Cheatsheet

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cheatsheet as PDF for free.

More details

  • Words: 1,147
  • Pages: 2
#"9! 103'!%@!>I'!4VF01'A!A'M20>2%#4!@1%&! "" " %&'(')&')*$*,.2#-'&$'"#$5)&'(.*#$6#'G##.$'"#$'#&'$&'(')&')*$(.5$4$).',$($*,8.'$ " #" 34560)&,.&,620)7(+*,-2! .5(-5$#--,-&9$$ !"!0#A! "#"!01'!0M'103'4*!>I'!R'#>10C!S2&2>!KI'%1'&!0CC%J4! !" 0F4'! 7'*'30("#'($,!)"*(5"4(!,#(!8,#9':(.4)(,)(,(!"0)1(;"#$%&'#!'( %!" $ !"% & $ % $ %!F4'!=%1&0C!X%A'C4!>%!0??1%B2&0>'!>I'21!40&?C2#3! ## $ -.%'$<),(!$'>)$0!6#2!"#$!&)<-./!)!,)$/'!()*+,':!;&'!,)$/'$!%&'! " $%%!"$ $ !"% & >12GF>2%#49!KI0>!C'0M'4!>J%!>I2#34!@%1!F4!>%!@23F1'!%F>!@%1!'0$IY! ()*+,'=!%&'!(&#$%'$!%&'!-.%'$<),:! /).2#.25#(+.25.'5#5)81.+1%2;##<,.+4(#+,)#9).&+7#%"#+,)#=>-%&!)!,)$/'$! F$'4!>I'!>04T!%@!$I%%42#3!0!40&?C2#3!A24>12GF>2%#!>%!$I%%42#3!0! • When the levels of one factor (diet) are associated with the levels of another factor (location), we say that these two factors are (-5$#--,-&$'"('$�(-('#$($'#&'$&'(')&')*$+-,/$($.811$"70,'"#&)&9$!"#$#&')/('#5$ confounded. Randomization eliminates confounding, simplifying the interpretation of data. ()*+,'!-(!.#%!+$#+#$%-#.),!%#!%&'!-.?$')('!-.!%&'!()*+,'!(-@':!;&'! 0#!0#A!0!4>0#A01A!A'M20>2%#9! • " we reject H0 if the p-value of the test is less than 0.05. (-5$#--,-$,+$'"#$5)++#-#.*#$6#'G##.$(2#-(3#&$,+$).5#0#.5#.'$&(/01#&$)&$ /,*9%#("$('**"*(&'!*',0'0(<%)8(=-:!A(!)!$'(2,%=!"#$!-.(%).?'=!%#!?2%! • The estimated standard error of the difference between averages of independent samples is '!&'0#!%@!>I'!40&?C2#3!A24>12GF>2%#!24!>I'!?%?FC0>2%#! %&'!*)$/-.!#"!'$$#$!-.!&),"=!6#2!.''0!B!%-*'(!)(!*).6!?)('(:!C#(%(=! $$% $%% 0&'>'1*!'2>I'1!-!%1! # 9!/0$I!?010&'>'1!C2'4!0>!>I'!$'#>'1!%@!2>4! $%"!" $ !" # # ' $ &#>'<'$=!%6+-?),,6!$-('!-.!+$#+#$%-#.!%#!-1(>":(5"43&(06'#&(?()%/'0( $ % & & $ % !"*!>I'!&'0#!%@!>I'!40&?C2#3! &?C2#3!A24>12GF>2%#9!Z%1! !" )(!*2?&!%#!(,-?'!%&'!*)$/-.!#"!'$$#$!-.!&),":! • Conditon for doing t-test for se. #"*!>I'!&'0#!%@! >12GF>2%#!24!-*!>I'!?%?FC0>2%#!?1%?%1>2%#9!!Z%1! o SRS condition (Simple Random Sample) (#:&!**(-#*+!"#32&4;$%#;"!-'#'(-(&!/#";?"/&!5*"#@.A%-<#@0A#*2#12GF>2%#!24!#9! o Similar variances '&2;5"8#B2&#*+!"#(C%45$()#!*,"#42&(#;"(3;$#*2#:&!*(#*+!"#32&4;$%#%"$

