Capacity And Trim

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Capacity And Trim as PDF for free.

More details

  • Words: 14,876
  • Pages: 65
Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

CHAPTER 6 DETAILED CAPACITY CALCULATION AND MASS ESTIMATION

118

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6. DETAILED CAPACITY CALCULATIONS The capacity plan is to know the cargo volumes in holds and the disposition of tanks and their position of centre of gravities. The mass of crew and effects and water ballast necessary for the design are known. Knowing the density of the various liquids, the volume required is calculated. The hold capacity can be calculated by subtracting the sum of the wing tank capacity and double bottom volume from the total under deck capacity. With the capacity determined, it is possible to calculate the stowage factor. 6.1 Final estimates of consumables, stores and cargo Range = 3800 nm Speed = 15.0 Knot (open water) = 5.0 Knot (Most severe Ice conditions) ∴Max Hours of travel, H = 760 Hrs Hours in port = 48 Hrs No of officers = 21 No of crew = 23 Volume of heavy fuel oil (VHFO) Specific fuel consumption, SFC

=

182 g / KWh.

(Assumed for a slow speed large bore diesel engine) =

Brake power, PB Mass of heavy fuel oil, MHFO

=

38250 KW

SFC × PB × H / 1000000 +20%

20% allowance has been taken into account. Volume of HFO, VHFO Volume of diesel oil (VDO)

=

6449 t

=

MHFO /0.90 = 7154 m3

Auxiliary engines Type: SKU CUIN-1200N305, Model 1400 GQKA Number: 3 Manufacturer: Cummins Rated output: 1400 kW Rated capacity: 1200 kW (1750 kVA) 60 Hz or 1166.7 kW (1458.3 kVA) 50 Hz SFC 220 g /KWh PAUX

4200KW

119

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Mass of diesel oil, MDO = = Volume of diesel oil, VDO = =

SFC × PAUX × H/1000000 747 t MDO/0.95 786 m3

Volume of boiler fuel oil (VBO) Boiler is selected of capacity 2000KW Mass of boiler oil, VBO = SFC × P × H/1000000 SFC = 220 g /KWh = 355 t Volume of boiler oil = 355/0.95 = 373 m3 Volume of lubricating oil (VLO) Mass of lube oil, MLO = 0.03 (MHFO + MDO +MBO) = 216.6 t Volume of lube oil = 216.6/0.9 = 241 m3 Volume of fresh water, (VFW) Consumption of fresh water Mass of fresh water, M FW Volume of fresh water, VFW

= 20 litres / person / day = 29.6 t = 29.6 m3

Volume of washing water (VWW) Consumption 120 liters /person/ day for officers 60 liters /person/ day for crew Mass of washing water, MWW = 131.3 t Volume of washing water, VWW = 131.3 m3

6.2.1 Capacity Calculation with allocation of Spaces The capacities of tanks/compartments are determined using the computer software AutoCAD 2007. Offset. The values are found by creating different regions, and the “mass prop” command. Tables 6.1, 6.2, 6.3 and 6.4 indicate the moulded capacities (exclusive of camber volume) of respective tanks/compartments along with their location and centres of gravity. In all the above tables LCG is measured from AP, VCG from base line and TCG from the centre line

120

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Table 6.1 Capacity of cargo Tanks S.No. 1 2 3 4 5 6 7 8 9 10 11 12

Item CH1(P) CH1(S) CH2(P) CH2(S) CH3(P) CH3(S) CH4(P) CH4(S) CH5(P) CH5(S) Slop tank(P) Slop tank(S) Total

Fr.No. 70-114 70-114 114-164 114-164 164-209 164-209 209-259 209-259 259-314 259-314 64-70 64-70

Vol m^3 16049.03 16049.03 18867.88 18867.88 16981.09 16981.09 18534.91 18534.91 14646.90 14646.90 2067.29 2067.29 174294.17

Weight (98%vol) 13526.12 13526.12 15901.85 15901.85 14311.66 14311.66 15621.22 15621.22 12344.41 12344.41 1722.05 1722.05 146854.61

LCG m 69.77 69.77 109.25 109.25 149.63 149.63 189.63 189.63 225.39 225.39 50.99 50.99

VCG m 13.53 13.53 13.45 13.45 13.45 13.45 13.45 13.45 13.43 13.43 13.84 13.84

TCG m -10.43 10.43 -10.69 10.69 -10.69 10.69 -10.69 10.69 -9.32 9.32 -9.86 9.86

FSM tm 15475.16 15475.16 18504.95 18504.95 16654.46 16654.46 18178.39 18178.39 13350.11 13350.11 210.43 210.43 164747.01

Table 6.2 Capacity of Ballast Tanks S.No.

Item

Fr.No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Aft peak tank(s) Aft peak tank(s) Wing ballast tank1(P) Wing ballast tank1(S) Wing ballast tank2(P) Wing ballast tank2(S) Wing ballast tank3(P) Wing ballast tank3(S) Wing ballast tank4(P) Wing ballast tank4(S) Wing ballast tank5(P) Wing ballast tank5(S) Wing ballast tank6(P) Wing ballast tank6(S) Ballast tank 1(P) Ballast tank 1(S) Ballast tank 2(P) Ballast tank 2(S) Ballast tank 3(P) Ballast tank 3(S) Ballast tank 4(P) Ballast tank 4(S) FP tank(P) FP tank(S) Total

AE -16 AE -16 64-70 64-70 70-114 70-114 114-164 114-164 164-209 164-209 209-259 209-259 259-314 259-314 131-164 131-164 164-209 164-209 209-259 209-259 259-314 259-314 314-fe 314-fe

Vol m^3 1039.12 1039.12 302.00 302.00 2420.00 2420.00 2969.90 2969.90 2672.91 2672.91 2917.49 2917.49 2607.02 2607.02 1715.13 1715.13 2584.94 2584.94 2821.47 2821.47 2096.42 2096.42 1274.32 1274.32 50841.42

121

Weight (98%vol) 1026.48 1026.48 298.33 298.33 2390.57 2390.57 2933.79 2933.79 2640.41 2640.41 2882.01 2882.01 2575.32 2575.32 1694.27 1694.27 2553.50 2553.50 2787.16 2787.16 2070.92 2070.92 1258.82 1258.82 50223.19

LCG m -5.63 -5.63 50.96 50.96 73.20 73.20 113.15 113.15 153.53 153.53 193.53 193.53 233.25 233.25 119.65 119.65 153.53 153.53 193.53 193.53 228.34 228.34 257.31 257.31

VCG m 18.96 18.96 12.49 12.49 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 13.01 13.01 1.54 1.54 1.54 1.54 1.54 1.54 1.56 1.56 9.14 9.14

TCG m -7.26 7.26 -20.85 20.85 -21.18 21.18 -21.18 21.18 -21.18 21.18 -21.18 21.18 -18.12 18.12 -11.19 11.19 -11.29 11.29 -11.29 11.29 -18.12 18.12 -3.88 3.88

FSM tm 696.39 696.39 12.47 12.47 37.30 37.30 47.57 47.57 42.81 42.81 46.73 46.73 41.26 41.26 3791.36 3791.36 6007.23 6007.23 6556.91 6556.91 4390.36 4390.36 1034.51 1034.51 45409.75

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Table 6.3 Capacity of storage tanks S.No

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Item

HFO tank1(P) HFO tank1(S) HFO tank 2(P) HFO tank 2(S) HFO tank3(P) HFO tank3(S) HFO tank4(P) HFO tank4(S) Boiler fuel tank1(P) Boiler fuel tank1(S) Diesel oil tank 1(P) Diesel oil tank 1(S) Lo tank(P) Lo tank(S) Waste water tank (P) Fresh water tank(S) Waste water tank (P) Fresh water tank(S) Total

Fr .No.

Vol

21-46 21-46 67-70 67-70 70-114 70-114 114-131 114-131 59-64 59-64 46-59 46-59 64-67 64-67 9---21 9---21 9---21 9---21

m^3 398.36 398.36 123.50 123.50 2196.6 2196.6 857.56 857.56 189.71 189.71 398.70 398.70 123.50 123.50 66.22 66.22 16.00 16.00 8740.3

weight t(98% vol) 370.87 370.87 114.98 114.98 2045.1 2045.1 798.39 798.39 176.62 176.62 371.19 371.19 108.93 108.93 64.90 64.90 15.68 15.68 8133.2

LCG

VCG

TCG

FSM

m 23.72 23.72 50.05 50.05 71.64 71.64 95.20 95.20 44.10 44.10 35.90 35.90 47.47 47.47 8.38 8.38 8.38 8.38

m 2.28 2.28 1.60 1.60 1.57 1.57 1.54 1.54 1.90 1.90 2.28 2.28 1.60 1.60 4.00 4.00 10.20 10.20

m -5.18 5.18 -8.21 8.21 -9.91 9.91 -11.19 11.19 -7.56 7.56 -5.18 5.18 -8.21 8.21 -2.25 2.25 -3.10 3.10

tm 476.06 476.06 82.29 82.29 4654.40 4654.40 1855.66 1855.66 350.44 350.44 662.15 662.15 82.29 82.29 2.86 2.86 1.68 1.68 16335.64

Table 6.4 Capacity of other tanks/compartments Description Azipod room Engine Room Cofferdam Chain Locker(P&S) Forecastle deck Deck house Total

No. 1 1 1 2 1

Location -11 – 21 21 – 64 70 – 71 314 – 322 314-349

Volume 7714 21716 688 528 1093.4

LCG 5.58 30.3 53.9 254.5 259.07

VCG 17.75 12.47 11.67 21.2 25.26

TCG 0 0 0 0 0

1

21-64

9472 41211

36.89

30.78

0

122

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6.2.2 GROSS TONNAGE COMPUTATIONS GROSS TONNAGE (GT)

= K1 V

Where K1 = 0.2 + 0.02 log10 (V) Where K1 = 0.2 + 0.02 log 10 (267133.34) = 0.3087 V = Total volume of all enclosed spaces of the ship in m3

GROSS TONNAGE (GT)

123

= 84919

= 275086.9 m3

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6.2.3 NET TONNAGE COMPUTATIONS NET TONNAGE (NT) = K2 VC (4 d / 3 D )2 + K3 ( N1 + N2 / 10) In which formula a)

The factor (4 d / 3 D)2 shall not be taken as greater than unity.

b)

The term K2 VC(4 d / 3 D )2 shall not be taken as less than "0.25 GT" ;

c)

"NT" should not be taken as less than "0.3 GT" VC, Total volume of cargo spaces =170160.17m3 (excluding slop tank

volume) K2

= 0.2 + 0.02 * log10 (Vc) = 0.3046,

D

= Moulded depth amidships in metres.

d

= Moulded draft amidships, d =16.75 m.

K3

= 1.25 [(GT + 10000) / 10000] = 11.86

N1

= Number of passengers in cabins with not more than 8 berths.

N2

= Number of other passengers.

N 1 + N2

= Total number of passengers the ship is permitted to carry as in the

D = 23.76 m.

ship’s Passenger certificates. When N1 + N2 is less than 13, N1 + N2 shall be taken as zero (no passengers hence zero) In the expression for Net Tonnage, K3 (N1 + N2 / 10) = 0 a) Since d = 16.75, the expression (4 d / 3 D )2 =0.8835 b) In the expression for Net Tonnage, K2 VC (4 d / 3 D )2 = 45792.5 > 0.25 GT ∴The term K2VC (4d / 3D) 2 is taken as 45792.5 c) NT = K2VC (4d / 3D) 2 + K3 (N1 + N2/10) = 45792.5 + 0 = 45792.5 > 0.30 GT (24723.18) ∴Net Tonnage is taken as 45792.5 NET TONNAGE (NT) = 45793

124

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6.3 Final Mass Estimation 6.3.1 Introduction At the initial stages of design, dimensions of superstructures and deckhouses were not known. Lightship mass was calculated by taking rough values or giving allowance for masses of these quantities. After designing the general arrangement plan, the lightship mass is estimated more accurately, using actual values wherever possible and empirical formulae when the actual mass is not known. 6.3.2 Procedure The light ship mass is split up into various components and their masses are estimated using empirical formulae and summed up. Mathematically, ΔLS Where,

=

ΔSE + ΔWO + ΔEP,

ΔSE

=

Steel mass

ΔWO

=

Wood & outfit mass

ΔEP

=

Engine plant mass

6.3.3 Steel Mass Δ7SE [1+ 0.5 (CB0.8 –0.7)] + 840 t (addition for Ice Class 1A, taken from parent ship)

ΔSE

=

Δ7SE

=

KE1.36

K E

= = =

0.029 –0.035 L (B + T) + 0.85L (D-T) + 250 19030.44

E

=

1500 – 40000 for tankers

Take K

=

0.035

=

23126.95

=

Block Coefficient at 0.8D

=

CB + (1- CB) (0.8D – T) /3T

=

0.846

=

25717.9 t

7

Δ

SE 8 CB

ΔSE

125

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6.3.4 Wood and Outfit Mass ΔOU

= Co× L × B + 100 t (approx additional weight for Helipad and helicopter)

Co

=0.24

[Ref37]

= 3173.9t 6.3.5 Engine Plant mass ΔEP

=

= = Light ship weight =

Weight of Main engine & generator + Weight of transformer, frequency convertor &MSB + Weight of Pod + Weight of Auxiliary machinery (3*Cummins Model 1400 GQKA) + Weight of boiler& pump etc 975 + 174 + (662*2) + (3 x 60) + 150 2803 t = ΔSE + ΔOU + ΔEP, 31694.8 t

6.4 Distribution of Masses to Find Centre of Gravity LCG is measured from AP and VCG from keel. 6. 4.1 Steel Mass Steel mass can be divided into mass of superstructure and that of continuous material. Volume of superstructure = 9472 m3 ∴Mass of superstructure = 0.067 × 9472 = 634.6 t ∴Mass of continuous material = Mass of steel – Mass of super structure = 25717.9 – 634.6 = 25083.3 t Mass of superstructure is assumed to act at its centroid (LCG = 36.89, VCG = 30.78) (Calculated by AutoCAD Drawing with some geometrical assumptions)

120 m

COG of continuous material: VCG hull = 0.01D (46.6 + 0.135(0.81 – CB)(L/D)2) + 0.008D(L/B – 6.5), L ≤

126

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

= 0.01D (46.6 + 0.135(0.81 –CB)(L/D)2), = 10.96 m

120 m < L

The longitudinal position of the basic hull weight is assumed to be located at mid of length over all, as ship is highly strengthened in fwd and aft to meet with operational requirements. LCG hull LCG VCG

