o c h a s t i c process w h i c h d e s c r i b e s t h e s t o c h a s t i c n a t u r e o f i n f i l t r a t i o n , s u b s u r f a c e r u n o f f and t h e s o i l m o i s t u r e and groundwater s t o r a g e s . To f o r m u l a t e a mathematical model f o r t h e watershed h y d r o l o g i c system, t h e r u n o f f i s c o n s i d e r e d as t h e i n t e g r a l p r o d u c t o f t h r e e compon e n t s t o c h a s t i c processes ; namely,
( 1 ) a "conceptual watershed s t o r a g e "
a t t h e end o f t h e t - t h t i m e i n t e r v a l r e p r e s e n t i n g t h e s t o r a g e o f w a t e r on t h e ground s u r f a c e , such as l a k e s , ponds, swamps and streams, as w e l l as below t h e ground s u r f a c e , such as s o i l m o i s t u r e and groundwater r e s e r voirs,
( 2 ) t h e t o t a l r a i n f a l l i n p u t d u r i n g t h e t - t h t i m e i n t e r v a l , and
(3) t h e t o t a l l o s s e s , m a i n l y e v a p o t r a n s p i r a t i o n , d u r i n g t h e t - t h t i m e interval .
These t h r e e component s t o c h a s t i c processes can be mathemat i-
c a l l y r e p r e s e n t e d r e s p e c t i v e l y by t i m e s e r i e s f u n c t i o n s [ ~ ( t )tET], ; [ ~ ( t ;) tET] and [ E ( t ) ; ~ G T where ] T i s t h e t i m e range under c o n s i d e r a t i o n o r the length o f t h e h y d r o l o g i c record. b e s i m p l y denoted by S t ,
X t and E t ,
These s t o c h a s t i c processes can
respectively.
as independent b u t as a s t o c h a s t i c v e c t o r [ S ( t )
They a r e n o t c o n s i d e r e d
, x(t) ,
.
E ( t ) ; ~ C T ] The
t h e o r y o f t i m e s e r i e s can t h e r e f o r e b e used t o f o r m u l a t e t h e s t o c h a s t i c
model o f t h i s v e c t o r .
A r i g o r o u s mathematical a n a l y s i s o f t h i s v e c t o r
would r e q u i r e t h e use o f t h e t h e o r y o f m u l t i p l e t i m e s e r i e s a n a l y s i s [61. I n view o f t h e accuracy o f t h e n a t u r a l h y d r o l o g i c d a t a and f o r t h e purpose o f p r a c t i c a l a p p l i c a t i o n w i t h o u t r e s o r t i n g t o e x c e s s i v e mathematical involvement, t h e s t o c h a s t i c v e c t o r i s t o be analyzed by t h e s i n g l e t i m e s e r i e s a n a l y s i s techniques o f c o r r e l o g r a m and spectrum i n combination w i t h t h e cross-spectrum t h e o r y which p r o v i d e s a p o w e r f u l t o o l i n t h e analysis o f m u l t i p l e time series. By t h e b a s i c concept o f system c o n t i n u i t y , t h e r u n o f f , which i s a s t o c h a s t i c process o f t o t a l r u n o f f o u t p u t d u r i n g t h e t - t h t i m e i n t e r v a l . as denoted by [ ~ ( t ) ; t € ~o ]r s i m p l y Y t ,
can be r e l a t e d t o t h e o t h e r t h r e e
component s t o c h a s t i c processes o f t h e h y d r o l o g i c system as f o l l o w s :
where S t m l
i s t h e conceptual watershed s t o r a g e a t t h e b e g i n n i n g o f t - t h
time i n t e r v a l .
111. A.
MATHEMATICAL TECHNIQUES
Mathematical Models f o r Time S e r i e s I n t h i s s t u d y t h r e e models o f t i m e s e r i e s which have been used
i n h y d r o l o g i c s t u d y were reviewed.
These models o r t h e i r combinations
would be employed t o s i m u l a t e t h e h y d r o l o g i c s t o c h a s t i c processes. h y d r o l o g i c t i m e s e r i e s i s denoted by [ u t ;
tET] where u
t
The
i s the hydrologic
v a r i a b l e a t t r i b u t e d t o t h e t - t h t i m e i n t e r v a l and T i s t h e l e n g t h o f t h e h y d r o 1 og ic record.
1.
where
E
Moving-Average Model.
i s a random v a r i a b l e ; al,
T h i s model may be expressed as
..., am a r e
a2,
t h e e x t e n t o f t h e moving average.
t h e w e i g h t s ; and m i s
T h i s e q u a t i o n may be taken as t h e
model r e p r e s e n t i n g t h e r e l a t i o n between, say, annual r u n o f f u and, say, annual e f f e c t i v e p r e c i p i t a t i o n
E,
where m i s t h e e x t e n t o f t h e c a r r y o v e r
due t o t h e w a t e r - r e t a r d a t i o n c h a r a c t e r i s t i c s o f t h e watershed. a model, t h e w e i g h t s al, unity.
a2,
..., am
For such
must be a l l p o s i t i v e and sum t o
By v i r t u e o f t h e moving average on t h e
E'S,
the simulated time
s e r i e s u i s n o t random b u t s t o c h a s t i c .
2.
Sum-of-Harmonics Model.
T h i s model may be expressed as
N
Ut=
where A
j
1
( A . J cos
2IT't -J-+ T
BJ. s i n
2IT-t +)
+
Et
and 0 . a r e t h e amplitudes; 2 r j t / T i s t h e p e r i o d o f c y c l i c i t y J
w i t h j = 1,2,
..., and
N b e i n g t h e number o f r e c o r d i n t e r v a l s i n months,
y e a r s o r o t h e r u n i t s used i n t h e a n a l y s i s ; and
E~
i s a random v a r i a b l e .