o Nearly normal '!4>0#A01A!A'M20>2%#!%@!>I'!40&?C2#3!A24>12GF>2%#!24!>I'! 7"<(-,*9'(,(0,/6-'(&"(<'(#''&@(A(0%/6-'(,#0<'*(%0(B/"*'(%0( " " • Two-sample t-tests and two-sample intervals for the difference between two means allow us to compare results $'%Bothconfidence $(% obtained from two samples. procedures $%"!" $ !" # # ' " $ rely on standard error of the difference between two sample averages and the use #A01A!'11%19!Z%1!0#!0M'103'!%@!2#A'?'#A'#>!%G4'1M0>2%#4*! .'))'*:C(.4)(&,),(!"0)()%/'(,#&(/"#'51(7"<(/4!8(%0('#"498@( ' ( of a t-model for the sampling & distribution. &( Experiments provide the ideal data for such comparisons. In an experiment, subjects from a sample are randomly 'assigned to treatment groups defined by levels of the experimental factor. This randomization '>I'1!0!?1%?%1>2%#!%1!#%>*!>I'!@%1&FC0!@%1!>I'!4>0#A01A!'11%1!24! D'$"*'(5"4(.'9%#()"(!"--'!)(&,),:(%)30(,(9""&(%&',()"(E#"<(<8')8'*( & !"#$%&'()*&+*#,&-*./012# avoids confounding that introduces the possibility of lurking factors. 05*!! %&'!()*+,'!(-@'!6#2!?).!)""#$0!>-,,!1'!)0'D2)%'!"#$!>&)%!6#2! $0183$).$'"#$#&')/('#&$+-,/$!(61#$>P%@=$'"#$&'(.5(-5$#--,-$)&$ 16-confidence interval ' !!"#$'!"#$'%%&!'(!)*+!,-+.!/012!34,53221*6!(*5! >).%!%#!,')$.!)1#2%!%&'!+#+2,)%-#.:! %& $'"$&'() % & %( ! $%'(*% !!16/*!/03!(*57+-8! *5!/03!2/869859!355*5:!)*+!.3/!/03!2/869859!355*5!(*5!,5*,*5/1*62;! $%"!""' $• !"( # # ' $D#E8EF#52;-<"$ E"!6#2!F.#>!%&'!.''0'0!*)$/-.!#"!'$$#$=!6#2!?).!'(%-*)%'!%&'! (( (! I'!#F&'10>%1*!'!24!>I'![Q!%@!0!42#3C'!%G4'1M0>2%#*!0#A!2!24!>I'! #!"& ## #'!'00,*5(0,/6-'(0%F'1(2)30("#-5(,(94'00(.'!,40'(5"4(<"#3)(E#"<( !"$%!% $7#0#!"#*+;"$ ! !" #$ # &?C'!42\'9!]I'#!0M'1032#3!2#A2$0>%14!80!.^5!AF&&D!M0120GC' K 2.%-,!6#2!/'%!%&'!()*+,':!G)*+,'!(-@'!?),?2,)%-#.(!)$'!$)$',6!'H)?%:! % " •• A confidence ;#!/'%!)!+)$%-?2,)$!*)$/-.!#"!'$$#$=!(#,<'!"#$!-!-.!%&'!"#$*2,)3! ! a range !"34# parameter based on the data in a sample. "!" $ !"(interval # $ %provides +'&% $ % of plausible values for a population ## ' # !( $',$$ "#-./'*%0&/"#&1%*2*%'-*"0& " !# # "# $%"!" !" " ' $ !"($ # ('() " ! !" ! # !" !":!)*+!@6*A! *162! ! 869!(&!?6=3!)*+!@6*A! #$ #$ " • • Confidence intervals provide # a range of plausible values for a parameter ;&'!.'?'(()$6!()*+,'!(-@'!0'+'.0(!#.! :!I'!?)..#%!'(%-*)%'! #! of a population. The coverage (or confidence level) of a !%&'("&)*"(+,*"-*.+&/01()/2"+("&)+&"3*&4**1"&)*",*+1"+15"6+-/+17*" confidence interval is the probability that this procedure produces an interval that includes the parameter. Most often, >-%&!2!1'?)2('!>'!&)<'!%#!?&##('!-!60.,)0!?#,,'?%-./!%&'!()*+,':!E"! confidence intervals& have coverage 0.95 and are known as 95% confidence intervals. The margin of error is the half-length of (!8!B356*+--1!5869*7!C8518D-3!