= = =

125.6 m 125.6 m from AP 10.96 m from keel

Table 6.5 Determination of COG of Steel Mass ITEM Super structure Longitudinal continuous material TOTAL LCG of Steel mass VCG of Steel mass

= =

MASS(t)

LCG from AP(m)

VCG keel(m)

634.6

36.89

30.78

25083.3

125.6

10.96

25717.9

123.41

11.45

123.41 m 11.45 m

6. 4.2 Engine plant mass The engine plant mass is divided into propeller mass, propeller shaft mass, main engine mass, & remainder mass Table 6.6 Determination of COG of machinery Item Main engine Electric equipment Pod and propeller Aux engine Boiler and pump Total

Mass (t) 975 174 1324 180 150 2803

LCG(m) 21.27 6.30 0.00 33.90 34.00 11.79

127

VCG(m) 7.00 16.70 7.93 6.50 8.00 8.06

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

6. 4.3 Wood and outfit mass VCG = D + 1.25, L ≤ 125 m = D + 1.25 + 0.01(L-125), 125 < L ≤ 250 m = D + 2.50, 250 m < L = 26.26m LCG = (25% Wo at LCGM, 37.5% at LCG dh, and 37.5% at amidships) LCG = 66.09 m Table 6.7 Determination of COG of Light Ship ITEM

MASS(t)

LCG from AP(m)

VCG keel(m)

Steel

25717.9

125.6

11.45

Wood & Outfit

3173.9

66.09

26.26

Engine Plant

2803

11.79

8.06

TOTAL

31694.8

107.46

12.63

6.5 Required capacity: Volume of HFO, Volume of diesel oil, Volume of boiler oil, Volume of lube oil Volume of fresh water, Volume of washing water, Volume of washing water

7154 m3 786 m3 373 m3 241 m3 30 m3 131 m3 168096 m3

= = = = = = =

128

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Available capacity Cargo Capacity = Ballast water Capacity = HFO tank Capacity = DFO tank Capacity = Boiler fuel tank Capacity = LO tank Capacity = Capacity of FW tank = Capacity of washing water tank=

174294.17 m3 50841.42m3 7152.1 m3 797.4 m3 379.42 m3 247 m3 32 m3 132.44 m3

All the available capacities of tanks is more than the required, hence the design is satisfactory.

129

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

CHAPTER 7 DETAILED TRIM AND STABILITY CALCULATIONS

130

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.1 TRANSVERSE STABILITY For small angles of inclination (heel) of the order of 4 or 5 degrees, the waterlines before inclination and after inclination intersect at the same point on the vertical centreline of the vessel, keeping the emerged and immersed volume of water equal. The center of buoyancy has moved off the vessel’s centerline as the result of inclination, and the lines along which the resultants of weight and buoyancy act are separated by a distance, “GZ”, the righting arm. A vertical line through the centre of buoyancy will intersect the original vertical through the centre of buoyancy, which is in the vessel’s centreline plane, at a point “M” called the transverse metacentre. For small angles of inclination, the point “M”, will remain practically stationary with respect to the vessel’s centreline. The distance “GM", between the vessel’s centre of gravity ‘G’ and M’ when angle of heel is zero degrees, is the transverse metacentric height (often called “Initial Stability” ) and is used as an index of stability for the preparation of stability curves. The position of the transverse metacentre varies with the draft. The transverse met centric position for small angles of inclination above the keel point “K”, denoted as “KM". The location of the metacentre has neither to do with the nature nor the distribution of weights onboard. On the other hand, the vertical centre of gravity position above the keel point “K”, denoted as “KG”, depends on the nature & distribution of oil, water etc. The centre of gravity of a vessel decreases directly when the positioning of weights is lower and increases when positioning of weights is higher. The transverse metacentric height is given by the relation: GM = KMT – KG If the displacement of the vessel in the light condition is known, the position of centre of gravity “KG” , can be calculated by taking the vertical moments (weight of the item * centre of gravity of the item) of all items on board and dividing the sum of these moments by the total weight, i.e., displacement. Corresponding to this displacement, the draft is determined and the “KMT" value obtained from the Hydrostatic Curves or tables.

131

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

The motion of the liquid in a partially filled tank reduces the vessel’s stability because, as the vessel is inclined, the centre of gravity of the liquid shifts towards one side. This shift in the liquid causes the vessel’s centre of gravity to move towards the lower side, reducing the righting arm and thus the stability is adversely affected by the “free surface effect". The sum of the free surface moments of all liquid items in tanks, not pressed full, is divided by the displacement of the vessel to obtain the Free Surface Correction, described in page no. 21, denoted as “GG0 ". The new vertical centre of gravity is denoted as “G” and its position above keel,”KG "is given by the simple relation, KGO =KG + GG0 The transverse metacentric height (corrected) is given by,

G0M = KMT -KG0 = GM - GG0 To maintain positive stability, the transverse metacentre must lie above the centre of gravity i.e., the metacentric height must always be positive and its value must be able to comply with statutory requirements.

7.2 LONGITUDINAL STABILITY The longitudinal stability of a vessel usually poses no problem as the longitudinal metacentric position is much higher than the center of gravity position The longitudinal metacentre is similar to the transverse metacentre except that it involves longitudinal inclinations. Since vessel is usually not symmetrical forward and aft, the center of buoyancy at various even keel waterlines doesn’t always lie in a fixed transverse plane, but may move forward and aft with changes in draft. For a given even keel waterline, the longitudinal metacentre is defined as the intersection of a vertical line through the center of buoyancy in the even keel position with a vertical line through the position of the center of buoyancy after the vessel has been inclined longitudinally through small angles.

132

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

The longitudinal metacentre, like the transverse, is substantially fixed with respect to the vessel for moderate angles of inclination if there is no abrupt change in the shape of the vessel in the vicinity of waterline, and its distance above the vessels center of gravity is called the longitudinal metacentric height. DRAFTS AND TRIM: The draft “T”, corresponding to the displacement, obtained from the Hydrostatic Curves or Tables, is the draft at the longitudinal centre of flotation, denoted as “LCF”. The longitudinal centre of gravity “LCG” is obtained by dividing the net longitudinal moment by the displacement. If the longitudinal centre of buoyancy “LCB” position does not coincide with “LCG” position, the vessel will “trim“, i.e., the draft at the fore end of waterline “Tf " and the draft at the aft end “T

a

" will not be equal. If the “LCG”

is forward of the “LCB”, the vessel will trim by forward and if the “LCB” is forward of the “LCG” , the vessel will trim by aft. The total trim, denoted as “t”, is given by:

t = T a - Tf = ((LCB – LCG) X Displacement ) / (100 X MCT1cm ) Positive “t” implies trim by aft & negative “t” implies trim by forward. The “LCB”, “LCF”, and “MCT1cm" (moment to change trim by 1cm) are all obtained from the Hydrostatic Tables The drafts at the extreme ends of waterline are given by the algebraic relation: Ta = T + t * LCF / LWL Tf = T + t * (LCF-LWL) / LWL The position of “LCG” depends on whether the weights are placed more concentrated in the forward or aft of the vessel, in which case the vessel will trim by forward or aft, respectively. Hence, the distribution of cargo, oil, freshwater, etc. must be uniform to keep the trim as little as possible and towards aft. It must be noted that if it is not possible to avoid trim, then trim by aft is more recommendable than trim by forward. In the departure condition the trim, if present, must be, as far as possible, by aft.

133

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.3 WEATHER CRITERION ACCORDING TO IMO RES. A 749 (18) The ability of a ship to withstand the combined effects of beam wind & rolling should be demonstrated for each standard condition of loading. The ship is subjected to a steady wind pressure acting perpendicular to the ship’s centreline which results in a steady wind heeling lever (lw1) 1. From the resultant angle of equilibrium (θ0), the ship is assumed to roll owing to wave action to an angle of roll (θ1) to windward. 2. The ship is then subjected to a gust wind pressure which results in a gust wind heeling lever (lw2) 3. Under these circumstances, area “ b” should be greater than or equal to area “a”. 4. Free surface effect should be accounted for in the standard conditions of loading. The angles are defined as follows: θ0 =

Angle of heel under action of steady wind.

θ1 =

Angle of roll to windward due to wave action

θ2=

Angle of down flooding ( θf ) or 50 degrees or θc , whichever is less

θf=

Angle of heel at which openings in the hull, superstructures or deckhouses which cannot be closed watertight,

θc=

Angle of second intercept between wind heeling lever ( lw2 ) and GZ

curves. The wind heeling levers lw1 and lw2 are constant values at all angles of inclinations and should be calculated as follows: lw1 = P * A * Z / (1000 * g * Δ (m) lw2 = 1.5 * lw1

134

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Where: P=

504 N/m2

A=

Projected lateral area of the portion of the ship above waterline in m2.

Z=

Vertical distance from the centre of the projected lateral area (A) to the centre of underwater lateral area or approximately to a point at one half the draft in metres.

Δ=

Displacement of the ship in tonnes.

g=

Acceleration due to gravity (g = 9.81 m/s2)

The angle of roll (θ1) should be calculated as follows θ1=

109 * k * X1 * X2 * √(r * s) (degrees)

Where, X1, X2, k & s are factors given in tables 7.1 below. k is a factor depending on type of bilge construction. r = 0.73 + 0.6 OG/d OG = distance between centre of gravity and the waterline in metres (+ ve if center of gravity is above WL, -ve, if it is below) d=

mean draught of the ship (m)

Rolling period

T = 2CB / √ GM (s)

Where C=

0.373 + 0.023 (B/d) - 0.043 (L / 100).

The symbols in the above tables and formula for the rolling period are defined as follows: L=

waterline length of the ship (m)

B=

moulded breadth of the ship (m)

d=

mean moulded draft of the ship (m)

CB = block coefficient Ak=

total overall area of bilge keels, or area of the lateral projection of the bar keel, or sum of these areas (m2)

GM= metacentric height corrected for free surface effect (m)

135

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Table 7.1 Table for X1, X2, K and s Values of factor X1 B/d ≤ 2.4 2.5 X1 1.00 0.98

2.6 0.96

2.7 0.95

Values of factor X2 Cb ≤ 0.45 X2 0.75

0.50 0.82

Values of factor k Ak × 100 / L × B 0.00 K 1.00

1.00 0.98

2.8 0.93

2.9 0.91

0.55 0.89

3.0 0.90

3.1 0.88

3.2 0.86

0.60 0.95

3.4 0.82

0.65 0.97

≥ 3.5 0.80

≥ 0.70 1.00

3.50 0.72

≥ 4.00 0.70

Values of factor s T 7.00 8.00 12.00 14.00 16.00 18.00 ≤ 6.00 S 0.100 0.098 0.093 0.065 0.053 0.044 0.038 (Intermediate values in tables should be obtained by linear interpolation)

≥ 20.00 0.035

1.50 0.95

2.00 0.88

136

2.50 0.79

3.00 0.74

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Draught m 2 4 6 8 10 12 14 16 18 20

WINDAGE AREA TABLE Table 7.2 VCG Above wind area Base line Half draught m2 m m 6126 14.12 13.12 5604 15.16 13.16 5086 16.2 13.2 4574 17.23 13.23 4064 18.26 13.26 3553 19.3 13.3 3024 20.4 13.4 2485 21.58 13.58 1935 22.87 13.87 1381 24.42 14.42

DOWNFLOODING ANGLE, DECK IMMERSION & DRAFT PARTICULARS Table 7.3 Draft(m) Deck Immersion(Deg) Down Flooding(Deg) 2 4 6 8 10 12 14 16 18 20

41.76 39.07 36.09 32.9 29.46 25.78 21.8 17.67 13.3 8.77

53.67 51 47.98 44.54 40.69 36.31 31.38 25.87 19.79 13.22

137

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.3 Hydrostatic table for trimmed condition Hydrostatic properties(trim=-2m Fwd) (Tables 7.4) Draft (m) 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5

Disp (t) 24468.24 29593.65 34798.1 40065.6 45386.27 50751.13 56152.38 61586.52 67052.07 72545.2 78060.64 83596.86 89153.5 94728.45 100324.2 105948 111604.2 117291.7 123008.3 128741.8 134483.4 140231.6 145994.6 151806.6 157680 163615.7 169583 175572.6 181586.6 187624.7 193686.4

LCB KB(m) (m) (m) 155.004 1.525 152.858 1.777 151.223 2.032 149.917 2.287 148.841 2.543 147.94 2.799 147.167 3.055 146.486 3.311 145.875 3.567 145.323 3.823 144.823 4.08 144.362 4.336 143.935 4.592 143.537 4.848 143.163 5.104 142.813 5.36 142.483 5.617 142.173 5.875 141.881 6.133 141.599 6.391 141.324 6.649 141.056 6.906 140.791 7.163 140.506 7.422 140.198 7.682 139.868 7.943 139.544 8.205 139.232 8.468 138.933 8.73 138.644 8.992 138.367 9.255

LCF(m) (m) 142.971 142.279 141.586 141.007 140.504 140.13 139.679 139.215 138.769 138.423 138.056 137.69 137.335 136.995 136.686 136.435 136.19 135.993 135.739 135.356 134.973 134.64 133.896 132.798 131.643 130.786 130.536 130.301 130.075 129.871 129.721

138

TPC (t) 101.345 103.101 104.508 105.645 106.625 107.416 108.093 108.729 109.34 109.821 110.244 110.655 111.048 111.415 111.89 112.516 113.164 113.77 114.267 114.476 114.622 114.724 115.379 116.548 117.819 118.827 119.27 119.735 120.224 120.698 121.166

KMT (m) 66.928 57.897 51.156 45.91 41.744 38.367 35.629 33.374 31.502 29.882 28.509 27.34 26.331 25.441 24.72 24.178 23.727 23.329 22.923 22.44 21.993 21.591 21.275 21.066 20.926 20.813 20.679 20.57 20.488 20.424 20.379

MCT1cm (tm) 1548.395 1597.984 1639.369 1674.926 1708.454 1735.657 1757.739 1779.278 1800.326 1816.731 1830.302 1843.58 1857.01 1870.65 1888.178 1907.989 1927.81 1946.383 1963.325 1976.977 1990.494 2002.334 2046.421 2116.947 2191.395 2249.991 2273.857 2299.595 2326.966 2354.047 2380.585

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=-1.5 m for'd) (Tables 7.5)

Draft (m) 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 10.25 10.75 11.25 11.75 12.25 12.75 13.25 13.75 14.25 14.75 15.25 15.75 16.25 16.75 17.25 17.75