T h i s e q u a t i o n may be t a k e n as a model r e p r e s e n t i n g a r e g u l a r o r o s c i l l a t o r y form o f v a r i a t i o n s , such as d i u r n a l , seasonal and s e c u l a r changes t h a t e x i s t f r e q u e n t l y i n h y d r o l o g i c phenomena.
Such v a r i a t i o n s a r e o f
n e a r l y c o n s t a n t p e r i o d and t h e y may be assumed s i n u s o i d a l as s i m u l a t e d i n t h e model.
3.
A u t o r e g r e s s i o n Model.
The g e n e r a l f o r m o f t h i s model may
be expressed as
u
where f (
= f(ut-l,
t
U t-2'
9
U
t-k
)
+
Et
) i s a mathematical f u n c t i o n , k i s an i n t e g e r , and
dom v a r i a b l e .
E~
i s a ran-
A s p e c i a l case o f t h i s model i s t h e l i n e a r a u t o r e g r e s s i v e
model o f t h e n - t h o r d e r :
where a I, a2,
. - a ,
a
n
are the regression c o e f f i c i e n t s .
For n = 1 , t h e
above e q u a t i o n becomes t h e f i r s t - o r d e r Markov process:
where a i s t h e Markov-process c o e f f i c i e n t
.
The a u t o r e g r e s s i o n model may be used as a model r e p r e s e n t i n g h y d r o l o g i c sequences whose nonrandomness i s due t o s t o r a g e i n t h e hydrol o g i c system, such as a watershed.
B.
The C o r r e l o g r a m The c h o i c e o f an a p p r o p r i a t e t i m e s e r i e s model f o r a g i v e n
h y d r o l o g i c process i s n o t an easy t a s k because t h e above-mentioned t h r e e
models a l l e x h i b i t o s c i l l a t i o n s resembling t h e f l u c t u a t i o n s which one u s u a l l y observes on most h y d r o l o g i c d a t a by v i s u a l i n s p e c t i o n .
A well-
known a n a l y t i c a l approach which can h e l p one t o s e l e c t t h e b e s t model i s t h e a n a l y s i s o f t h e sample correlogram. The c o r r e l o g r a m i s a g r a p h i c a l r e p r e s e n t a t i o n o f t h e s e r i a l correlation coefficient r
k
as a f u n c t i o n o f t h e l a g k where t h e values rk
a r e p l o t t e d as o r d i n a t e s a g a i n s t t h e i r r e s p e c t i v e values o f k as abscissas I n order t o reveal the features o f the correlogram b e t t e r , the p l o t t e d p o i n t s a r e j o i n e d each t o t h e n e x t by a s t r a i g h t l i n e .
The s e r i a l c o r r e -
l a t i o n c o e f f i c i e n t o f l a g k i s computed by
.
where c o v ( u t ,
u
t+k
) i s t h e sample a u t o c o v a r i a n c e and v a r ( u t ) and ~ a r ( u ~ + ~ )
a r e t h e sample v a r i a n c e ; o r
and
The c o r r e l o g r a m p r o v i d e s a t h e o r e t i c a l b a s i s f o r d i s t i n g u i s h i n g among t h e t h r e e types o f o s c i l l a t o r y t i m e s e r i e s mentioned p r e v i o u s l y .
I t
has been proved a n a l y t i c a l l y t h a t i f t h e t i m e s e r i e s i s s i m u l a t e d by a moving-average model f o r random elements o f e x t e n t m, then t h e c o r r e l o gram w i l l show a d e c r e a s i n g l i n e a r r e l a ' t i o n s h i p and vanishes f o r a l l v a l u e s o f k > m.
For a sum-of-harmonics
model, t h e c o r r e l o g r a m i t s e l f i s
a harmonic w i t h p e r i o d s equal t o those o f t h e harmonic components o f t h e model and i t w i l l t h e r e f o r e show t h e same o s c i l l a t i o n s .
I n t h e case o f
an a u t o r e g r e s s i o n model, t h e c o r r e l o g r a m w i l l show a damping o s c i l l a t i n g curve.
I n t h e case o f a f i r s t - o r d e r Markov process w i t h a s e r i a l c o r r e l a t i o n
c o e f f i c i e n t rl,
i t w i l l o s c i l l a t e w i t h p e r i o d u n i t y above t h e a b s c i s s a
w i t h a decreasing b u t nonvanishing a m p l i t u d e i f r l i s n e g a t i v e
[7].
I t may be n o t e d t h a t , when t h e t i m e s e r i e s i s t o o s h o r t , t h e computed c o r r e l o g r a m may e x h i b i t s u b s t a n t i a l sampling v a r i a t i o n s and thus may conceal i t s a c t u a l form.
C.
The Spectrum A n a l y s i s T h i s method
i s another d i a g n o s t i c t o o l f o r t h e a n a l y s i s o f
t i m e s e r i e s i n t h e frequency domain, which can h e l p develop an a p p r o p r i a t e t i m e s e r i e s model f o r t h e h y d r o l o g i c process. A l l s t a t i o n a r y s t o c h a s t i c processes can be r e p r e s e n t e d i n t h e form
where i =
J-i- and
z(w) i s a complex,
g e n e r a t i n g process,
,
U s i n g t h i s as a
i t can be shown t h a t t h e a u t o c o v a r i a n c e f o r a s t a -
[a]
t i o n a r y process i s
where i =
random f u n c t i o n .
k i s t h e t i m e l a g , w i s t h e a n g u l a r frequency, and F(w)/yo
i s a d i s t r i b u t i o n f u n c t i o n m o n o t o n i c a l l y i n c r e a s i n g and bounded between F(-IT) = 0 and F(IT) =
= o2 where o i s . t h e s t a n d a r d d e v i a t i o n .