*:!A0353!E85"*%!F!'"#$'%&! '()%& " the 95% confidence interval. The one-sample z-interval for the mean of a population is   y ± 2 s/   n. This confidence interval >'!&)<'!.#!-0')!#"! # =!-%!>#2,0!1'!)!/##0!-0')!%#!#1%)-.!)!(*),,! presumes a large sample. This same interval applies to proportions of large samples, with s2 estimated as ˆ p (1- ˆ p ). The ! #$"!12!/03!7386!*(!8!=*-+76!*(!6+7D352!=*939!82!#!38=0!/173!/03! " be rounded to presentation precision by applying the 3-to-30 Rule to the standard endpoints of a confidence interval should ()*+,'!%#!'(%-*)%'!"#:!A!'+(-.*/.012!?#,,'?%(!)!(*),,!()*+,'!#"=! error. C36/!*(!16/3532/!08,,362!869!=*939!82!G!*/035A123&!! |t| 0.3802 o Upper CL Dif 1.3583 2#()8'(06'!%,-(!,0'("$(6*"6"*)%"#0:(<'(&"#3)(#''&(,(6%-")(0,/6-'1( 0.8,1"/(1'&"58,39"":0-3!-1@3-)!/03!6873!=*732!(5*7!/03!(8=/!/08/! o Lower CL Dif -0.5200 Confidence 0.95 ;&'!$',)%-#.(&-+!1'%>''.!#o!).0!8!),,#>(!6#2!%#!'(%-*)%'!-! 03!9+77)!C8518D-3!12!9351C39!(5*7!86*/035:!7*53!+23(+--)!=*939! o >-%%!F.#>-./!).6%&-./!)1#2%!8:!E"!6#2!,##F!)%!.)%-#.),! *-+76&!!'6!/012!3487,-3:!/03!9+77)!C8518D-3!1691=8/32!A03/035! o 18. Which of the following is INcorrect? o A. The mean difference of about 0.4 is statistically insignificant at the 5% level. 04*+'50:(5"43--(#")%!'()8,)(/"0)("$()8'/(8,+'(,."4)(G:GHH(6'"6-'1( 03!=+2/*735!8==3,/2!86!8,,-1=8/1*6;! o B. The null hypothesis that the population means are the same cannot be rejected at the 5% significance level. o C. The values between –0.52 and 1.36 cannot be rejected as possible population mean differences at the 5% I"43--(,-0"(#")%!'(68*,0'0(-%E'(BJ8'0'(*'04-)0(,*'(,!!4*,)'()"(K(L( 62&F!#! 1(!8,,-1=8/1*6!12!53/+5639! significance level, and this holds true in particular for the value zero. 6"%#)01C(J8'(KLM(%0()8'(/,*9%#("$('**"*1(2)()4*#0("4)()8,)()8'0'()<"( 62&F!G! 1(!8,,-1=8/1*6!12!6*/!53/+5639! o The value of |t| says that the observed mean difference 0.419 is 0.879 standarderror estimates away from zero. o The p-value says that the!12!#:!A08/!A3! probability of observing a value of |t| > 0.879 in other datasets is about 0.38, assuming +$#+'$%-'(=!J=JKK!$'(+#.0'.%(!).0!)!L9!*)$/-.!#"!'$$#$=!?#*'! &$!12!/03!,5*,*5/1*6!*(!/1732!/08/!8!6 03!7386! 2 the null hypothesis of equal population means is correct. !"&!H*!233!/08/! !"theorem • The central limit#$ states that means across datasets are&$ ever more normally distributed as N → ∞. &$!!F! %#/'%&'$:! #$ 2+8--)!-8D3-! :!A51/3!/03!6+7358/*5!*(! !82!/03! • The standard deviation of proportions across datasets shrinks at the rate 1/N ½ $ ! ! !"3!4# +7!*(!/03!62&!!
"