Disp (t) 31599.62 36842.45 42142.74 47490.26 52877.73 58301.68 63757.94 69243.34 74752.78 80284.26 85836.49 91407.94 96998.39 997714.5 108252.9 113927 119630.9 125363.1 131108.8 136861.4 142624.7 148428.5 154291.1 160217.1 166177.2 172159.9 178165.3 184194.9 190247.1 196322.3

LCB KB(m) (m) (m) 149.628 1.859 148.443 2.116 147.475 2.374 146.664 2.631 145.978 2.889 145.378 3.146 144.838 3.404 144.347 3.661 143.903 3.918 143.494 4.175 143.113 4.432 142.756 4.689 142.418 4.945 142.097 5.202 141.794 5.459 141.508 5.717 141.238 5.975 140.982 6.234 140.731 6.493 140.486 6.751 140.241 7.008 139.974 7.267 139.681 7.527 139.364 7.789 139.05 8.052 138.747 8.314 138.456 8.577 138.174 8.839 137.904 9.102 137.644 9.365

LCF(m) (m) 141.599 141.023 140.481 140.099 139.75 139.298 138.839 138.479 138.154 137.789 137.421 137.079 136.709 136.407 136.158 135.945 135.752 135.467 135.081 134.73 133.977 132.832 131.681 130.731 130.48 130.221 129.977 129.761 129.588 129.444

139

TPCI (t) 103.949 105.196 106.255 107.089 107.868 108.538 109.165 109.678 110.144 110.563 110.97 111.336 111.73 112.24 112.889 113.498 114.098 114.539 114.702 114.812 115.285 116.339 117.596 118.686 119.13 119.578 120.048 120.524 120.969 121.43

KMT (m) 55.241 49.079 44.269 40.369 37.276 34.747 32.651 30.852 29.336 28.049 26.948 25.973 25.138 24.475 23.98 23.544 23.171 22.762 22.283 21.849 21.468 21.191 21.026 20.903 20.756 20.633 20.535 20.459 20.401 20.363

MCT1cm (tm) 1625.639 1662.71 1697.086 1726.188 1752.775 1774.643 1795.957 1813.709 1829.361 1842.715 1856.126 1869.536 1884.785 1903.077 1923.026 1941.562 1959.88 1976.069 1989.626 2001.721 2037.257 2106.034 2180.104 2243.462 2267.105 2291.442 2317.666 2344.74 2369.932 2396.183

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=-1.0 m for'd) (Tables 7.6)

Draft (m) 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5

Disp (t) 28421.75 33633.71 38911.13 44240.76 49611.11 55021.22 60467.59 65944.84 71446.74 76972.29 82520 88087.75 93674.54 99281.05 104910.4 110571 116261.6 121982.2 127729.2 133486.3 139252.7 145054.7 150907.7 156823.7 162776.9 168752.5 174750.9 180772.2 186816 192881.8

LCB KB(m) (m) (m) 147.703 1.688 146.702 1.947 145.895 2.207 145.214 2.466 144.637 2.724 144.136 2.983 143.687 3.242 143.273 3.5 142.895 3.758 142.547 4.016 142.222 4.273 141.913 4.531 141.619 4.788 141.336 5.045 141.064 5.303 140.805 5.561 140.56 5.819 140.328 6.078 140.105 6.337 139.885 6.596 139.664 6.854 139.419 7.113 139.143 7.374 138.841 7.636 138.538 7.899 138.246 8.161 137.964 8.424 137.691 8.687 137.428 8.95 137.176 9.213

LCF(m) (m) 141.508 141.019 140.479 140.051 139.715 139.372 138.921 138.526 138.207 137.888 137.52 137.166 136.793 136.417 136.129 135.905 135.707 135.509 135.19 134.826 134.147 132.903 131.72 130.679 130.426 130.166 129.899 129.657 129.48 129.31

140

TPCI (t) 103.22 104.677 105.854 106.745 107.537 108.322 108.978 109.527 109.999 110.465 110.885 111.26 111.652 112.052 112.607 113.232 113.826 114.428 114.784 114.905 115.305 116.214 117.375 118.547 118.989 119.44 119.892 120.355 120.794 121.235

KMT (m) 60.071 52.758 47.195 42.681 39.112 36.277 33.931 31.936 30.244 28.828 27.62 26.559 25.64 24.854 24.256 23.784 23.373 23.024 22.599 22.13 21.714 21.363 21.139 21.005 20.84 20.706 20.593 20.503 20.432 20.383

MCT1cm (tm) 1606.082 1650.095 1685.187 1715.841 1743.032 1769.846 1791.422 1810.312 1826.247 1841.844 1855.36 1868.589 1883.746 1899.278 1918.131 1937.132 1955.1 1973.509 1988.805 2001.421 2032.291 2096.204 2168.875 2237.159 2260.644 2284.753 2309.569 2335.796 2360.686 2385.606

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=-0.5 m for'd) (Tables 7.7)

Draft (m) 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 10.25 10.75 11.25 11.75 12.25 12.75 13.25 13.75 14.25 14.75 15.25 15.75 16.25 16.75 17.25 17.75

Disp (t) 30444.82 35692.51 41002.5 46355.65 51748.71 57181.39 62649.86 68144.41 73662.38 79203.98 84767.76 90350.84 95953.56 101576.5 107223.6 112901 118608.3 124345.6 130106.2 135875.9 141679.1 147529.2 153435.3 159381.7 165350.4 171341.8 177356.3 183392 189449.3 195528.7

LCB KB(m) (m) (m) 144.624 1.781 144.044 2.042 143.549 2.303 143.12 2.563 142.743 2.822 142.403 3.081 142.086 3.341 141.79 3.599 141.513 3.858 141.252 4.116 141.002 4.374 140.759 4.632 140.521 4.89 140.288 5.148 140.061 5.406 139.845 5.664 139.639 5.923 139.442 6.182 139.25 6.442 139.056 6.701 138.837 6.961 138.583 7.222 138.298 7.484 138.007 7.747 137.726 8.01 137.456 8.273 137.193 8.536 136.939 8.799 136.694 9.063 136.459 9.326

LCF(m) (m) 140.874 140.482 140.002 139.666 139.332 138.998 138.576 138.254 137.938 137.619 137.258 136.88 136.503 136.123 135.864 135.667 135.466 135.267 134.922 134.313 133.082 131.779 130.629 130.374 130.113 129.845 129.574 129.376 129.201 129.03

141

TPCI (t) 104.008 105.37 106.404 107.194 107.987 108.776 109.379 109.849 110.319 110.79 111.189 111.575 111.974 112.378 112.966 113.56 114.159 114.761 115.001 115.337 116.229 117.203 118.41 118.851 119.301 119.759 120.208 120.625 121.064 121.503

KMT (m) 57.082 50.538 45.382 41.223 37.965 35.362 33.152 31.257 29.68 28.356 27.205 26.193 25.33 24.591 24.05 23.598 23.215 22.891 22.436 21.982 21.597 21.285 21.119 20.936 20.785 20.663 20.558 20.472 20.41 20.369

MCT1cm (tm) 1631.835 1672.785 1705.515 1732.636 1759.905 1786.779 1806.995 1822.89 1838.718 1854.52 1867.958 1882.802 1898.221 1913.928 1932.737 1950.614 1968.819 1987.147 2001.181 2028.095 2091.036 2158.241 2230.903 2254.333 2278.334 2302.92 2328.059 2351.746 2376.56 2401.516

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(Even keel condition) (Tables 7.8) Draft (m) 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

Disp (t) 27279.53 32493.33 37775.54 43111.65 48487.52 53903.09 59358.37 64845.38 70355.94 75890.09 81447.98 87027.59 92626.64 98245.7 103885 109549.3 115243.1 120967.1 126721.3 132494.7 138299 144150.1 150051.9 155991.5 161953.5 167938.2 173946 179975.3 186025 192095.3 198188.9

LCB (m) 142.111 141.856 141.616 141.39 141.174 140.967 140.767 140.572 140.382 140.195 140.012 139.829 139.645 139.46 139.273 139.089 138.913 138.744 138.579 138.415 138.225 137.997 137.733 137.455 137.188 136.929 136.678 136.435 136.199 135.972 135.752

KB (m) 1.62 1.881 2.143 2.404 2.664 2.924 3.183 3.443 3.702 3.961 4.219 4.478 4.736 4.994 5.252 5.511 5.77 6.029 6.289 6.548 6.809 7.07 7.333 7.596 7.86 8.123 8.387 8.65 8.913 9.177 9.44

LCF(m) (m) 140.721 140.331 139.953 139.618 139.282 138.952 138.626 138.303 137.984 137.668 137.35 136.972 136.591 136.208 135.828 135.627 135.425 135.225 135.021 134.475 133.262 131.962 130.581 130.323 130.061 129.792 129.515 129.293 129.095 128.922 128.745

142

TPCI (t) 103.33 104.697 106.062 106.85 107.645 108.437 109.231 109.702 110.17 110.642 111.118 111.506 111.897 112.3 112.707 113.294 113.893 114.493 115.098 115.374 116.248 117.216 118.275 118.714 119.164 119.621 120.087 120.481 120.896 121.335 121.777

KMT (m) 62.414 54.362 48.566 43.672 39.899 36.918 34.521 32.392 30.629 29.157 27.917 26.803 25.854 25.042 24.346 23.849 23.426 23.069 22.768 22.274 21.852 21.507 21.246 21.043 20.875 20.736 20.626 20.523 20.446 20.393 20.36

MCT1cm (tm) 1613.25 1654.319 1695.229 1722.266 1749.545 1776.63 1803.726 1819.625 1835.36 1851.225 1867.294 1882.211 1897.268 1912.955 1928.631 1946.179 1964.328 1982.568 2001.059 2024.188 2086.143 2153.103 2224.796 2248.117 2272.053 2296.582 2321.736 2344.106 2367.689 2392.556 2417.764

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=0.5m aft) (Tables 7.9) Draft (m) 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 10.25 10.75 11.25 11.75 12.25 12.75 13.25 13.75 14.25 14.75 15.25 15.75 16.25 16.75 17.25 17.75

Disp (t) 29317.84 34566.14 39878.98 45237.7 50636.16 56074.25 61549.88 67053.02 72579.7 78130.05 83704.41 89299.99 94915.28 100550.7 106205.9 111886.8 117597.3 123338.2 129108.8 134914.4 140766.4 146668.8 152606.4 158561.4 164539.1 170539.9 176562.9 182605.9 188668.7 194753.4

LCB (m) 139.24 139.353 139.394 139.395 139.36 139.299 139.224 139.139 139.043 138.937 138.823 138.701 138.57 138.432 138.289 138.147 138.008 137.871 137.737 137.579 137.38 137.142 136.883 136.63 136.384 136.146 135.914 135.689 135.471 135.261

KB (m) 1.725 1.987 2.248 2.509 2.769 3.029 3.289 3.548 3.807 4.066 4.325 4.584 4.842 5.101 5.359 5.618 5.877 6.137 6.397 6.658 6.92 7.183 7.447 7.711 7.974 8.238 8.502 8.765 9.029 9.293

LCF(m) (m) 140.172 139.795 139.565 139.232 138.902 138.575 138.348 138.033 137.715 137.396 137.062 136.684 136.296 135.915 135.593 135.386 135.184 134.981 134.634 133.441 132.145 130.77 130.277 130.011 129.741 129.465 129.235 129.013 128.816 128.639

143

TPCI (t) 104.018 105.385 106.505 107.303 108.095 108.889 109.55 110.023 110.492 110.968 111.433 111.826 112.226 112.629 113.034 113.628 114.227 114.832 115.421 116.269 117.233 118.284 118.581 119.026 119.483 119.948 120.36 120.753 121.167 121.61

KMT (m) 59.026 51.967 46.541 42.13 38.695 35.961 33.664 31.688 30.046 28.671 27.475 26.43 25.538 24.773 24.127 23.662 23.268 22.936 22.591 22.13 21.749 21.456 21.164 20.976 20.821 20.695 20.586 20.493 20.425 20.381

MCT1cm (tm) 1635.527 1676.506 1711.708 1739.176 1766.251 1793.301 1816.155 1832.157 1847.861 1863.918 1881.491 1896.656 1912.089 1927.712 1942.05 1959.898 1978.072 1996.541 2020.912 2081.269 2148.172 2219.585 2242.066 2265.786 2290.255 2315.341 2337.833 2360.189 2383.695 2408.884

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Draft (m) 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

Disp (t) 31380.52 36661.96 41999.22 47380.45 52801.48 58261.31 63753.55 69272.72 74815.65 80382.83 85973.32 91585.11 97216.93 102868.3 108538.8 114236.2 119963.7 125721.5 131525 137378 143281.1 149222.5 155174.4 161145.2 167139.1 173155.6 179192.6 185249.3 191325.8 197424.1

Hydrostatic properties(trim=1.0m aft) (Tables 7.10) LCB KB LCF(m) TPCI KMT (m) (m) (m) (t) (m) 136.674 1.836 139.631 104.705 56.076 137.078 2.097 139.359 105.968 49.754 137.356 2.357 139.174 106.954 44.726 137.545 2.617 138.851 107.753 40.734 137.662 2.877 138.525 108.546 37.597 137.729 3.137 138.269 109.263 35.036 137.767 3.397 138.072 109.867 32.873 137.779 3.656 137.764 110.345 31.037 137.766 3.915 137.442 110.819 29.505 137.732 4.174 137.1 111.306 28.203 137.68 4.433 136.772 111.751 27.064 137.613 4.692 136.389 112.154 26.082 137.531 4.951 136.003 112.554 25.243 137.437 5.209 135.651 112.925 24.513 137.335 5.468 135.352 113.368 23.924 137.231 5.727 135.145 113.963 23.49 137.127 5.987 134.941 114.565 23.122 137.022 6.247 134.667 115.226 22.801 136.897 6.508 133.626 116.298 22.433 136.73 6.77 132.327 117.25 22.013 136.521 7.034 130.96 118.294 21.685 136.285 7.299 130.359 118.63 21.356 136.049 7.563 129.966 118.895 21.089 135.819 7.827 129.691 119.347 20.916 135.594 8.091 129.414 119.812 20.773 135.375 8.354 129.179 120.236 20.653 135.163 8.618 128.955 120.634 20.551 134.956 8.882 128.735 121.025 20.468 134.755 9.146 128.533 121.443 20.41 134.56 9.41 128.358 121.88 20.371

144

MCT1cm (tm) 1657.579 1694.931 1728.454 1755.864 1782.888 1807.122 1828.488 1844.639 1860.609 1878.286 1895.788 1911.476 1926.882 1941.152 1955.836 1973.688 1991.999 2014.88 2076.806 2143.237 2214.39 2241.542 2259.871 2284.013 2309.023 2331.857 2354.064 2376.282 2400.047 2425.301