The func-
t i o n ~ ( w )i s c a l l e d t h e "power s p e c t r a l d i s t r i b u t i o n f u n c t i o n . "
For k = 0,
Yo
Eq. (12) g i v e s
,
which shows t h a t dF(w) r e p r e s e n t s t h e v a r i a n c e a t t r i b u t e d t o t h e frequency band (w, w+dw)
.
Thus, dF (w) = f (w) dw where f (w) i s ca 1 1 ed t h e "power
spectrum" o f t h e process. I n t h e p r a c t i c a l h y d r o l o g i c a p p l i c a t i o n o f t h e s p e c t r a l theory t h e processes a r e r e a l and t h e imaginary component i s dropped o f f , Eq.
thus
(12) becomes
k
= 2
/IT
coskw f (w)dw
0
The mathematical i n v e r s i o n o f t h e above e q u a t i o n g i v e s t h e power spectrum
For a f i n i t e amount o f d a t a [ u t ;
~ E T ]an e s t i m a t e o f t h e power spectrum i s
where C
k
i s t h e a u t o c o v a r i a n c e f o r a t i m e l a g k. The e s t i m a t e o f t h e power spectrum by Eq.
(16) i s c a l l e d t h e
"raw s p e c t r a l e s t i m a t e " because i t does, n o t g i v e a smooth power s p e c t r a l diagram.
To a d j u s t f o r t h e smoothness,
i t i s common t o use t h e "smoothed
s p e c t r a l e s t i m a t e ' ' i n t h e form
where h k (w) a r e s e l e c t e d w e i g h t i n g f a c t o r s and m i s a number t o be chosen much l e s s than T. weights
A commonly used w e i g h t i n g f a c t o r i s t h e "Tukey-Hamming"
[91: hk(w) = 0.54
+ 0.46 cos 57k
where m i s taken as l e s s than T/10. The s i g n i f i c a n c e o f t h e spectrum i s t h a t i t e x h i b i t s l e s s sampling v a r i a t i o n s than t h e corresponding correlogram.
Consequently, t h e
e s t i m a t e d spectrum would p r o v i d e a b e t t e r e v a l u a t i o n o f t h e v a r i o u s parame t e r s i n v o l v e d i n a model.
I f t h e g e n e r a t i n g process c o n t a i n s p e r i o d i c
terms, t h e f r e q u e n c i e s o f these terms w i l l appear as h i g h and sharp peaks i n t h e e s t i m a t e d spectrum and t h e h e i g h t o f t h e peaks w i l l g i v e a rough e s t i m a t e o f t h e amp1 i t u d e .
IV. A.
ANALYSIS OF THE HYDROLOGIC SYSTEM
The Watershed under Study The watershed chosen as t h e h y d r o l o g i c system t o be analyzed i n
t h i s s t u d y i s t h e upper Sangamon R i v e r b a s i n o f 550 sq. m i . Monticello,
I l l i n o i s , and l o c a t e d i n e a s t c e n t r a l I l l i n o i s .
i n s i z e , above The c r i t e r i a
f o r s e l e c t i n g t h i s watershed a r e t h a t t h e a v a i l a b l e h y d r o l o g i c d a t a such as t h e p r e c i p i t a t i o n , s t r e a m f low and temperature records have a reasonably c o n c u r r e n t p e r i o d and t h a t a d d i t i o n a l d a t a i f needed can be r e l a t i v e l y e a s i l y c o l l e c t e d due t o c o n v e n i e n t access t o i t s l o c a t i o n and t o i t s d a t a c o l l e c t i n g agencies.
F i g u r e 1 shows t h e map o f t h e Sangamon R i v e r
b a s i n above M o n t i c e l l o , I l l i n o i s w i t h t h e l o c a t i o n s o f t h e stream gaging s t a t i o n a t M o n t i c e l l o and t h e p r e c i p i t a t i o n gages where d a t a were observed f o r use i n t h e a n a l y s i s .
B.
The H y d r o l o g i c Data 1.
Precipitation.
The monthly p r e c i p i t a t i o n s i n inches were
used i n t h e a n a l y s i s as t h e h i s t o r i c a l h y d r o l o g i ' c i n p u t s t o t h e watershed system.
The d a t a were taken from t h e " C l i m a t i c Summary o f t h e U n i t e d
S t a t e s " p u b l i s h e d by t h e U.S. Weather Bureau f o r I l l i n o i s .
The p e r i o d
o f records used i n t h e a n a l y s i s extends from October 1914 through September 1965 f o r s t a t i o n s a t Urbana, C l i n t o n , Bloomington and Roberts, f r o m March 1940 through September 1965 f o r t h e s t a t i o n a t R a n t o u l , and f r o m June 1942 through September 1965 a t M o n t i c e l l o .
The average monthly
p r e c i p i t a t i o n s o v e r t h e watershed were computed by t h e Thiessen polygon method. 2.
Streamflow.
The monthly s t r e a m f l o w records f o r t h e
Sangamon R i v e r a t M o n t i c e l l o ,
I l l i n o i s , were used as t h e h i s t o r i c a l
h y d r o l o g i c o u t p u t s o f t h e watershed system i n t h e a n a l y s i s .
The U.S.