%

'#

%

'#

P(A|B)*P(B)$ $ "& & &$ !" P(B|A) ="----------------------------------% & ( & #$ ( P(A|B)*P(B) + P(A|not B)*P(not" B)

(%"

$

"

$

(%"

Proof: " numerator = P(A and B)$ $ denominator and#$ not #$ B) !"B) +(P(A and"& !" ! % = P(A %&

'#

&( % %

$

'#

$

& ( %"

!"$ ( %" #"& #$ !"$ % !% & %" # #$

$

!"!F!7#&!'(!A3!,-+.!16!/012! 03!=*+6/!7#!12!/03!6+7D35!*(!*632:!2*!7 #$ 4,53221*6!(*5!7#:!A3!.3/! % " $ !"# #$ !"$ ' #& ( & &$$$ % %!"& #$!"# #$!"$ ( %#$"& (%" " !" !"$!"& #$( !" #$ !"# ! % %#$"& # #$

! !

! !

52)/-2;+/2.3!.0!/'(!/()/!)/,/2)/24! $% !2)! !""#"$%&'('"')*'%+#,"*'%)#-%(#,)./"#$%$! !""#"$%&'('"')*'%+#,"*'%)#-%(#,)./"#$%$!

&! , )! ! -$ +!! !"#$%&#'(&)&*"+&,)-."%&*/'&"!&'(&!()*!(++,-*.!/0!#12!34!"!5!1267!8&'*!9:))*;&! $% # ) (! '! & *! )(&*!,4!<=(>?!&'*;!&'*!=),/(/@+@&0!,4!(!<(>=+*!,4!"11!>*<<(A*!@>!'@8./'()2)!/(>>)!+)!-:!;+/!),@)!3./'23@! ,A!B.-!/()/)!.0!-:!D(!3((5!/.!()/26 ! '! *! -./0 & -.45 /'(!5,/,A! F igure 15-6. Sa m for !" under H0,! . $pling !)!%distribution % ! -.451/& -.452 3/-(! +! ! ()*+*%&",-"./0#.1&"2).#2*3"+*45,2*", #"!;@!/'(!)/,35,-5!5(12,/ !"#$%&'()*+"&,*#&-,.&'/+&#-"&,0%"+1"2&%/345"&3"/6& !&'()!*+,-!./(! ),68>(:!$A!!L'(3!D(!()/26,/(! , !0-.6!/'(!5,/,!/.!0235!/'(!)/, ! % % &4./ " # /01,./()'2(3!-(45!"67!8/(!).4534+3!(++,+!1+,9'3()!./(!):4&(7!!8/(! $ -.-/6 ! 6*"5,/*5"#$"6#$)","5.6*+"2,&*"7$%8! )4-1&(!-(45!453!./(!/01,./()'2(3!-(45!&'(! z-statistic + +,"% $%# $ ! 8C(+!)(;.,>!E()@(/+*2!F'*! ! !"#$%&$'()'*)&"+&)+&%&$+&$,)*-'.) / & 3!%4+/%+'% $ # 0'/1)12-2#(&3/4"%&*'/4"&6/'4)-&#)1-"&/'&%/*#+)'"78&95"'"$%&/6-(&)& 0+&$.%&"1)+&%(1%-1)"--'-)'*)&"+&)+&%&$+&$, 3!A!&'(!/-+(!)/,35,-5!(--.-!/',/! $% IM,9'# /.!52)/23<+2)'!2/!0-.6!/'(!8.8+>,/2.3!*+,3/2/@!FGH "2%B!9'(;9*!4,)!(!4(+<*!=,<@&@E*!*)),)!@4!"!5!12672! ! 5.()!3./!-(*+2-(!),68>(! #"$ " / 2,4&:"7;<8"#&"$)*"&$,-=,+="*++.+".>"$)*"$*&$"&$,$#&$#2?"@+#$$*-" # ! ()/26,/()A!U-.5+4()!,!"0+-1-2+-2*A! !"#$%&#'(&)6/#5"'&35/23"&*/'&"D!,;*!&'(&!@(++*)!/:&!<&@++!@;!&'*!)*A@,;! & 2 ' 5*$$*+&:"7$%8"#=*-$#>#*&",-"*&$#A,$*"$),$"&1/&$#$1$*&"$!0.-! ,A!G1 #$A!&'(!()/26,/(5!)/,35,-5!(--.-! ! <=*9@4@*.!/0!# 2!34!"!5!1266D!&'*!<=(>$4@+&*)@;A!<,4&-()*!@!?.5(>!0.-!/'(!) /',/!+)()!),68>(!()/26,/()A! ! # % 779: 9:))*;&!<0<&*>D!/:&!;,&!A,,.!*;,:A'!&,!=(0!4,)!@&<*+42!F'*!9'(;9*!4,)!(! U-.5+4()!,%!0+-1-2+-2*A! 52)/-2;+/2.3!+3>())!#!2)!)6,>>!H#!N!9OIA! 6572 483 t-statistic 4(+<*!=,<@&@E*!*)),)!@;9)*(<*"$)* '! *! " !.,!./(!#$%&'(%#)!).4534+3!(++,+!')!;5,<5!4)!4!!0+-1-2+-2*!=,+%-0"1-2#>7! '! *! 6 52)/-2;+/2.3!,/!/'(!;.+35,-@!.0!& O!2)!P#OO!8(-!6.3/'!,35!/' -./0 & " -./0 & -.44 !)!% % $ ! % % ,! )! ,! 8/(!%$).4.').':!:,?5.)!./(!5?-@(+!,*!#$%&'(%#)!).4534+3!(++,+)!./4.! )/,35,-5!(--.-!$9'#!F"GHI9'JKL"M"NK?OP"4*+"A.-$)?"()#&"E+, "1/& "2 3$ +! (!! -.441/& -.442 3/-- +! (! #"!*+,-!"67!A,+!&4+B(!)4-1&()!=*!7&89:;&."&,0#/(6& )(14+4.(!./(!.().!).4.').':! ),68>232()!).!0,-!,D,@!0-.6!/'(!),68> ! ! % % &/.7 " # 4!+$94&?(!*,+!./(!%$).4.').':!4)!<(!3'3!*,+!./(!,$).4.').':7! 52)/-2;+/2.3!+35(-!& O!/',/!@.+!4,33./!(1(3!)((!/'(!,-(,!/', $ -.-50 /'(!"$1,>+(T! 8/(!/?B(!%$).4.').':!.(&&)!?)!./4.!./(!-,9(!.,!C(59(+!)/,?&3!@(!1+,*'.4@&(7!! F'*!9'(;9*!4,)!(!4(+<*!=,<@&@E*!*)),)!@(++D!/:&!A),-@;A2!F'@=+@;A!.@<&)@/:&@,;!,4! ! 4,)!&')**!E(+:*
! 3,441"56%7)'0+2.'.%8'+-%#(%1%9'1)% ! -.+/0(%&.*!+(1('#%#1!