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=1.5m aft) (Tables 7.11) Draft (m) 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75 10.25 10.75 11.25 11.75 12.25 12.75 13.25 13.75 14.25 14.75 15.25 15.75 16.25 16.75 17.25 17.75

Disp (t) 28222.31 33466.98 38776.08 44136.33 49540.18 54983.43 60460.91 65969.39 71504.73 77064.52 82648.5 88255.15 93883.38 99531.35 105197.5 110883.7 116598 122342.2 128132.7 133985 139888.8 145834 151789.4 157756.3 163743.6 169753.3 175783.9 181834.7 187904.9 193995.4

LCB (m) 133.461 134.364 135.007 135.479 135.823 136.07 136.253 136.39 136.487 136.547 136.576 136.581 136.563 136.526 136.474 136.411 136.342 136.269 136.177 136.045 135.867 135.657 135.445 135.232 135.023 134.818 134.619 134.425 134.235 134.05

KB (m) 1.692 1.951 2.211 2.47 2.73 2.989 3.248 3.508 3.767 4.026 4.285 4.544 4.802 5.061 5.32 5.579 5.838 6.098 6.359 6.622 6.887 7.152 7.416 7.681 7.945 8.209 8.473 8.737 9 9.264

LCF(m) (m) 139.318 139.145 138.976 138.788 138.473 138.185 137.999 137.8 137.491 137.14 136.813 136.475 136.095 135.729 135.393 135.111 134.903 134.661 133.723 132.518 131.147 130.457 130.03 129.647 129.363 129.121 128.898 128.678 128.452 128.25

145

TPCI (t) 103.856 105.344 106.452 107.402 108.204 108.96 109.594 110.185 110.672 111.172 111.628 112.077 112.484 112.865 113.218 113.704 114.301 114.933 116.165 117.276 118.306 118.727 118.904 119.218 119.676 120.106 120.516 120.908 121.303 121.717

KMT (m) 60.911 53.459 47.655 43.092 39.467 36.573 34.158 32.142 30.434 29 27.752 26.681 25.759 24.964 24.267 23.736 23.331 22.98 22.671 22.301 21.935 21.585 21.257 21.023 20.863 20.728 20.615 20.522 20.449 20.397

MCT1cm (tm) 1632.914 1677.285 1711.875 1744.97 1772.498 1797.969 1819.576 1840.747 1857.435 1875.07 1892.594 1910.549 1926.354 1940.795 1954.554 1969.638 1987.597 2008.307 2069.978 2138.809 2209.282 2241.527 2258.887 2278.215 2302.818 2325.884 2348.289 2370.23 2392.699 2416.523

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Hydrostatic properties(trim=2.0m aft) (Tables 7.12) Draft (m) 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

Disp (t) 30298.54 35573.57 40907.19 46290.19 51716.49 57178.69 62672.77 68197.34 73749.46 79326.65 84926.93 90549.97 96194.42 101857.5 107538.3 113240.9 118972 124746.7 130587.9 136491.8 142440.5 148400.7 154370 160352.9 166356 172380.2 178424.5 184489.1 190573.4 196678.1

LCB (m) 131.147 132.279 133.113 133.74 134.214 134.577 134.861 135.085 135.257 135.38 135.466 135.521 135.549 135.554 135.541 135.513 135.477 135.42 135.321 135.178 134.997 134.81 134.621 134.43 134.241 134.056 133.875 133.699 133.526 133.356

KB (m) 1.813 2.07 2.328 2.586 2.845 3.104 3.362 3.621 3.88 4.139 4.397 4.656 4.915 5.174 5.433 5.692 5.951 6.212 6.475 6.74 7.006 7.271 7.536 7.8 8.064 8.328 8.592 8.856 9.12 9.384

LCF(m) (m) 138.819 138.744 138.598 138.406 138.111 137.914 137.73 137.522 137.189 136.851 136.517 136.179 135.814 135.47 135.138 134.87 134.65 133.75 132.648 131.345 130.557 130.129 129.696 129.32 129.065 128.839 128.623 128.395 128.169 127.939

146

TPCI (t) 104.549 105.872 106.917 107.849 108.642 109.295 109.92 110.509 111.026 111.499 111.956 112.405 112.803 113.154 113.527 114.042 114.647 115.857 117.197 118.329 118.824 118.995 119.2 119.549 119.977 120.389 120.79 121.187 121.581 122.015

KMT (m) 57.756 51.019 45.754 41.618 38.307 35.581 33.344 31.467 29.876 28.506 27.332 26.326 25.456 24.692 24.046 23.563 23.18 22.847 22.552 22.209 21.834 21.474 21.173 20.964 20.813 20.686 20.582 20.499 20.433 20.388

MCT1cm (tm) 1653.89 1694.255 1728.601 1761.352 1788.486 1810.456 1831.959 1853.327 1871.753 1889.44 1907.394 1925.303 1940.59 1954.286 1967.992 1983.52 2002.292 2061.301 2132.689 2204.787 2241.474 2258.94 2276.829 2297.119 2319.959 2342.378 2364.449 2386.75 2409.34 2435.023

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.4 CROSS CURVES (KN) TABLES (Tables 7.13) CROSS CURVES OF STABILITY(KN) TABLES Trim= -2m (Aft) Disp(t)

5o

10o

15o

20o

30o

40o

50o

60o

70o

80o

25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

4.88 4.034 3.192 2.698 2.385 2.184 2.05 1.952 1.882 1.83 1.799 1.783

9.28 7.801 6.32 5.394 4.797 4.387 4.099 3.9 3.768 3.677 3.613 3.575

12.20 10.69 9.189 8.035 7.195 6.596 6.171 5.876 5.673 5.535 5.447 5.388

13.92 12.67 11.41 10.37 9.486 8.792 8.271 7.89 7.616 7.428 7.253 7.008

15.97 15.16 14.35 13.69 13.14 12.68 12.25 11.76 11.22 10.65 10.07 9.498

16.88 16.54 16.19 15.93 15.63 15.18 14.64 14.04 13.4 12.72 12.02 11.32

17.10 17.219 17.335 17.114 16.704 16.205 15.654 15.071 14.466 13.845 13.208 12.557

17.35 17.36 17.38 17.12 16.72 16.27 15.78 15.28 14.78 14.27 13.76 13.23

16.65 16.6 16.5 16.3 15.9 15.6 15.2 14.9 14.5 14.1 13.8 13.4

15.14 15.02 14.91 14.74 14.54 14.32 14.11 13.89 13.69 13.49 13.29 13.09

(Tables 7.14) CROSS CURVES OF STABILITY(KN) TABLES Trim= -1.5m (Aft) Disp(t)

5o

10o

15o

20o

30o

40o

50o

60o

70o

80o

25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

4.88 4.036 3.194 2.7 2.387 2.185 2.052 1.953 1.885 1.832 1.8 1.783

9.28 7.803 6.323 5.397 4.8 4.391 4.102 3.904 3.771 3.679 3.615 3.576

12.19 10.69 9.191 8.039 7.2 6.601 6.176 5.881 5.677 5.538 5.449 5.392

13.91 12.66 11.42 10.37 9.491 8.798 8.277 7.895 7.621 7.432 7.26 7.018

15.97 15.16 14.35 13.7 13.15 12.68 12.26 11.77 11.23 10.66 10.09 9.511

16.88 16.54 16.19 15.93 15.63 15.19 14.65 14.05 13.41 12.73 12.03 11.34

17.10 17.219 17.336 17.117 16.71 16.212 15.662 15.079 14.475 13.855 13.22 12.571

17.35 17.36 17.38 17.12 16.73 16.27 15.78 15.29 14.79 14.28 13.77 13.24

16.65 16.6 16.5 16.3 16 15.6 15.2 14.9 14.5 14.1 13.8 13.4

15.14 15.03 14.91 14.74 14.54 14.33 14.11 13.9 13.69 13.49 13.3 13.1

147

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.15) CROSS CURVES OF STABILITY(KN) TABLES Trim= -1.0 m (Aft) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.88 4.037 3.196 2.701 2.388 2.185 2.053 1.954 1.887 1.833 1.8 1.783

10o 9.28 7.805 6.326 5.4 4.802 4.394 4.105 3.907 3.773 3.681 3.616 3.576

15o 12.19 10.69 9.193 8.042 7.204 6.605 6.181 5.886 5.681 5.541 5.45 5.395

20o 13.91 12.66 11.42 10.37 9.496 8.804 8.283 7.9 7.625 7.436 7.267 7.027

30o 15.96 15.16 14.35 13.7 13.15 12.68 12.26 11.78 11.24 10.67 10.1 9.523

40o 16.87 16.53 16.2 15.93 15.64 15.19 14.66 14.06 13.42 12.74 12.05 11.35

50o 17.10 17.219 17.336 17.12 16.715 16.219 15.669 15.087 14.484 13.865 13.232 12.585

60o 70o 80o 17.35 16.65 15.14 17.37 16.6 15.03 17.39 16.5 14.92 17.13 16.3 14.75 16.74 16 14.55 16.28 15.6 14.33 15.79 15.2 14.12 15.3 14.9 13.9 14.8 14.5 13.7 14.29 14.1 13.5 13.78 13.8 13.3 13.25 13.4 13.11

(Tables 7.16) CROSS CURVES OF STABILITY(KN) TABLES Trim= -0.5m (Aft) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.88 4.038 3.197 2.703 2.39 2.187 2.054 1.956 1.889 1.834 1.8 1.783

10o 9.28 7.807 6.33 5.404 4.806 4.397 4.108 3.911 3.777 3.685 3.618 3.576

15o 12.18 10.69 9.194 8.047 7.209 6.61 6.185 5.89 5.685 5.544 5.453 5.397

20o 13.90 12.66 11.42 10.38 9.501 8.811 8.291 7.907 7.631 7.44 7.274 7.035

30o 15.96 15.15 14.35 13.7 13.16 12.69 12.27 11.79 11.25 10.68 10.11 9.533

148

40o 16.87 16.53 16.2 15.93 15.64 15.2 14.67 14.07 13.43 12.75 12.06 11.36

50o 17.10 17.218 17.335 17.122 16.72 16.225 15.675 15.094 14.492 13.874 13.243 12.598

60o 70o 80o 17.34 16.66 15.15 17.37 16.6 15.03 17.39 16.5 14.92 17.13 16.3 14.75 16.74 16 14.55 16.28 15.6 14.34 15.8 15.2 14.12 15.3 14.9 13.91 14.8 14.5 13.7 14.3 14.1 13.5 13.79 13.8 13.31 13.27 13.4 13.12

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.17) CROSS CURVES OF STABILITY(KN) TABLES Trim= 0 m (Even keel) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.88 4.04 3.199 2.705 2.392 2.188 2.055 1.959 1.891 1.836 1.801 1.784

10o 9.29 7.809 6.332 5.406 4.808 4.4 4.112 3.916 3.78 3.687 3.621 3.577

15o 12.18 10.69 9.195 8.05 7.214 6.615 6.191 5.896 5.689 5.547 5.455 5.398

20o 13.90 12.66 11.42 10.38 9.505 8.817 8.297 7.913 7.636 7.444 7.28 7.042

30o 15.96 15.15 14.35 13.7 13.16 12.69 12.28 11.8 11.26 10.69 10.12 9.543

40o 16.87 16.53 16.2 15.93 15.64 15.2 14.67 14.08 13.44 12.76 12.07 11.38

50o 17.10 17.219 17.336 17.125 16.725 16.23 15.682 15.101 14.499 13.882 13.253 12.61

60o 70o 80o 17.34 16.66 15.15 17.37 16.6 15.04 17.39 16.5 14.93 17.13 16.3 14.76 16.75 16 14.56 16.29 15.6 14.35 15.8 15.2 14.13 15.31 14.9 13.91 14.81 14.5 13.71 14.3 14.2 13.51 13.79 13.8 13.31 13.28 13.4 13.12

(Tables 7.18) CROSS CURVES OF STABILITY(KN) TABLES Trim= 0.5 m (For’d) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.88 4.042 3.201 2.706 2.394 2.19 2.056 1.961 1.893 1.838 1.802 1.784

10o 9.29 7.81 6.335 5.409 4.811 4.403 4.116 3.919 3.783 3.689 3.623 3.578

15o 12.18 10.69 9.197 8.054 7.219 6.62 6.197 5.901 5.694 5.551 5.457 5.4

20o 13.89 12.65 11.42 10.38 9.51 8.823 8.304 7.919 7.642 7.449 7.283 7.047

30o 15.95 15.15 14.35 13.7 13.16 12.7 12.28 11.8 11.27 10.7 10.13 9.552

149

40o 16.86 16.53 16.2 15.94 15.64 15.21 14.68 14.08 13.44 12.77 12.08 11.39

50o 17.10 17.218 17.334 17.126 16.728 16.235 15.687 15.107 14.505 13.889 13.261 12.62

60o 70o 80o 17.34 16.66 15.15 17.37 16.6 15.04 17.39 16.5 14.93 17.14 16.3 14.76 16.75 16 14.56 16.29 15.6 14.35 15.81 15.3 14.13 15.31 14.9 13.92 14.81 14.5 13.71 14.31 14.2 13.51 13.8 13.8 13.32 13.28 13.4 13.13

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.19) CROSS CURVES OF STABILITY(KN) TABLES Trim= 1.0 m (For’d) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.88 4.043 3.202 2.708 2.396 2.191 2.058 1.964 1.895 1.84 1.803 1.785

10o 9.29 7.812 6.338 5.413 4.814 4.407 4.12 3.923 3.787 3.692 3.625 3.58

15o 12.17 10.68 9.198 8.057 7.224 6.626 6.204 5.907 5.699 5.555 5.46 5.402

20o 13.88 12.65 11.41 10.38 9.515 8.83 8.312 7.927 7.648 7.455 7.287 7.051

30o 15.94 15.15 14.35 13.7 13.16 12.7 12.28 11.81 11.28 10.71 10.13 9.559

40o 16.86 16.53 16.19 15.94 15.65 15.21 14.68 14.09 13.45 12.78 12.09 11.39

50o 17.10 17.218 17.333 17.128 16.732 16.239 15.692 15.112 14.511 13.896 13.268 12.629

60o 70o 80o 17.34 16.66 15.15 17.36 16.6 15.04 17.39 16.5 14.93 17.14 16.3 14.76 16.75 16 14.57 16.3 15.6 14.35 15.81 15.3 14.14 15.32 14.9 13.92 14.82 14.5 13.71 14.32 14.2 13.52 13.81 13.8 13.32 13.29 13.4 13.13