G e o l o g i c a l Survey, i n i t s c o o p e r a t i v e program w i t h t h e I l l i n o i s S t a t e Water Survey and o t h e r s t a t e ,
l o c a l and f e d e r a l agencies, c o l l e c t s long-
t e r m s t r e a m f low records t o determine t h e performance of r i v e r s and streams. The gaging s t a t i o n on t h e Sangamon R i v e r about one-half m i l e west o f M o n t i c e l l o had p u b l i s h e d d a t a a v a i l a b l e f o r t h e p e r i o d s o f February 1908 t o December 1912 and June. 1914 t o September 1968.
The monthly stream-
f l o w s from September 1914 through September 1965 were used i n t h e a n a l y s i s .
3.
Temperature.
I n t h e a n a l y s i s , t h e average monthly tempera-
t u r e s from October 1914 through September 1965 were taken from t h e " C l i m a t i c Summary o f t h e U n i t e d S t a t e s " p u b l i s h e d by t h e U.S. Bureau f o r I l l i n o i s .
Weather
The mean o f t h e monthly average temperatures a t t h e
s t a t i o n s i n Urbana and Bloomington was c o n s i d e r e d as t h e average monthly '
temperature o f t h e watershed.
The r e l a t i v e l o c a t i o n o f these two s t a t i o n s
w i t h r e s p e c t t o t h e watershed has suggested t h i s c h o i c e .
4.
P o t e n t i a l Evapotranspi r a t i o n .
Necessary t o t h e a n a l y s i s o f
t h e watershed h y d r o l o g i c system i s t h e e s t i m a t i o n o f t h e monthly p o t e n t i a l evapotranspiration.
There a r e s e v e r a l methods f o r t h e computation o f t h e
p o t e n t i a l evapotranspi r a t ion.
The method proposed by Hamon [ I 0 1 was used
because i t has been t e s t e d i n l I 1 i n o i s [ I I ] w i t h s a t i s f a c t o r y r e s u l t s and t h e computation and t h e d a t a requirement a r e r a t h e r s i m p l e . The f o r m u l a proposed by Hamon i s
where E
P
i s t h e d a i l y p o t e n t i a l e v a p o t r a n s p i r a t i o n i n inches, D i s t h e
p o s s i b l e hours o f sunshine i n u n i t s o f 12 hours and P t i s t h e s a t u r a t i o n
vapor d e n s i t y ( a b s o l u t e h u m i d i t y ) i n grams p e r c u b i c meter a t t h e d a i l y mean temperature.
The v a l u e o f D depends o n t h e l a t i t u d e o f t h e watershed
and t h e month o f t h e year.
The v a l u e o f Pt depends on t h e temperature.
Tables f o r e u a l u a t i n g t h e values o f D and P t a r e p r o v i d e d by Harnon [121. The v a l u e o f D i s e s s e n t i a l l y t h e monthly daytime c o e f f i c i e n t of t h e Hargreaves e v a p o t r a n s p i r a t i o n formula [ 1 3 ] .
The v a l u e of P t can be found
f r o m t h e Smithsonian M e t e o r o l o g i c a l Tables.
For t h e watershed under con-
s i d e r a t i o n , i t s average l a t i t u d e i s 40" N . t w e l v e months a r e 0.64 (Jan.), 1.44 (May),
The v a l u e s o f D~ f o r t h e
0.79 ( ~ e b . ) , 0.99 (Mar.),
1.56 ( ~ u n e ) , 1.51 ( ~ u l y ) , 1.31 (Aug.),
1.22 ( A p r . ) ,
1.08 ( s e p t . ) ,
0.86
( ~ c t . ) , 0.69 ( N O V . ) , and 0.61 ( ~ e c . ) . The monthly p o t e n t i a l e v a p o t r a n s p i r a t i o n can then be computed by
Epm = 0.0055 ~ K D ~ P ~
(20)
where n i s t h e number o f days f o r each month and K i s a c o r r e c t i o n f a c t o r equal t o 1.04 because P t i s e s t i m a t e d f o r t h e monthly mean temperature i n s t e a d o f t h e d a i l y mean temperature.
C.
E s t a b l i s h i n g t h e Records f o r Conceptual Watershed Storage and A c t u a l E v a p o t r a n s p i r a t i o n R e w r i t i n g Eq. (1) g i v e s
Since t h e values o f monthly p r e c i p i t a t i o n X t and monthly r u n o f f Y t a r e known from t h e h i s t o r i c a l records, i t i s obvious f r o m t h e above e q u a t i o n t h a t i f t h e r e c o r d f o r t h e conceptual watershed s t o r a g e S t were known then t h e r e c o r d f o r t h e a c t u a l monthly e v a p o t r a n s p i r a t i o n E t c o u l d be
e a s i l y established.
On t h e o t h e r hand, i f t h e r e c o r d o f E t were known and
an i n i t i a l v a l u e o f S t were assumed, then t h e r e c o r d o f S t c o u l d a l s o be established. manner.
Unfortunately neither S
t
nor E
t
can be computed i n a d i r e c t
r
I t i s known, however, t h a t i n l a t e September and e a r l y October o f each y e a r i n I l l i n o i s t h e amount o f s u r f a c e w a t e r on t h e watershed and t h e s o i l m o i s t u r e a r e a t a minimum.
E s p e c i a l l y i n t h e case o f v e r y low
amount o f p r e c i p i t a t i o n d u r i n g t h e months o f August, September and October, t h e watershed s t o r a g e must be t h e lowest.