"!!

!

2/00!34+.%3#$&$!

"6J!"!=&"6!

"6J!"!7&"6!

50%#1*(%&6#!34+.%3#$&$!

"4J!"!K!"6!

"4J!"!L!"6! #"!

7#$%!$%(%&$%&8! ! F igure 15-2. Sa mpling distributions for p = 0.20, 0.22, or 0.24.

9%(*)(1)!#11.1! $#= !" >!M!$>?*! F'*!9'(;9*!4,)!(!4(+<*!=,<@&@E*!*)),)!@=+@;A! :#;#8%!"N$#= 1D!&'*!/)*(I$*E*;!E(+:*!12612!34!"!5! ! !" >!K!,&!! = !$!"6>N$#= !" >!L!$,&!! :7;:<"'"$%&)&-)'="&35)63"&*/'&="##26=&)&%)40-")#&*//-%"&#"6#)#2,"& .*9@<@,;!):+*!@;&,!)*J*9&@;A!#12!34!"!5!1261D!&'*!9'(;9*!4,)!(!4(+<*!=,<@&@E*! 8F0=*!3?!*)),)!@
!

!

!

! "#$%!

"#$"%!

Related Documents

Cheatsheet
May 2020 31
Cheatsheet
December 2019 51
Cheatsheet
December 2019 51
Cheatsheet
May 2020 25
Cheatsheet
July 2019 58
Cheatsheet En
November 2019 17