(Tables 7.20) CROSS CURVES OF STABILITY(KN) TABLES Trim= 1.5 m (For’d) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.89 4.044 3.203 2.71 2.398 2.192 2.059 1.966 1.897 1.841 1.804 1.785

10o 9.29 7.813 6.34 5.416 4.817 4.41 4.124 3.927 3.79 3.694 3.627 3.582

15o 12.16 10.68 9.198 8.06 7.228 6.631 6.21 5.913 5.704 5.559 5.463 5.403

20o 13.88 12.65 11.41 10.39 9.52 8.836 8.319 7.934 7.654 7.46 7.29 7.055

30o 15.94 15.14 14.35 13.71 13.17 12.71 12.29 11.82 11.28 10.72 10.14 9.565

150

40o 16.85 16.52 16.19 15.94 15.65 15.22 14.69 14.09 13.45 12.78 12.09 11.4

50o 17.11 17.218 17.331 17.129 16.735 16.243 15.696 15.117 14.517 13.903 13.275 12.638

60o 70o 80o 17.34 16.66 15.16 17.36 16.6 15.05 17.39 16.5 14.94 17.14 16.3 14.77 16.76 16 14.57 16.3 15.6 14.36 15.82 15.3 14.14 15.32 14.9 13.92 14.82 14.5 13.72 14.32 14.2 13.52 13.82 13.8 13.33 13.3 13.5 13.14

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.21)

CROSS CURVES OF STABILITY(KN) TABLES Trim= 2.0 m (For’d) Disp(t) 25000 40000 55000 70000 85000 100000 115000 130000 145000 160000 175000 190000

5o 4.89 4.046 3.206 2.712 2.399 2.194 2.059 1.969 1.9 1.843 1.806 1.786

10o 9.29 7.814 6.343 5.419 4.82 4.413 4.129 3.932 3.794 3.697 3.629 3.584

15o 12.16 10.68 9.198 8.064 7.233 6.637 6.216 5.919 5.709 5.563 5.466 5.404

20o 13.87 12.64 11.41 10.39 9.524 8.844 8.326 7.941 7.661 7.464 7.292 7.056

30o 15.93 15.14 14.35 13.71 13.17 12.71 12.29 11.82 11.29 10.72 10.15 9.57

151

40o 16.85 16.52 16.19 15.94 15.65 15.22 14.69 14.1 13.46 12.79 12.1 11.41

50o 17.11 17.218 17.329 17.129 16.737 16.247 15.7 15.121 14.521 13.907 13.281 12.645

60o 70o 80o 17.33 16.66 15.16 17.36 16.6 15.05 17.39 16.5 14.94 17.14 16.3 14.77 16.76 16 14.57 16.3 15.6 14.36 15.82 15.3 14.14 15.33 14.9 13.93 14.83 14.5 13.72 14.33 14.2 13.53 13.82 13.8 13.33 13.31 13.5 13.14

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

17.5

60 50 40 70 30

15

80 20

12.5 15

10. 10

7.5

5.0

5

2.5

25000

40000

55000

70000

85000

100000

115000

130000

145000

160000

DISP (t)

Fig 7.1 CROSS CURVES (EVEN KEEL CONDITION)

.

152

175000

190000

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.5 COMPUTATIONS OF IMO ENVELOP 1)

The area under the righting lever (GZ) curve shall not be less than 0.055 m-radians upto an angle of heel of 30°. 30

i.e

∫ GZ dθ = 0.055 m-rad. 0

But for an angle of θ, righting lever is given by GZ = KN – KG Sinθ 30



(KN – KG Sinθ) dθ = 0.055

0

30



30

KN dθ -

0



30



KG Sinθ dθ = 0.055

0

30

KN dθ - KG

0



KG Sinθ dθ = 0.055

0

30

KG =

∫ KN dθ − 0.055 0

30

∫ Sinθ dθ 0

30

KG1 =

∫ KN dθ − 0.055

m

Condition (1)

0

1 – Cos30 (2) The area under the righting lever (GZ) curve shall not be less than 0.09 m-radians to an angle of either 40° or an angle of (θf) (Flooding angle) if that be less 40

∫ GZ

dθ = 0.09 m – radians (assuming Flooding angle (θf) is more than

0

40°) Similarly as above, we can arrive at 40

KG2 =

∫ KN ∂θ

− 0.09 m Condition (2)

0

1 – Cos40

153

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

COMPUTATIONS OF IMO ENVELOP The area under the righting lever (GZ) curve shall not be less than 0.03 m-radians between the angles of heel of 30° and 40° or between 30 and (θf) degrees, if it is less than 40 degrees Assuming (θf) (Flooding angle) is more than 40° 40

∫ KN dθ − 0.03

KG3 =

m

Condition (3)

30

Cos30 – Cos40 4)

The maximum righting lever (GZ) shall be at least 0.2 metre at an angle of heel equal to or greater than 30° i.e.

GZ at 30° = 0.20m KG4 = KN30 – 0.20 Sin30

Condition (4)

5) Maximum righting lever (GZ) should occur at an angle exceeding 30° but not less than 25° (say maximum righting lever (GZ) occur at 25°)

∂ (GZ)

25

=0

∂θ ∂ (KN – KG Sinθ) ∂θ ∂ KN

25

25

– KG ∂ Sinθ)

∂θ ∂θ KG = ∂ KN 1 ∂θ Cos25 KG5 = KN30 – KN20 10 * π 180 6)

=0 25

=0

1 Cos25

Condition (5)

The initial metacentric height shall be not less than 0.15 metre GM

=

0.15 m

KMT - KG = 0.15 m KG6

= KMT – 0.15 m

154

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

66.23 46.13 52.59 30.74 40.98 24.83 23.53 22.40 21.37 20.90 20.60 20.41

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

65.72 46.41 36.43 30.75 27.21 25.14 23.51 22.43 21.39 20.93 20.60 20.41

(Tables 7.22) COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM – 2.0m (For’d) 41.39 35.69 28.11 31.54 12.96 66.08 12.96 53.27 36.99 32.78 27.21 29.92 15.76 45.98 15.76 30.37 32.58 29.88 26.31 28.29 18.54 52.44 18.54 34.05 29.37 27.74 25.60 26.99 21.03 30.59 21.03 9.71 26.91 26.07 25.00 25.89 23.13 40.83 23.13 17.85 25.12 24.75 24.30 24.95 24.55 24.68 24.30 0.53 23.70 23.64 23.60 24.10 25.15 23.38 23.38 0.15 22.58 22.61 22.70 23.12 24.48 22.25 22.25 0.15 21.76 21.63 21.50 22.04 22.78 21.22 21.22 0.15 21.09 20.73 20.30 20.90 20.37 20.75 20.30 0.60 20.41 19.83 19.10 19.75 17.83 20.45 17.83 2.77 19.74 18.94 17.90 18.60 15.74 20.26 15.74 4.67

(Tables 7.23) COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 1.5m (For’d) 41.39 35.69 28.11 31.54 13.02 65.57 13.02 52.70 36.99 32.78 27.21 29.91 15.77 46.26 15.77 30.64 32.58 29.92 26.41 28.29 18.54 36.28 18.54 17.89 29.37 27.74 25.60 26.99 21.02 30.60 21.02 9.73 26.98 26.07 24.90 25.90 23.12 27.06 23.12 4.09 25.12 24.75 24.30 24.96 24.54 24.99 24.30 0.84 23.70 23.64 23.60 24.11 25.16 23.36 23.36 0.15 22.65 22.61 22.60 23.14 24.50 22.28 22.28 0.15 21.76 21.67 21.60 22.06 22.82 21.24 21.24 0.15 21.09 20.73 20.30 20.92 20.42 20.78 20.30 0.63 20.49 19.83 19.00 19.77 17.87 20.45 17.87 2.73 19.74 18.98 18.00 18.62 15.76 20.26 15.76 4.65

155

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.24)

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

66.87 46.46 36.44 30.81 27.24 24.84 23.51 22.47 21.41 20.94 20.61 20.41

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 1.0 m (For’d) 41.39 35.69 28.11 31.52 12.96 66.72 12.96 53.91 36.99 32.78 27.21 29.91 15.77 46.31 15.77 30.69 32.58 29.92 26.41 28.30 18.54 36.29 18.54 17.90 29.37 27.74 25.60 26.99 21.01 30.66 21.01 9.80 26.98 26.07 24.90 25.90 23.11 27.09 23.11 4.13 25.12 24.75 24.30 24.97 24.52 24.69 24.30 0.54 23.70 23.68 23.70 24.13 25.16 23.36 23.36 0.15 22.65 22.65 22.70 23.16 24.53 22.32 22.32 0.15 21.76 21.67 21.60 22.08 22.85 21.26 21.26 0.15 21.09 20.77 20.40 20.95 20.47 20.79 20.40 0.54 20.49 19.88 19.10 19.80 17.90 20.46 17.90 2.71 19.82 18.98 17.90 18.65 15.78 20.26 15.78 4.63 (Tables 7.25)

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

66.54 46.57 36.55 30.84 27.25 24.87 23.50 22.50 21.46 20.94 20.62 20.41

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 0.5m (For’d) 41.39 35.65 28.01 31.52 13.02 66.39 13.02 53.52 36.99 32.78 27.21 29.91 15.77 46.42 15.77 30.80 32.58 29.92 26.41 28.30 18.54 36.40 18.54 18.01 29.37 27.78 25.70 27.00 21.01 30.69 21.01 9.83 26.98 26.12 25.00 25.91 23.10 27.10 23.10 4.15 25.12 24.79 24.40 24.98 24.51 24.72 24.40 0.47 23.77 23.68 23.60 24.14 25.15 23.35 23.35 0.15 22.65 22.65 22.70 23.18 24.54 22.35 22.35 0.15 21.83 21.71 21.60 22.10 22.88 21.31 21.31 0.15 21.09 20.77 20.40 20.97 20.51 20.79 20.40 0.54 20.49 19.88 19.10 19.82 17.92 20.47 17.92 2.70 19.82 19.02 18.00 18.67 15.79 20.26 15.79 4.62

156

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.26)

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

67.35 46.73 36.57 30.86 27.30 24.89 23.49 22.55 21.50 20.95 20.62 20.42

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

67.11 46.64 36.65 30.93 27.32 24.92 23.49 22.58 21.58 20.96 20.63 20.42

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 0 m 41.39 35.65 28.01 31.52 13.02 67.20 13.02 54.33 36.99 32.78 27.21 29.90 15.78 46.58 15.78 30.95 32.58 29.92 26.41 28.30 18.54 36.42 18.54 18.03 29.45 27.78 25.60 27.00 21.01 30.71 21.01 9.85 26.98 26.12 25.00 25.92 23.09 27.15 23.09 4.21 25.19 24.79 24.30 24.98 24.50 24.74 24.30 0.59 23.77 23.68 23.60 24.15 25.15 23.34 23.34 0.15 22.65 22.70 22.80 23.19 24.55 22.40 22.40 0.15 21.83 21.71 21.60 22.12 22.90 21.35 21.35 0.15 21.16 20.77 20.30 20.99 20.55 20.80 20.30 0.65 20.49 19.92 19.20 19.84 17.94 20.47 17.94 2.68 19.82 19.02 18.00 18.69 15.81 20.27 15.81 4.61

(Tables 7.27) COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 0.5 m (Aft ) 41.39 35.65 28.01 31.50 13.02 66.96 13.02 54.09 36.99 32.78 27.21 29.90 15.78 46.49 15.78 30.86 32.58 29.92 26.41 28.30 18.54 36.50 18.54 18.11 29.45 27.78 25.60 27.01 21.01 30.78 21.01 9.92 26.98 26.12 25.00 25.92 23.08 27.17 23.08 4.24 25.19 24.79 24.30 24.99 24.49 24.77 24.30 0.62 23.77 23.72 23.70 24.16 25.14 23.34 23.34 0.15 22.73 22.70 22.70 23.21 24.56 22.43 22.43 0.15 21.83 21.71 21.60 22.14 22.92 21.43 21.43 0.15 21.16 20.82 20.40 21.01 20.57 20.81 20.40 0.56 20.49 19.92 19.20 19.85 17.98 20.48 17.98 2.65 19.82 19.02 18.00 18.70 15.84 20.27 15.84 4.58

157

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.28)

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

66.60 46.81 36.71 30.94 27.36 24.95 23.48 22.57 21.63 20.97 20.64 20.43

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 1.0 m (Aft ) 41.31 35.65 28.11 31.48 13.02 66.45 13.02 53.58 36.99 32.78 27.21 29.89 15.78 46.66 15.78 31.03 32.58 29.92 26.41 28.30 18.54 36.56 18.54 18.17 29.45 27.78 25.60 27.01 21.00 30.79 21.00 9.94 27.06 26.12 24.90 25.93 23.07 27.21 23.07 4.29 25.19 24.79 24.30 25.00 24.48 24.80 24.30 0.65 23.77 23.72 23.70 24.17 25.12 23.33 23.33 0.15 22.73 22.70 22.70 23.22 24.55 22.42 22.42 0.15 21.83 21.76 21.70 22.15 22.93 21.48 21.48 0.15 21.16 20.82 20.40 21.02 20.58 20.82 20.40 0.57 20.56 19.92 19.10 19.87 18.00 20.49 18.00 2.64 19.82 19.06 18.10 18.72 15.85 20.28 15.85 4.58

(Tables 7.29) DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

67.57 46.80 36.72 31.02 27.39 24.97 23.49 22.60 21.68 20.99 20.65 20.44

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 1.5m (Aft ) 41.31 35.65 28.11 31.48 13.02 67.42 13.02 54.55 36.99 32.78 27.21 29.88 15.79 46.65 15.79 31.01 32.58 29.92 26.41 28.29 18.55 36.57 18.55 18.17 29.45 27.78 25.60 27.01 20.99 30.87 20.99 10.03 27.06 26.16 25.00 25.93 23.06 27.24 23.06 4.33 25.19 24.83 24.40 25.01 24.46 24.82 24.40 0.57 23.85 23.72 23.60 24.18 25.10 23.34 23.34 0.15 22.73 22.74 22.80 23.23 24.55 22.45 22.45 0.15 21.91 21.76 21.60 22.16 22.94 21.53 21.53 0.15 21.16 20.82 20.40 21.03 20.59 20.84 20.40 0.59 20.56 19.96 19.20 19.88 18.02 20.50 18.02 2.63 19.82 19.06 18.10 18.73 15.87 20.29 15.87 4.57

158

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

(Tables 7.30)

DISP

KMT

25000 40000 5500 70000 8500 100000 115000 130000 145000 160000 175000 190000

67.12 46.86 36.82 31.06 27.41 25.02 23.49 22.62 21.73 21.01 20.66 20.45

COMPUTATIONS OF IMO ENVELOP KG1 KG2 KG3 KG4 KG5 KG6 KGmax GMmin TRIM - 2.0 m (Aft ) 41.31 35.61 28.01 31.46 13.02 66.97 13.02 54.10 36.99 32.74 27.11 29.88 15.80 46.71 15.80 31.06 32.66 29.92 26.31 28.29 18.55 36.67 18.55 18.27 29.45 27.78 25.60 27.01 20.99 30.91 20.99 10.07 27.06 26.16 25.00 25.94 23.05 27.26 23.05 4.36 25.19 24.83 24.40 25.02 24.43 24.87 24.40 0.62 23.85 23.72 23.60 24.18 25.07 23.34 23.34 0.15 22.80 22.74 22.70 23.24 24.54 22.47 22.47 0.15 21.91 21.76 21.60 22.18 22.93 21.58 21.58 0.15 21.16 20.86 20.50 21.05 20.60 20.86 20.50 0.51 20.56 19.96 19.20 19.89 18.04 20.51 18.04 2.62 19.89 19.06 18.00 18.74 15.89 20.30 15.89 4.56

.