T h i s lowest amount o f s t o r a g e can
be considered as t h e r e f e r e n c e p o i n t o f t h e conceptual watershed s t o r a g e . . I n o t h e r words, t h e conceptual watershed s t o r a g e i s taken as z e r o a t t h e b e g i n n i n g o f t h e October o f t h e y e a r h a v i n g v e r y low p r e c i p i t a t i o n d u r i n g t h e months o f August, September and October.
I n the present analysis,
t h i s happens t o be t h e case f o r t h e y e a r o f 1914. Once t h e i n i t i a l s t a g e o f t h e conceptual watershed s t o r a g e i s e s t a b l i s h e d , t h e f o l l o w i n g procedure may be f o l l o w e d t o e s t a b l i s h t h e records o f conceptual watershed s t o r a g e and a c t u a 1 evapot ransp i r a t i o n . I f St-l
+
Xt
-
Y t 2 Ept where E
Pt
i s t h e p o t e n t i a l evapotran-
s p i r a t i o n f o r the t - t h time i n t e r v a l , then the a c t u a l evapotranspirat i o n Et
--
Ept.
Thus, t h e i n i t i a l s t o r a g e S t f o r t h e n e x t t i m e i n t e r v a l
can be computed by Eq. ( 1 ) .
If
+
Xt
-
Y t < Ept,
then E t = S t - l
+
Xt
-
Y t and Eq.
(1)
g i v e s S t = 0. The mass curves o f X t ,
Yt,
The d i f f e r e n c e between C X t and C Y t C(st
-
St-l)
E t and S t
-
S t -1
a r e shown i n F i g . 2.
i s e s s e n t i a l l y equal t o C E t s i n c e
i s r e l a t i v e l y s m a l l as p l o t t e d i n an e n l a r g e d s c a l e .
The
mass c u r v e f o r S t
-
St-1
r e p r e s e n t s t h e v a r i a t i o n i n conceptual watershed
s t o r a g e w i t h a mean o f 3.5
D.
inches.
A n a l y s i s o f t h e H y d r o l o g i c Processes I n t h i s a n a l y s i s , t h e s t o c h a s t i c processes of p r e c i p i t a t i o n ,
conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a r e n o t t o be t r e a t e d independently o f each o t h e r b u t they a r e considered as a three-dimensional vector o r a multiple-time series.
Without i n t r o d u c i n g the theory o f
m u l t i p l e - t i m e s e r i e s , which has y e t t o be f u r t h e r developed and r e f i n e d , t h e f o l l o w i n g assumptions a r e t o be made i n t h e p r e s e n t a n a l y s i s : (a)
Each s t o c h a s t i c process c o n s i s t s o f two p a r t s ; namely, one
d e t e r m i n i s t i c and t h e o t h e r random and u n c o r r e l a t e d t o t h e d e t e r m i n i s t i c p a r t and t h e p a r t s o f o t h e r processes. (b)
The d e t e r m i n i s t i c p a r t o f each s t o c h a s t i c process c o n s i s t s
a l s o o f two p a r t s ; one p a r t depending o n l y on t i m e and t h e o t h e r p a r t depending on t h e v e c t o r o f t h e s tochas t i c processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and a c t u a l e v a p o t r a n s p i r a t i o n a t p r e v i o u s time intervals. Based on t h e above assumptions, t h e f i r s t s t e p i s t o determine t h e d e t e r m i n i s t i c p a r t o f each process which depends on time.
From t h e
e x p e r i e n c e i n h y d r o l o g y and t h e e x h i b i t i o n o f h y d r o l o g i c data, t h e d e t e r m i n i s t i c p a r t appears t o be a p e r i o d i c f u n c t i o n r a t h e r than a p o l y nomial o f time.
Hence, t h e sample correlograms can be computed f o r each
process t o t e s t t h e e x i s t e n c e o f harmonic components i n t h e process. The s e r i a l c o r r e l a t i o n c o e f f i c i e n t s r k f o r t i m e l a g k f o r t h e processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and t h e evapot r a n s p i r a t i o n were computed by Eqs.
(7), ( 8 ) , (9)
and (10) f o r t = 1,2,.
. . ,T.
I n t h e p r e s e n t s t u d y , T i s t h e l e n g t h o f t h e records equal t o 612 months and k i s from z e r o t o n/lO,say plots of r
k
60. The correlograms, o r t h e
versus k , f o r p r e c i p i t a t i o n , conceptual watershed s t o r a g e and
e v a p o t r a n s p i r a t i o n a r e shown i n F i g s . 3, 4 and
5 respectively.
For a l l
t h r e e processes these correlograms a r e o s c i l l a t i n g w i t h o u t any i n d i c a t i o n o f damping, thus r e v e a l i n g t h e presence o f harmonic components i n a l l t h e processes
. I n o r d e r t o determine t h e p e r i o d s o f t h e harmonic components
which w i l l be i n c l u d e d i n t h e model t o s i m u l a t e t h e h y d r o l o g i c processes and t h e h y d r o l o g i c system, t h e power spectrum f o r each o f t h e processes s h o u l d be computed. From Eqs.
(16) and ( 1 7 ) , t h e raw and smoothed s p e c t r a l e s t i m a t e s
may be w r i t t e n r e s p e c t i v e l y as
and
Ub,)
=
1
("c0
S u b s t i t u t i n g Eq. and s i m p l i f y i n g ,
c o s r-m k+t X C m m cos IT^)
(18) f o r t h e Tukey-Hamming w e i g h t s i n E q .
(23)
S i nce
COS
Trkt COS "k m m
cos
Trt
cos -~( tr+kl ) m
+
~rk cos -(t-1) m
and
Eq.
=
-.
1 2
[cos Tr(t+l)
+ cos T r ( t - l ) ]
(24) becomes
1
Ck
-Trk (t+l) m
+
Cm cos " ( t + l ) ]
1
Trk Ck cos -(t-1) m
+
Cm cos ~ ( t - 1 ])
m- 1
+
0. 23 [ c 0 2Tr
+ 2
,,,
+= [C
2Tr
0
+ 2
.
COS
m
.
As t h e raw s p e c t r a l e s t i m a t e s can be r e p r e s e n t e d by Eq.
(27)
( 2 2 ) , Eq. (27) may
be w r i t t e n as u(wt) = 0.23 L ( U ~ - ~+ ) 0.54 L(wt) + 0.23 L(ot+,)
Computer programs were w r i t t e n t o compute t h e a u t o c o v a r i a n c e by Eq.
(8) and t h e raw and smoothed s p e c t r a l e s t i m a t e s by Eqs
.
(22) and (28)
.
The smoothed s p e c t r a f o r p r e c i p i t a t i o n , conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a r e shown i n F i g s . 6, 7 and 8, r e s p e c t i v e l y .
The sharp
peaks e x h i b i t e d i n these s p e c t r a i n d i c a t e a s i g n i f i c a n t amount o f t h e v a r i a n c e w i t h , t h e p e r i o d i c i t i e s o f 12-month and 6-month which a r e a p p r o p r i a t e f o r use i n t h e model.
E.
D e t e r m i n a t i o n o f t h e System Model The proposed model f o r t h e h y d r o l o g i c processes i s a combination
o f the sum-of-harmoni cs and. t h e autogress i o n time s e r i e s models.
$ ince
t h e r e s u l t s o f t h e correlogram and s p e c t r a l analyses i n d i c a t e t h e presence of the 12-month and 6-month p e r i o d i c i t i e s , t h e general model f o r t h e h y d r o l o g i c s t o c h a s t i c processes under study may be w r i t t e n i n the form
Ut = c1
+
c
2
2lT t sin -+
+ where cl,
c4 s i n
c2, c3, c4 and c
c3
4lT t
5
COS-
2lT t 12
+ c5 cos
4lT t 12
+
U;
a r e t h e c o e f f i c i e n t s t o be estimated and u ' t
i s t h e r e s i d u a l s t o c h a s t i c process w i t h zero mean.
This model was there-
f o r e used t o f i t t h e h y d r o l o g i c processes o f p r e c i p i t a t i o n , conceptual watershed storage, and e v a p o t r a n s p i r a t i o n by t h e least-square method such as the one described by Brown [14].
The c o e f f i c i e n t s o f t h e model d e t e r -
' mined f o r p r e c i p i t a t ion, conceptual watershed s t o r a g e and evapotranspi ra-
t i o n a r e as f o l l o w s :
The f i r s t f i v e terms i n t h e time s e r i e s model represented by Eq. (29) a r e a p o r t i o n o f t h e d e t e r m i n i s t i c p a r t o f t h e simulated hydrol o g i c s t o c h a s t i c processes.
The f i r s t term i s a constant w h i l e t h e second,
t h i r d , f o u r t h and f i f t h terms a r e d e t e r m i n i s t i c harmonics as f u n c t i o n s o f time.
The l a s t term u;
represents t h e r e s i d u a l s t o c h a s t i c process which
may c o n s i s t o f a d e t e r m i n i s t i c p o r t i o n and the random p a r t o f t h e model.
T h i s d e t e r m i n i s t i c p o r t i o n may be c o r r e l a t e d w i t h t h e v e c t o r o f t h e processes o f precipitation, conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n a t p r e v i o u s t i m e i n t e r v a l s , w h i l e t h e random p a r t o f t h e process may be s i m u l a t e d by a r e p r e s e n t a t i v e p r o b a b i l i t y d i s t r i b u t i o n .
The determina-
t i o n o f a s u i t a b l e model f o r t h e r e s i d u a l s t o c h a s t i c process w i l l r e q u i r e further investigation.
i t may be suggested
I n further investigation,
t h a t t h e d e t e r m i n i s t i c p o r t i o n o f t h e r e s i d u a l s t o c h a s t i c processes be analyzed by t h e cross-spect rum t h e o r y
[el.
A 1 though t h e res idual s tochas-
t i c process i s a s i g n i f i c a n t component o f t h e model, i t s magnitude i s o f r e l a t i v e l y low o r d e r .
As a f i r s t a p p r o x i m a t i o n t h e r e s i d u a l s t o c h a s t i c
processes i n t h e watershed system may be considered c o m p l e t e l y random w i t h t h e i r means equal t o zero.
Thus, f o r t h e p r e s e n t study, X;=E;=S;=O
and t h e i r v a r i a n c e s were found t o be 2.754,
0.465 and 4.136 r e s p e c t i v e l y .
T h e i r p r o b a b i l i t y d i s t r i b u t i o n s may be r o u g h l y assumed as normal a t p r e s e n t u n t i l b e t t e r p r o b a b i l i t y d i s t r i b u t i o n models a r e t o be found i n f u t u r e investigation. W i t h t h e h y d r o l o g i c processes o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and e v a p o t r a n s p i r a t i o n b e i n g determined, t h e r u n o f f process may be f o r m u l a t e d f r o m Eqs. (1) and' (29) as
Y t = 0.8036
+
0.5024 s i n
+ 0.6064 cos
+
nt T +1.7778
nt+ 0.5786 3
0,5583 s i n Tl(t-l) 3
-
cos -g nt
s i n 'm(t-l)
0.1366 cos
3
-
0.0303 s i n
Tl t 3
2.3821 cos n ( t -61 )
+
X;
- E; -
(5;
-
S;-l)
(31)
T h i s i s t h e system model expressed f o r t h e r u n o f f process of t h e upper Sangamon R i v e r b a s i n above M o n t i c e l l o , I l l i n o i s .