159

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.6 STEP BY STEP GUIDE TO THE TRIM AND STABILITY CALCULATIONS Step - 1

Identify the loading condition and associated deadweight items and the centres of gravity (KG & LCG).

Step - 2

Displacement for this condition along with the vertical (KG) and longitudinal (LCG) centre of gravity is given by the sum of deadweight items and the Lightship weight

Step - 3

Determine the LCB, T, & LCF from the hydrostatics tables and above parameters w.r.t to the corresponding trim.

Step - 4

From the above graphs read off the trim at which LCB = LCG and also the corresponding LCF & T. This is the trim at which the ship will float in equilibrium. Cross check the displacement & LCB at this trim & draft and continue the iteration till sufficient accuracy of results are obtained satisfying the conditions -Total Weight of the ship = Displacement and LCG=LCB .

Step - 5

From the trim obtained by the above calculate the draft forward and draft aft.

Step-6

Metacentric Height (GM) is given by the difference between KMt &KG and expressed as GM = KMt – KG(m).

Step-7

Applying Free Surface correction for partially filled tanks to get the final GM G0 M = GM – GG0. .

Step – 8

The GM obtained through the above calculations should satisfy the maximum permissible KG min permissible GM as specified by the IMO criteria for intact stability.

Step – 9

The metacentric height calculated above is valid for smaller angles of heel. For larger angles of heel the righting lever (GZ) is to be considered.

160

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Step – 10

From the GZ values obtained for the different angles of heel plot a curve of Angle of Heel versus GZ. From this curve calculate the areas under different angles to satisfy the IMO intact stability criteria

Step – 11

Finally, the weather criteria as per IMO requirements is to be found satisfactory for different loading conditions.

7.7 TANK POSITIONS AND CAPACITIES

S.No. 1 2 3 4 5 6 7 8 9 10 11 12

Item CH1(P) CH1(S) CH2(P) CH2(S) CH3(P) CH3(S) CH4(P) CH4(S) CH5(P) CH5(S) Slop tank(P) Slop tank(S)

Determination of COG of Cargo holds (Tables 7.31) Fr.No. Weight LCG VCG (98%vol) m m 70-114 13526.12 69.77 13.53 70-114 13526.12 69.77 13.53 114-164 15901.85 109.25 13.45 114-164 15901.85 109.25 13.45 164-209 14311.66 149.63 13.45 164-209 14311.66 149.63 13.45 209-259 15621.22 189.63 13.45 209-259 15621.22 189.63 13.45 259-314 12344.41 225.39 13.43 259-314 12344.41 225.39 13.43 64-70 1722.05 50.99 13.84 64-70 1722.05 50.99 13.84

161

TCG m -10.43 10.43 -10.69 10.69 -10.69 10.69 -10.69 10.69 -9.32 9.32 -9.86 9.86

FSM tm 15475.16 15475.16 18504.95 18504.95 16654.46 16654.46 18178.39 18178.39 13350.11 13350.11 210.43 210.43

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Determination of COG of ballast tank (Tables 7.33)

S.No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Item Aft peak tank(s) Aft peak tank(s) Wing ballast tank1(P) Wing ballast tank1(S) Wing ballast tank2(P) Wing ballast tank2(S) Wing ballast tank3(P) Wing ballast tank3(S) Wing ballast tank4(P) Wing ballast tank4(S) Wing ballast tank5(P) Wing ballast tank5(S) Wing ballast tank6(P) Wing ballast tank6(S) Ballast tank 1(P) Ballast tank 1(S) Ballast tank 2(P) Ballast tank 2(S) Ballast tank 3(P) Ballast tank 3(S) Ballast tank 4(P) Ballast tank 4(S) FP tank(P) FP tank(S)

Fr.No.

Weight t(98%vol)

AE -16 AE -16 64-70 64-70 70-114 70-114 114-164 114-164 164-209 164-209 209-259 209-259 259-314 259-314 131-164 131-164 164-209 164-209 209-259 209-259 259-314 259-314 314-fe 314-fe

1026.48 1026.48 298.33 298.33 2390.57 2390.57 2933.79 2933.79 2640.41 2640.41 2882.01 2882.01 2575.32 2575.32 1694.27 1694.27 2553.50 2553.50 2787.16 2787.16 2070.92 2070.92 1258.82 1258.82

162

LCG m -5.63 -5.63 50.96 50.96 73.20 73.20 113.15 113.15 153.53 153.53 193.53 193.53 233.25 233.25 119.65 119.65 153.53 153.53 193.53 193.53 228.34 228.34 257.31 257.31

VCG m 18.96 18.96 12.49 12.49 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 13.01 13.01 1.54 1.54 1.54 1.54 1.54 1.54 1.56 1.56 9.14 9.14

TCG m

FSM tm

-7.26 7.26 -20.85 20.85 -21.18 21.18 -21.18 21.18 -21.18 21.18 -21.18 21.18 -18.12 18.12 -11.19 11.19 -11.29 11.29 -11.29 11.29 -18.12 18.12 -3.88 3.88

696.39 696.39 12.47 12.47 37.30 37.30 47.57 47.57 42.81 42.81 46.73 46.73 41.26 41.26 3791.36 3791.36 6007.23 6007.23 6556.91 6556.91 4390.36 4390.36 1034.51 1034.51

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

Determination of COG of Consumable. (Tables 7.32) S.No Item Fr.No. Weight LCG VCG (98%vol) m m 1 HFO tank1(P) 21-46 370.87 23.72 2.28 2 HFO tank1(S) 21-46 370.87 23.72 2.28 3 HFO tank 2(P) 67-70 114.98 50.05 1.60 4 HFO tank 2(S) 67-70 114.98 50.05 1.60 5 HFO tank3(P) 70-114 2045.06 71.64 1.57 6 HFO tank3(S) 70-114 2045.06 71.64 1.57 7 HFO tank4(P) 114-131 798.39 95.20 1.54 8 HFO tank4(S) 114-131 798.39 95.20 1.54 9 Boiler fuel tank1(P) 59-64 176.62 44.10 1.90 10 Boiler fuel tank1(S) 59-64 176.62 44.10 1.90 11 Diesel oil tank 1(P) 46-59 371.19 35.90 2.28 12 Diesel oil tank 1(S) 46-59 371.19 35.90 2.28 13 Lo tank(P) 64-67 108.93 47.47 1.60 14 Lo tank(s) 64-67 108.93 47.47 1.60 15 Waste water tank (P) 9---21 64.90 8.38 4.00 16 Waste water tank(S) 9---21 64.90 8.38 4.00 17 Fresh water tank (P) 9---21 15.68 8.38 10.20 18 Fresh water tank(S) 9---21 15.68 8.38 10.20

163

TCG m -5.18 5.18 -8.21 8.21 -9.91 9.91 -11.19 11.19 -7.56 7.56 -5.18 5.18 -8.21 8.21 -2.25 2.25 3.10 3.10

FSM tm 476.06 476.06 82.29 82.29 4654.40 4654.40 1855.6 1855.6 350.44 350.44 662.15 662.15 82.29 82.29 2.86 2.86 1.68 1.68

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

7.8

DETAILED TRIM AND STABILITY CALCULATIONS

This is calculated and compared for both the full load and ballast conditions According to IMO a ship has to be examined for the following four loading conditions. 1) Ship in the fully loaded departure condition, with cargo homogeneously distributed throughout all cargo spaces and with full stores and cargo. 2) Ship in the fully loaded arrival condition, with cargo homogeneously distributed throughout all cargo spaces and with 10 % stores. 3) Ship in ballast in the departure condition, without cargo but with full stores and fuel. 4) Ship in ballast in the arrival condition, without cargo and with 10 % stores and fuel remaining.

Trim calculations are based upon capacity and longitudinal position of centre of gravity. Apart from conditions stated above, the following conditions in MARPOL also have to be satisfied. 1) The moulded draught amidships(dm) in meters (without taking into consideration any ship’s deformation) shall not be less than: dm = 2.0 + 0.02L; dm = 6.58 m 2) The draughts at the forward and after perpendiculars shall correspond to those determined by the draught amidships (dm), in association with the trim by the stern of not greater than 0.015L.

164

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION - 1 FULLY LOADED DEPARURE CONDITION SL.NO

ITEM

WEIGHT

LCG

L.MOM

VCG

V.MOM

FSM

t

m

tm

m

tm

tm

1

CREW & EFFECT

5.76

36.89

212.49

30.78

177.29

0.00

2

PROVISION STORE

9.97

36.89

367.79

28.00

279.16

0.00

3

CH1(P)

13526.12

69.77

943717.31

13.53

183008.39

15475.16

4

CH1(S)

13526.12

69.77

943717.31

13.53

183008.39

15475.16

5

CH2(P)

15901.85

109.25

1737276.57

13.45

213879.82

18504.95

6

CH2(S)

15901.85

109.25

1737276.57

13.45

213879.82

18504.95

7

CH3(P)

14311.66

149.63

2141453.77

13.45

192491.83

16654.46

8

CH3(S)

14311.66

149.63

2141453.77

13.45

192491.83

16654.46

9

CH4(P)

15621.22

189.63

2962252.76

13.45

210105.47

18178.39

10

CH4(S)

15621.22

189.63

2962252.76

13.45

210105.47

18178.39

11

CH5(P)

12344.41

225.39

2782305.71

13.4

165785.38

13350.11

12

CH5(S)

12344.41

225.39

2782305.71

13.4

165785.38

13350.11

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

HFO tank1(p) HFO tank1(s) HFO tank2(p) HFO tank2(s) HFO tank 3(p) HFO tank 3(s) HFO tank4(p) HFO tank4(s) Boiler fuel tank1(P) Boiler fuel tank1(S) Diesel oil tank 1(P) Diesel oil tank 1(S) lo tank(P) lo tank(s) Waste water tank (P) Waste water tank (S) Fresh water tank(P)

370.87 370.87 114.98 114.98 2045.06 2045.06 798.39 798.39 176.62 176.62 332.12 332.12 108.93 108.93 64.90 64.90 15.68

23.72 23.72 50.05 50.05 71.64 71.64 95.20 95.20 44.10 44.10 35.90 35.90 47.47 47.47 8.38 8.38 8.38

8797.11 8797.11 5754.67 5754.67 146509.43 146509.43 76006.57 76006.57 7789.65 7789.65 11923.00 11923.00 5170.76 5170.76 543.62 543.62 131.35

2.28 2.28 1.60 1.60 1.57 1.57 1.54 1.54 1.90 1.90 2.28 2.28 1.60 1.60 4.00 4.00 10.2

845.60 845.60 184.52 184.52 3213.03 3213.03 1232.13 1232.13 334.73 334.73 757.24 757.24 174.81 174.81 259.58 259.58 159.94

476.06 476.06 82.29 82.29 4654.40 4654.40 1855.66 1855.66 350.44 350.44 662.15 662.15 82.29 82.29 2.86 2.86 1.68

30

Fresh water tank(S)

15.68

8.38

131.40

10.2

159.94

1.68

31

Aft peak tank(P)

400.00

-5.63

-2253.72

18.96

7584.76

696.39

32

Aft peak tank(S)

400.00

-5.63

-2253.72

18.96

7584.76

696.39

33

Ice load

395.2

146.37

57845.42

24.39

9638.93

0.00

TOTAL

152676.52

142.22

21713182.87

12.90

1970129.8

165

182054.57

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION -1 FULLY LOADED DEPARURE CONDITION DEADWEIGHT

152676.52

142.22

21713182.87

12.90

1970129.84

182054.57

LIGHTSHIP WEIGHT

31694.80

107.46

3405923.21

12.63

400305.32

0.00

DISPLACEMENT

184371.32

136.24

25119106.08

12.86

2370435.16

182054.57

DISPLACEMENT

184371.32

t

12.86

m

LONGITUDINAL CENTRE OF GRAVITY (LCG)

136.24

m

LONGITUDINAL CENTRE OF BUOYANCY (LCB)

136.24

m

1.90

cm

16.86

m

129.14

m

2361.41

tm

METACENTRIC RADIUS (KMT)

20.47

m

BASELINE DRAFT AFT (TAFT)

16.87

m

BASELINE DRAFT FORD (TFORD)

16.85

m

DRAFT AFT AT DRAFT MARKS

16.87

m

DRAFT FOR'D AT DRAFT MARKS

16.85

m

VERTICAL CENTRE OF GRAVITY (KG/VCG)

FROM HYDROSTATICS THE TRIM IS CORRESPONDING MEAN DRAFT LONGITUDINAL CENTRE OF FLOTATION (LCF) MOMENT TO CHANGE TRIM BY 1cm (MCT1cm)

TRANSVERSE METACENTRIC HEIGHT (GMT)

GMT = KMT - KG

7.61

m

FREE SURFACE (FSM) CORRECTION (GG0)

GG0 = FSM/DISP

0.99

m

CORRECTED METACENTRE (G0MT) VERTICAL CENTRE OF GRAVITY WITH FSM (KG0)

G0MT = GMT - GG0

6.62

m

13.85

m

KG0 = KG + GG0 G0Z = KN - KG0 * SIN(θ)

RIGHTING ARM LEVER (G0Z)

166

m

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION -1 FULLY LOADED DEPARURE CONDITION ANGLE (°)



10°

20°

30°

40°

50°

60°

SIN(θ)

0.09

0.17

0.34

0.5

0.64

0.77

0.87

KN (m)

1.79

3.59

7.14

9.78

11.66

12.88

13.49

G0Z (m)

0.55

1.25

2.45

2.89

2.83

2.26

1.49

AREA UNDER CURVE UPTO 300

0.90

m radians

1.39

m radians

AREA UNDER CURVE BETWEEN 30 & 40

0.49

m radians

MAXIMUM RIGHTING LEVER (G0Z)

2.92

m

0

AREA UNDER CURVE UPTO 40

0

0

ANGLE AT WHICH MAX G0Z OCCURS

33.60

PROJECTED LATERAL WINDAGE AREA (A)

2247.40

COG OF WINDAGE AREA ABOVE HALF DRAFT (Z)

degrees m2

13.71

m

STEADY WIND HEELING LEVER (lw1)

0.01

m

GUST WIND HEELING LEVER (lw2)

0.02

m

ANGLE OF HEEL DUE TO WIND (θ0)

0.16

degrees

ANGLE OF ROLL (θ1)

18.66

degrees

GUST WIND LEVER 2ND INTERCEPT (θc)

75.20

degrees

ADOPTED UPPER LIMIT FOR AREA (b) (θ2)

40.41

degrees

ANGLE OF DOWNFLOODING (θf)

40.41

degrees

ANGLE OF DECK EDGE IMMERSION (θd)

25.84

degrees

NET AREA BELOW GUST WIND HEELING ARM "a"

0.38

m radians

NET AREA ABOVE GUST WIND HEELING ARM "b"

1.42

m radians

167

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION -1 FULLY LOADED DEPARURE CONDITION

4.8 4.4 4.0

RIGHTING LEVER GZ (m)

3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4

θ 5

10

15

20

30

θ ANGLE OF HEEL(deg)

θ

Fig 7.2

.