T h i s model can be
employed t o g e n e r a t e s t o c h a s t i c monthly s t r e a m f l o w v a l u e s f o r use i n t h e a n a l y s i s o f w a t e r resources systems.
It i s o f p a r t i c u l a r value i n the
economic p l a n n i n g o f w a t e r s u p p l y and i r r i g a t i o n p r o j e c t s which i s concerned w i t h t h e long-range w a t e r y i e l d o f t h e watershed.
V.
CONCLUSIONS
The u l t i m a t e o b j e c t i v e o f t h e r e s e a r c h on t h e s t o c h a s t i c a n a l y s i s o f s t o c h a s t i c h y d r o l o g i c systems i s t o f o r m u l a t e t h e mathematical model f o r a s t o c h a s t i c h y d r o l o g i c system f o r which a watershed i s considered.
The upper Sangamon R i v e r b a s i n above M o n t i c e l l o , I l l i n o i s , i s
taken as an example o f t h e watershed.
T h i s s t u d y has demonstrated t h a t
such a model i s f e a s i b l e and i t s a p p l i c a t i o n t o a p r a c t i c a l problem i s workable. For t h i s s t u d y t h e 1 i t e r a t u r e on s t o c h a s t i c processes and t h e i r a p p l i c a t i o n i n h y d r o l o g y were reviewed.
I t was found t h a t t h e a p p l i c a -
t i o n o f t h e t h e o r y o f s t o c h a s t i c processes i n h y d r o l o g y has b a r e l y begun and t h e t h e o r y has a p p l i e d m o s t l y t o s i n g l e processes b u t n o t t o composite h y d r o l o g i c systems.
The mathematical t h e o r y o f s t o c h a s t i c processes i s
v e r y e x t e n s i v e , b u t u n f o r t u n a t e l y most o f i t i s w r i t t e n n o t f o r p r a c t i c i n g engineers and h y d r o l o g i s t s .
Furthermore, a s y s t e m a t i c t h e o r y f o r
t h e f o r m u l a t i o n o f a s t o c h a s t i c system model i s u n a v a i l a b l e because t h e f o r m u l a t i o n o f t h e model r e q u i r e s t h e p r a c t i c a l knowledge on t h e p h y s i c a l c h a r a c t e r i s t i c s o f t h e process and t h e system which i s u s u a l l y l a c k i n g on t h e p a r t o f t h e mathematician. i n t r o d u c e t h e use
bf
This study t h e r e f o r e attempts t o
a t h e o r e t i c a l model t o the. s i m u l a t i o n o f a p r a c t i -
c a l h y d r o l o g i c system. Based on t h e p r i n c i p l e o f c o n s e r v a t i o n o f mass, t h e watershed system i s represented by t h e mass balance e q u a t i o n i n which t h e system components o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e , e v a p o t r a n s p i r a t i o n and r u n o f f a r e considered as s t o c h a s t i c processes.
Whi l e t h e d a t a
o f p r e c i p i t a t i o n and runoff a r e g i v e n , a method was developed t o estab-
l i s h t h e unknown r e c o r d s o f conceptual watershed s t o r a g e and evapotranspiration.
A d e t e r m i n i s t i c p o r t i o n o f t h e system component process i s analyzed by t h e t h e o r y o f c o r r e l o g r a m and spectrum.
Computer s u b r o u t i n e s
were programmed f o r t h e computation o f correlograms and s p e c t r a o f a discrete time series o f f i n i t e length.
The expected values o f t h e system
components o f p r e c i p i t a t i o n , conceptual watershed s t o r a g e and evapotrans p i r a t i o n were thus found t o be b e s t s i m u l a t e d b y harmonics o f 12-month and 6-month p e r i o d i c i t i e s .
T h i s a n a l y s i s c o n s t i t u t e s an i m p o r t a n t s t e p
i n t h e a t t e m p t o f c o n s i d e r i n g t h e n o n s t a t i o n a r i t y o f t h e processes i n v o l v e d i n t h e h y d r o l o g i c system because t h e expected values a r e taken as f u n c t i o n s o f time b u t n o t constants. The h y d r o l o g i c system model so f o r m u l a t e d f o r t h e upper Sangamon
.
R i v e r b a s i n can be used t o generate s t o c h a s t i c s t r e a m f l o w s f o r t h e use i n t h e p l a n n i n g o f w a t e r s u p p l y and i r r i g a t i o n p r o j e c t s i n t h e b a s i n .
The
method developed i n t h i s s t u d y i s t h e r e f o r e formed t o be o f p r a c t i c a l v a l u e i n t h e a n a l y s i s o f w a t e r resources systems;
VI.
ACKNOWLEDGMENT
T h i s r e p o r t i s t h e r e s u l t o f a r e s e a r c h p r o j e c t on " S t o c h a s t i c A n a l y s i s o f H y d r o l o g i c Systems" sponsored by t h e U.S. O f f i c e o f Water Resources Research, which began i n J u l y 1968 and was completed i n June 1969.
Under t h e d i r e c t i o n o f t h e P r o j e c t I n v e s t i g a t o r , t h e h y d r o l o g i c
d a t a used i n t h i s s t u d y were m a i n l y c o l l e c t e d by M r . Gonzalo CortesR i v e r a , Research A s s i s t a n t i n C i v i l E n g i n e e r i n g , and t h e mathematical a n a l y s i s and computations were l a r g e l y performed b y M r . S o t i r i o s J. K a r e l i o t i s , Research A s s i s t a n t i n C i v i 1 Engineering.