168

40

50

60

70

θ

80

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION-2 FULLY LOADED ARRIVAL CONDITION (50% STORE) SL.NO

ITEM

WEIGHT

LCG

L.MOM

VCG

V.MOM

FSM

t

m

tm

m

tm

tm

1

CREW & EFFECT

5.76

36.89

212.49

30.78

177.29

0.00

2

PROVISION STORE

4.90

36.89

180.76

28.00

137.20

0.00

3

CH1(P)

13526.12

69.77

943717.31

13.53

183008.39

15475.16

4

CH1(S)

13526.12

69.77

943717.31

13.53

183008.39

15475.16

5

CH2(P)

15901.85

109.25

1737276.57

13.45

213879.82

18504.95

6

CH2(S)

15901.85

109.25

1737276.57

13.45

213879.82

18504.95

7

CH3(P)

14311.66

149.63

2141453.77

13.45

192491.83

16654.46

8

CH3(S)

14311.66

149.63

2141453.77

13.45

192491.83

16654.46

9

CH4(P)

15621.22

189.63

2962252.76

13.45

210105.47

18178.39

10

CH4(S)

15621.22

189.63

2962252.76

13.45

210105.47

18178.39

11

CH5(P)

12344.41

225.39

2782305.71

13.43

165785.38

13350.11

12

CH5(S)

12344.41

225.39

2782305.71

13.43

165785.38

13350.11

13

Slop tank(P)

861.00

50.99

43902.02

13.84

11916.24

210.43

14

Slop tank(S)

861.00

50.99

43902.02

13.84

11916.24

210.43

15

HFO tank1(P)

185.44

23.72

4398.56

2.28

422.80

476.06

16

HFO tank1(S)

185.44

23.72

4398.56

2.28

422.80

476.06

17

HFO tank2(P)

57.49

50.05

2877.34

1.60

92.26

82.29

18

HFO tank2(S)

57.49

50.05

2877.34

1.60

92.26

82.29

19

HFO tank 3(P)

1022.53

71.64

73254.71

1.57

1606.52

4654.40

20

HFO tank 3(S)

1022.53

71.64

73254.71

1.57

1606.52

4654.40

21

HFO tank4(P)

399.19

95.20

38003.29

1.54

616.06

1855.66

22

HFO tank4(S)

399.19

95.20

38003.29

1.54

616.06

1855.66

23

Boiler fuel tank1(P)

88.31

44.10

3894.82

1.90

167.36

350.44

24

Boiler fuel tank1(S)

88.31

44.10

3894.82

1.90

167.36

350.44

25

Diesel oil tank 1(P)

166.06

35.90

5961.55

2.28

378.62

662.15

26

Diesel oil tank 1(S)

166.06

35.90

5961.55

2.28

378.62

662.15

27

lo tank(P)

54.46

47.47

2585.38

1.60

87.40

82.29

28

lo tank(S)

54.46

47.47

2585.38

1.60

87.40

82.29

29

Waste water tank (P)

32.45

8.38

271.81

4.00

129.79

2.86

30

Waste water tank (S)

32.45

8.38

271.81

4.00

129.79

2.86

31

Fresh water tank(P)

7.84

8.38

65.67

10.20

79.97

1.68

32

Fresh water tank(S)

7.84

8.38

65.70

10.20

79.97

1.68

33

Aft peak tank(P)

825.00

-5.63

-4648.30

18.96

15643.56

696.39

34

Aft peak tank(S)

825.00

-5.63

-4648.30

18.96

15643.56

696.39

35

Ice load

395.2

146.37

57845.42

24.39

9638.93

0.00

TOTAL

151215.91

142.40

21533384.64

13.24

2002776.36

169

182475.43

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION-2 FULLY LOADED ARRIVAL CONDITION (50% STORE) DEADWEIGHT

151215.91

142.40

21533384.64

13.24

2002776.36

182475.43

LIGHTSHIP WEIGHT

31694.80

107.46

3405923.21

12.63

400305.32

0.00

DISPLACEMENT

182910.71

136.35

24939307.85

13.14

2403081.68

182475.43

DISPLACEMENT

182910.71

t

13.14

m

LONGITUDINAL CENTRE OF GRAVITY (LCG)

136.35

m

LONGITUDINAL CENTRE OF BUOYANCY (LCB)

136.35

m

FROM HYDROSTATICS THE TRIM IS

-2.30

cm

CORRESPONDING MEAN DRAFT

16.74

m

129.21

m

2355.33

tm

METACENTRIC RADIUS (KMT)

20.49

m

BASELINE DRAFT AFT (TAFT)

16.73

m

BASELINE DRAFT FORD (TFORD)

16.75

m

DRAFT AFT AT DRAFT MARKS

16.73

m

DRAFT FOR'D AT DRAFT MARKS

16.75

m

TRANSVERSE METACENTRIC HEIGHT (GMT)

7.35

m

FREE SURFACE (FSM) CORRECTION (GG0)

1.00

m

CORRECTED METACENTRE (G0MT)

6.35

m

14.14

m

VERTICAL CENTRE OF GRAVITY (KG/VCG)

LONGITUDINAL CENTRE OF FLOTATION (LCF) MOMENT TO CHANGE TRIM BY 1cm (MCT1cm)

VERTICAL CENTRE OF GRAVITY WITH FSM (KG0) G0Z = KN - KG0 * SIN(θ)

RIGHTING ARM LEVER (G0Z) ANGLE (°)



10°

20°

30°

40°

m 50°

60°

SIN(θ)

0.09

0.17

0.34

0.5

0.64

0.77

0.87

KN (m)

1.79

3.60

7.17

9.85

11.74

12.95

13.55

G0Z (m)

0.52

1.19

2.36

2.77

2.68

2.05

1.23

170

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION-2 FULLY LOADED ARRIVAL CONDITION (50% STORE) AREA UNDER CURVE UPTO 300

0.88

m radians

1.35

m radians

AREA UNDER CURVE BETWEEN 30 & 40

0.47

m radians

MAXIMUM RIGHTING LEVER (G0Z)

2.79

m

AREA UNDER CURVE UPTO 40

0 0

0

ANGLE AT WHICH MAX G0Z OCCURS

33.15

PROJECTED LATERAL WINDAGE AREA (A) COG OF WINDAGE AREA ABOVE HALF DRAFT (Z)

2280.95

degrees m2

13.69

m

STEADY WIND HEELING LEVER (lw1)

0.01

m

GUST WIND HEELING LEVER (lw2)

0.02

m

ANGLE OF HEEL DUE TO WIND (θ0)

0.16

degrees

ANGLE OF ROLL (θ1)

18.82

degrees

GUST WIND LEVER 2ND INTERCEPT (θc)

72.80

degrees

ADOPTED UPPER LIMIT FOR AREA (b) (θ2)

40.78

degrees

ANGLE OF DOWNFLOODING (θf)

40.78

degrees

ANGLE OF DECK EDGE IMMERSION (θd) NET AREA BELOW GUST WIND HEELING ARM "a" NET AREAABOVE GUST WIND HEELING ARM "b"

26.15

degrees

171

0.36

m radians

1.36

m radians

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION-2 FULLY LOADED ARRIVAL CONDITION (50% STORE)

4.8 4.4 4.0

RIGHTING LEVER GZ (m)

3.6 3.2 2.8 2.4 2.0 1.6 1.2 0.8 0.4

θ 5

10

15

20

30

θ ANGLE OF HEEL(deg)

θ

Fig 7.3

172

40

θ 50

60

70

80

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION - 3 BALLAST DEPARTURE CONDITION (50% STORE) SL.NO

ITEM

1

2

WEIGHT

LCG

L.MOM

VCG

V.MOM

FSM

t

m

tm

m

tm

tm

3

4

5

6

7

8

1

CREW & EFFECT

5.76

36.89

212.49

30.78

177.29

0.00

2

PROVISION STORE

4.90

36.89

180.76

28.00

137.20

0.00

3

HFO tank1(p)

185.44

23.72

4398.56

2.28

422.80

476.06

4

HFO tank1(s)

185.44

23.72

4398.56

2.28

422.80

476.06

5

HFO tank2(p)

57.49

50.05

2877.34

1.60

92.26

82.29

6

HFO tank2(s)

57.49

50.05

2877.34

1.60

92.26

82.29

7

HFO tank 3(p)

1022.53

71.64

73254.71

1.57

1606.52

4654.40

8

HFO tank 3(s)

1022.53

71.64

73254.71

1.57

1606.52

4654.40

9

HFO tank4(p)

399.19

95.20

38003.29

1.54

616.06

1855.66

10

HFO tank4(s)

399.19

95.20

38003.29

1.54

616.06

1855.66

11

Boiler fuel tank1(P)

88.31

44.10

3894.82

1.90

167.36

350.44

12

Boiler fuel tank1(S)

88.31

44.10

3894.82

1.90

167.36

350.44

13

Diesel oil tank 1(P)

166.06

35.90

5961.55

2.28

378.62

662.15

14

Diesel oil tank 1(S)

166.06

35.90

5961.55

2.28

378.62

662.15

15

lo tank(P)

54.46

47.47

2585.38

1.60

87.40

82.29

16

lo tank(s)

54.46

47.47

2585.38

1.60

87.40

82.29

17

Waste water tank (P)

32.45

8.38

271.81

4.00

129.79

2.86

18

Waste water tank (S)

32.45

8.38

271.81

4.00

129.79

2.86

19

Fresh water tank(P)

7.84

8.38

65.67

10.20

79.97

1.68

20

Fresh water tank(S)

7.84

8.38

65.70

10.20

79.97

1.68

21

Aft peak tank(P)

300.00

-5.63

-1690.29

18.96

5688.57

696.39

22

Aft peak tank(s)

300.00

-5.63

-1690.29

18.96

5688.57

696.39

23

Wing ballast tank1(P)

298.33

50.96

15203.46

12.49

3724.64

12.47

24

Wing ballast tank1(S)

298.33

50.96

15203.46

12.49

3724.64

12.47

25

Wing ballast tank2(P)

2390.57

73.20

174989.93

12.50

29882.16

37.30

26

Wing ballast tank2(S)

2390.57

73.20

174989.93

12.50

29882.16

37.30

27

Wing ballast tank3(P)

2933.79

113.15

331957.89

12.50

36672.33

47.57

28

Wing ballast tank3(S)

2933.79

113.15

331957.89

12.50

36672.33

47.57

29

Wing ballast tank4(P)

2640.41

153.53

405368.55

12.50

33005.09

42.81

30

Wing ballast tank4(S)

2640.41

153.53

405368.55

12.50

33005.09

42.81

31

Wing ballast tank5(P)

2882.01

193.53

557741.63

12.50

36025.17

46.73

32

Wing ballast tank5(S)

2882.01

193.53

557741.63

12.50

36025.17

46.73

33

Wing ballast tank6(P)

2575.32

233.25

600695.03

13.01

33498.24

41.26

34

Wing ballast tank6(S)

2575.32

233.25

600695.03

13.01

33498.24

41.26

35

Ballast tank 1(P)

1694.27

119.65

202719.89

1.54

2614.72

3791.36

173

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

36

Ballast tank 1(S)

1694.27

119.65

202719.89

1.54

2614.72

3791.36

37

Ballast tank 2(P)

2553.50

153.53

392026.42

1.54

3932.39

6007.23

38

Ballast tank 2(S)

2553.50

153.53

392026.42

1.54

3932.39

6007.23

39

Ballast tank 3(P)

2787.16

193.53

539384.36

1.54

4292.22

6556.91

40

Ballast tank 3(S)

2787.16

193.53

539384.36

1.54

4292.22

6556.91

41

ballast tank 4(P)

2070.92

228.34

472882.25

1.56

3232.91

4390.36

42

Ballast tank 4(S)

2070.92

228.34

472882.25

1.56

3232.91

4390.36

43

FP tank(P)

1258.82

257.31

323902.48

9.14

11508.25

1034.51

44

FP tank(S)

1258.82

257.31

323902.48

9.14

11508.25

1034.51

45

Sloptank(P)

861.00

50.99

43902.02

13.84

11916.24

210.43

46

Sloptank(S)

861.00

50.99

43902.02

13.84

11916.24

210.43

47

Ice load

395.2

146.37

57845.42

24.39

9638.93

TOTAL

54925.62

153.64

8439032.20

8.18

449100.84

62166.26

0.00

DEADWEIGHT LIGHTSHIP WEIGHT

54925.62

153.64

8439032.20

8.18

449100.84

62166.26

31694.80

107.46

3405923.21

12.63

400305.32

0.00

DISPLACEMENT

86620.42

136.75

11844955.41

9.81

849406.16

62166.26

86620.42

t

9.81

m

DISPLACEMENT VERTICAL CENTRE OF GRAVITY (KG/VCG) LONGITUDINAL CENTRE OF GRAVITY (LCG) LONGITUDINAL CENTRE OF BUOYANCY (LCB)

136.75

m

136.75

m

FROM HYDROSTATICS THE TRIM IS

142.30

cm

8.60

m

136.60

m

1906.03

tm

26.88

m

BASELINE DRAFT AFT (TAFT)

9.31

m

BASELINE DRAFT FORD (TFORD)

7.89

m

DRAFT AFT AT DRAFT MARKS

9.31

m

DRAFT FOR'D AT DRAFT MARKS TRANSVERSE METACENTRIC HEIGHT (GMT) FREE SURFACE (FSM) CORRECTION (GG0)

7.89

m

GMT = KMT - KG

17.07

m

GG0 = FSM/DISP

0.72

m

G0MT = GMT - GG0

16.35

m

KG0 = KG + GG0

10.53

m

CORRESPONDING MEAN DRAFT LONGITUDINAL CENTRE OF FLOTATION (LCF) MOMENT TO CHANGE TRIM BY 1cm (MCT1cm) METACENTRIC RADIUS (KMT)

CORRECTED METACENTRE (G0MT) VERTICAL CENTRE OF GRAVITY WITH FSM (KG0)

174

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION – 3 BALLAST DEPARTURE CONDITION (50% STORE) ANGLE (°)



10°

20°

30°

40°

50°

60°

SIN(θ)

0.09

0.17

0.34

0.5

0.64

0.77

0.87

KN (m)

2.38

4.77

9.45

13.12

15.60

16.68

16.71

G0Z (m)

1.43

2.98

5.87

7.86

8.86

8.57

7.55

AREA UNDER CURVE UPTO 300

2.25

AREA UNDER CURVE UPTO 400

3.72

AREA UNDER CURVE BETWEEN 300 & 400

1.47

m radians m radians m radians

MAXIMUM RIGHTING LEVER (G0Z)

8.94

m

ANGLE AT WHICH MAX G0Z OCCURS

41.33

PROJECTED LATERAL WINDAGE AREA (A) COG OF WINDAGE AREA ABOVE HALF DRAFT (Z)

4421.77

degrees m2

13.24

m

STEADY WIND HEELING LEVER (lw1)

0.03

m

GUST WIND HEELING LEVER (lw2)

0.05

m

ANGLE OF HEEL DUE TO WIND (θ0)

0.21

degrees

ANGLE OF ROLL (θ1)

17.48

degrees

GUST WIND LEVER 2ND INTERCEPT (θc)

99.06

degrees

ADOPTED UPPER LIMIT FOR AREA (b) (θ2)

50.00

degrees

ANGLE OF DOWNFLOODING (θf)

57.11

degrees

ANGLE OF DECK EDGE IMMERSION (θd) NET AREA BELOW GUST WIND HEELING ARM "a" NET AREA ABOVE GUST WIND HEELING ARM "b"

31.81

degrees m radians m radians

175

0.80 5.19

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION – 3 BALLAST DEPARTURE CONDITION (50% STORE)

9.6 8.8 8.0

RIGHTING LEVER GZ (m)

7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 0.8

θ 5

10

15

20

30

θ ANGLE OF HEEL(deg)

θ

Fig 7.4

176

40

50

θ 60

70

80

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION - 4 BALLAST ARRIVAL CONDITION (10% STORE) SL.NO 1

ITEM 2

1

CREW & EFFECT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PROVISION STORE HFO tank1(p) HFO tank1(s) HFO tank2(p) HFO tank2(s) HFO tank 3(p) HFO tank 3(s) HFO tank4(p) HFO tank4(s) Boiler fuel tank1(P) Boiler fuel tank1(S) Diesel oil tank 1(P) Diesel oil tank 1(S) lo tank(P) lo tank(s) Waste water tank (P) Waste water tank (S)

19

Fresh water tank(P)

20

Fresh water tank(S)

21

Aft peak tank(P)

22 23 24 25 26 27 28 29 30 31 32 33 34 35

Aft peak tank(s) Wing ballast tank1(P) Wing ballast tank1(S) Wing ballast tank2(P) Wing ballast tank2(S) Wing ballast tank3(P) Wing ballast tank3(S) Wing ballast tank4(P) Wing ballast tank4(S) Wing ballast tank5(P) Wing ballast tank5(S) Wing ballast tank6(P) Wing ballast tank6(S) Ballast tank 1(P)

WEIGHT

LCG

L.MOM

VCG

V.MOM

FSM

t

m

tm

m

tm

tm

3

4

5

6

7

8

5.76

36.89

212.49

30.78

177.29

0.00

0.98 37.09 37.09 11.50 11.50 204.51 204.51 79.84 79.84 17.66 17.66 33.21 33.21 10.89 10.89 6.49 6.49

36.89 23.72 23.72 50.05 50.05 71.64 71.64 95.20 95.20 44.10 44.10 35.90 35.90 47.47 47.47 8.38 8.38

36.15 879.71 879.71 575.47 575.47 14650.94 14650.94 7600.66 7600.66 778.96 778.96 1192.24 1192.24 517.08 517.08 54.36 54.36

28.00 2.28 2.28 1.60 1.60 1.57 1.57 1.54 1.54 1.90 1.90 2.28 2.28 1.60 1.60 4.00 4.00

27.44 84.56 84.56 18.45 18.45 321.30 321.30 123.21 123.21 33.47 33.47 75.72 75.72 17.48 17.48 25.96 25.96

0.00 476.06 476.06 82.29 82.29 4654.40 4654.40 1855.66 1855.66 350.44 350.44 662.15 662.15 82.29 82.29 2.86 2.86

1.57

8.38

13.13

10.20

15.99

1.68

1.57

8.38

13.14

10.20

15.99

1.68

600.00

-5.63

-3380.58

18.96

11377.13

696.39

600.00 298.33 298.33 2390.57 2390.57 2933.79 2933.79 2640.41 2640.41 2882.01 2882.01 2575.32 2575.32 1694.27

-5.63 50.96 50.96 73.20 73.20 113.15 113.15 153.53 153.53 193.53 193.53 233.25 233.25 119.65

-3380.58 15203.46 15203.46 174989.93 174989.93 331957.89 331957.89 405368.55 405368.55 557741.63 557741.63 600695.03 600695.03 202719.89

18.96 12.49 12.49 12.50 12.50 12.50 12.50 12.50 12.50 12.50 12.50 13.01 13.01 1.54

11377.13 3724.64 3724.64 29882.16 29882.16 36672.33 36672.33 33005.09 33005.09 36025.17 36025.17 33498.24 33498.24 2614.72

696.39 12.47 12.47 37.30 37.30 47.57 47.57 42.81 42.81 46.73 46.73 41.26 41.26 3791.36

177

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

36

Ballast tank 1(S)

1694.27

119.65

202719.89

1.54

2614.72

3791.36

37

Ballast tank 2(P)

2553.50

153.53

392026.42

1.54

3932.39

6007.23

38

Ballast tank 2(S)

2553.50

153.53

392026.42

1.54

3932.39

6007.23

39

Ballast tank 3(P)

2787.16

193.53

539384.36

1.54

4292.22

6556.91

40

Ballast tank 3(S)

2787.16

193.53

539384.36

1.54

4292.22

6556.91

41

Ballast tank 4(P)

2070.92

228.34

472882.25

1.56

3232.91

4390.36

42

Ballast tank 4(S)

2070.92

228.34

472882.25

1.56

3232.91

4390.36

43

FP tank(P)

1258.82

257.31

323902.48

9.14

11508.25

1034.51

44

FP tank(S)

1258.82

257.31

323902.48

9.14

11508.25

1034.51

45

Slop tank(P)

1722.00

50.99

87804.04

13.84

23832.48

210.43

46

Slop tank(S)

1722.00

50.99

87804.04

13.84

23832.48

210.43

47

Ice load

395.2

146.37

57845.42

24.39

9638.93

TOTAL

54021.66

153.89

8313209.87

8.86

478471.40

62166.26

DEADWEIGHT LIGHTSHIP WEIGHT

54021.66

153.89

8313209.87

8.86

478471.40

62166.26

31694.80

107.46

3405923.21

12.63

400305.32

0.00

DISPLACEMENT

85716.46

136.72

11719133.08

10.25

878776.72

62166.26

DISPLACEMENT VERTICAL CENTRE OF GRAVITY (KG/VCG)

0.00

85716.46

t

10.25

m

LONGITUDINAL CENTRE OF GRAVITY (LCG) LONGITUDINAL CENTRE OF BUOYANCY (LCB)

136.72

m

136.72

m

FROM HYDROSTATICS THE TRIM IS

143.60

cm

8.52

m

136.63

m

1902.31

tm

27.11

m

BASELINE DRAFT AFT (TAFT)

9.24

m

BASELINE DRAFT FORD (TFORD)

7.80

m

DRAFT AFT AT DRAFT MARKS

9.24

m

DRAFT FOR'D AT DRAFT MARKS

7.80

m

16.86

m

0.73

m

16.13

m

10.98

m

CORRESPONDING MEAN DRAFT LONGITUDINAL CENTRE OF FLOTATION (LCF) MOMENT TO CHANGE TRIM BY 1cm (MCT1cm) METACENTRIC RADIUS (KMT)

TRANSVERSE METACENTRIC HEIGHT (GMT)

CORRECTED METACENTRE (G0MT) VERTICAL CENTRE OF GRAVITY WITH FSM (KG0)

GMT = KMT - KG GG0 = FSM/DISP G0MT = GMT GG0 KG0 = KG + GG0

RIGHTING ARM LEVER (G0Z)

G0Z = KN - KG0

FREE SURFACE (FSM) CORRECTION (GG0)

178

m

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

* SIN(θ)

LOADING CONDITION – 4 BALLAST ARRIVAL CONDITION (10% STORE) ANGLE (°)



10°

20°

30°

40°

50°

60°

70

SIN(θ)

0.09

0.17

0.34

0.5

0.64

0.77

0.87

0.94

KN (m)

2.39

4.80

9.49

13.15

15.63

16.72

16.74

15.97

G0Z (m)

1.40

2.93

5.76

7.66

8.60

8.27

7.19

5.65

2.21

m radians

3.63

m radians

AREA UNDER CURVE BETWEEN 30 & 40

1.42

m radians

MAXIMUM RIGHTING LEVER (G0Z)

8.66

m

AREA UNDER CURVE UPTO 300 0

AREA UNDER CURVE UPTO 40

0

0

ANGLE AT WHICH MAX G0Z OCCURS

41.64

PROJECTED LATERAL WINDAGE AREA (A) COG OF WINDAGE AREA ABOVE HALF DRAFT (Z)

4441.91

degrees m2

13.24

m

STEADY WIND HEELING LEVER (lw1)

0.04

m

GUST WIND HEELING LEVER (lw2)

0.06

m

ANGLE OF HEEL DUE TO WIND (θ0)

0.21

degrees

22.74

degrees

100.15

degrees

ADOPTED UPPER LIMIT FOR AREA (b) (θ2)

50.00

degrees

ANGLE OF DOWNFLOODING (θf)

57.22

degrees

ANGLE OF DECK EDGE IMMERSION (θd) NET AREA BELOW GUST WIND HEELING ARM "a" NET AREA BELOW GUST WIND HEELING ARM "b"

31.96

degrees

ANGLE OF ROLL (θ1) GUST WIND LEVER 2ND INTERCEPT (θc)

179

1.33

m radians

5.06

m radians

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

LOADING CONDITION – 4 BALLAST ARRIVAL CONDITION (10% STORE)

9.6 8.8 8.0

RIGHTING LEVER GZ (m)

7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 0.8

θ 5

10

15

20

30

θ ANGLE OF HEEL(deg)

θ

Fig 7.5

180

40

50

θ 60

70

80

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

SUMMARY RESULTS OF ALL LOADING CONDITIONS (Tables 7.34) SL. NO

DESCRIPTION

UNIT

LOADING CONDITIONS LC - 1

LC - 2

LC - 3

LC - 4

1

Lighship weight

t

31694.80

31694.80

31694.80

31694.80

2

Deadweight

t

152676.52

151215.91

54925.62

54021.66

3

Displacement

t

184371.32

182910.71

86620.42

85716.46

4

VCG

m

12.86

13.14

9.81

10.25

5

LCG

m

136.24

136.35

136.75

136.72

6

LCB

m

136.24

136.35

136.75

136.72

7

Trim

cm

1.90

-2.30

142.30

143.60

8

Mean Draft (T)

m

16.86

16.74

8.60

8.52

9

LCF

m

129.14

129.21

136.60

136.63

10

MCT1cm

t.m

2361.41

2355.33

1906.03

1902.31

11

KMT

m

20.47

20.49

26.88

27.11

12

GMT

m

7.61

7.35

17.07

16.86

13

GG0

m

0.99

1.00

0.72

0.73

14

G 0 MT

6.62

6.35

16.35

16.13

15

Area upto 300

0.90

0.88

2.25

2.21

16

Area upto 400

1.39

1.35

3.72

3.63

17

Area between 300 & 400

m m rad m rad m rad

0.49

0.47

1.47

1.42

18

Max G0Z

m

2.92

2.79

8.94

8.66

19

Angle at max G0Z

deg

33.60

33.15

41.33

41.64

2

2247.40

2280.95

4421.77

4441.91

20

Windage Area (A)

m

21

m

13.71

13.69

13.24

13.24

22

COG of windage area (Z) Steady wind heeling lever (lw1)

m

0.01

0.01

0.03

0.04

23

Gust wind heeling lever (lw2)

m

0.02

0.02

0.05

0.06

24

Angle of heel due to wind (θ0)

deg

0.16

0.16

0.21

0.21

25

Angle of roll (θ1)

deg

18.66

18.82

17.48

22.74

26

Gust wind 2nd intercept (θc)

deg

75.20

72.80

99.06

100.15

27

Adopted upper limit (θ2)

deg

40.41

40.78

50.00

50.00

28

Angle of downflooding (θf)

deg

40.41

40.78

57.11

57.22

29

Angle of deck immersion (θd)

25.84

26.15

31.81

31.96

30

Area "a"

0.38

0.36

0.80

1.33

31

Area "b"

deg m rad m rad

1.42

1.36

5.19

5.06

181

Department of Ship Technology, CUSAT, B.Tech (NA$SB), Batch – XXIX

182

Related Documents

Capacity And Trim
November 2019 5
Trim
June 2020 17
Door Trim
October 2019 20