VII.
1.
REFERENCES
Chow, V . T., S t a t i s t i c a l and p r o b a b i l i t y a n a l y s i s o f h y d r o l o g i c data: P a r t 1 . Frequency a n a l y s i s , S e c t i o n 8 i n Handbook o f A p p l i e d ed. by V . T. Chow, McGraw-Hi 1 1 Book Co., New York, 1964,
:yd;r-;;gy, -
2.
Chow, V . T., A g e n e r a l r e p o r t on new ideas and s c i e n t i f i c methods i n h y d r o l o g y ( S i m u l a t i o n of t h e h y d r o l o g i c b e h a v i o r of watersheds) , Proceedings,, F o r t C o l l i n s , Colorado, 6-8 September 1967, pp. 50-65.
3.
Chow, V . T., H y d r o l o g i c systems f o r w a t e r resources management, Conference Proceedi ngs o f H y d r o l o g y i n Water Resources Management, Water Resources Research I n s t i t u t e Report No. 4, Clemson U n i v e r s i t y , Clemson, South C a r o l i n a , March 1968, pp. 8-22.
4.
Chow, V . T., and M e r e d i t h , D. D . , Water resources systems a n a l y s i s ~ n n o t a t e db i b 1 iography on s t o c h a s t i c proce;ses, ~ i v1 i ' ~ n ~ i part. I . n e e r i n g S t u d i e s , H y d r a u l i c E n g i n e e r i n g S e r i e s No. 19, U n i v e r s i t y o f Illinois, Urbana, I l l i n o i s , J u l y 1969.
5.
Chow, V . T., and M e r e d i t h , D. D., Water r e s o u r c e s systems a n a l y s i s P a r t I l l . Review o f s t o c h a s t i c processes, C i v i l E n g i n e e r i n g S t u d i e s , H y d r a u l i c E n g i n e e r i n g S e r i e s No. 21, U n i v e r s i t y of I 1 1 i n o i s , Urbana, I l l i n o i s , J u l y 1969.
6.
Q u e n o u i l l e , M. H., The a n a l y s i s o f m u l t i p l e t i m e s e r i e s , Hafner P u b l i s h i n g Co., New York, 1957.
7.
Dawdy, D. R., and M a t a l a s , N. C . , A n a l y s i s o f v a r i a n c e , c o v a r i a n c e , and t i m e s e r i e s , S e c t i o n 8-111, P a r t I l l i n Handbook o f A p p l i e d H y d r o l o g y , ed. b y V. T. Chow, McGraw-Hill Book Co., New York, 1964,
8.
Granger, C. W. J . , and Hatanaka, M., S p e c t r a l a n a l y s i s o f economic t i m e s e r i e s , P r i n c e t o n U n i v e r s i t y P.ress, P r i n c e t o n , New J e r s e y , 1964.
9.
Blackman, R. B . , and Tukey, J . W., The measurement of power s p e c t r a , Dover P u b l i c a t i o n s , I n c . , New York, 1959.
10.
Hamon, W. R., E s t i m a t i n g p o t e n t i a l e v a p o t r a n s p i r a t i o n , Proceedings, American S o c i e t y o f C i v i l Engineers, J o u r n a l o f H y d r a u l i c s D i v i s i o n , V o l . 87, No. H Y 3 , pp. 107-120, May 1961.
11.
Jones, D, M. A., V a r i a b i l i t y o f e v a p o t r a n s p i r a t i o n i n I l l i n o i s , l 1 1 i n o i s S t a t e Water Survey C i r c u l a r 89, 1966.
12.
Hamon, W. R., E s t i m a t i n g p o t e n t i a l e v a p o t r a n s p i r a t i o n , Massachusetts I n s t i t u t e o f Technology Department o f C i v i l and S a n i t a r y E n g i n e e r i n g , u n p u b l i s h e d M.S. t h e s i s , 1960.
-
-
13.
Veihmeyer, F. J., E v a p o t r a n s p i r a t i o n , S e c t i o n 1 1 i n Handbook o f 11-30, A p p l i e d Hydrology, ed. by V. T. Chow, McGraw-Hill Book Co., p. 1964.
14.
Brown, R. C . , Smoothing, f o r e c a s t i n g and p r e d i c t i o n o f d i s c r e t e time s e r i e s , P r e n t i c e H a l l , Inc., Englewood C l i f f s , N.Y., 1962.
VIII. Fig.
1.
F l GURES
Sangamon R i v e r b a s i n above M o n t i c e l l o ,
Illinois
F i g . 2.
Mass curves o f p r e c i p i t a t i o n , e v a p o t r a n s p i r a t i o n , and conceptual watershed s t o r a g e
F i g . 3.
Correlogram f o r p r e c i p i t a t i o n
F i g . 4.
Correlogram f o r conceptual watershed s t o r a g e
F i g . 5.
Correlogram fqr e v a p o t r a n s p i r a t i o n
F i g . 6.
Spectrum o f p r e c i p i t a t i o n
Fig.
7.
F i g . 8.
Spectrum o f conceptual watershed s t o r a g e Spectrum o f e v a p o t r a n s p i r a t i o n
runoff
39VtlOlS 03HSt131VM 1 V f l l d 3 3 N 0 3 ONV JJONfltl JO S3AUfl3 SSVW
' NOIlVUldSNVtllOdVA3 ' NOllVlld133Ud
I '9IJ