Certificate Mathematics in Action Full Solutions 4B
6 Basic Properties of Circles (I) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
MF = EM = 8 cm
Activity
(line from centre ⊥ chord bisects chord)
Activity 6.1 (p. 14) (c) ∠AOB = 2∠APB No matter where points B and P are, ∠AOB = 2∠APB. (or any other reasonable answers)
2. 3.
Activity 6.2 (p. 25) 1.
yes 2.
yes
3.
yes 4.
p. 9 1. ∵ ∴
yes
Activity 6.3 (p. 35)
∠A + ∠C = 180°
3.
= 3.5 cm
∠B + ∠D = 180°
4.
ON = OM = 4 cm (given) CD = AB (chords equidistant from centre are equal) = 7 cm CN = ND (line from centre ⊥ chord bisects chord) 1 = × 7 cm 2
The sum of the opposite angles of a cyclic quadrilateral is 180°.
•
•
Term minor arc
region BCE
•
•
major arc
AFB
AFB
•
•
diameter
region BECFA
•
•
chord
AB
•
•
major segment
PB = AP (line from centre ⊥ chord bisects chord) = 4 cm (line from centre ⊥ chord bisects chord) ∴ AB = (2 × 4) cm = 8 cm ∵ OQ = OP = 2 cm (given) (given) ∴ BC = AB (chords equidistant from centre are equal) = 8 cm (chords equidistant from ∴ BC = AB centre are equal) = 8 cm QC = BQ (line from centre ⊥ chord bisects chord) 1 = × 8 cm 2 = 4 cm
OB
•
•
minor segment
(line from centre ⊥ chord bisects chord)
region OBEC
•
•
sector
AC
•
•
radius
2.
Follow-up Exercise p. 3 Element AB
AB
p. 7 1.
2.
MB = AM = 8 cm
(line from centre ⊥ chord bisects chord)
∠OND = 90°
(line joining centre to mid-pt. of chord ⊥ chord)
3.
∴
= 10 2 − 6 2 cm = 8 cm
1
∴ ∵ ∴
Consider △OEM. EM = OE 2 − OM 2 (Pyth. theorem)
AB = (2 × 5) cm = 10 cm CN = ND
(line from centre ⊥ chord bisects chord) (line from centre ⊥ chord bisects chord)
(line from centre ⊥ chord bisects chord)
Consider △OND. ∠OND + ∠NOD + ∠ODN = 180° ∠ ( sum of △) 90° + ∠NOD + 35° = 180° ∠NOD = 55° 3.
MB = AM MB = AM
p. 18
CD = ( 2 × 5) cm = 10 cm AB = CD OM = ON = 2.5 cm
(equal chords, equidistant from centre)
6 1 ∠AOB 2 1 = × 60° 2 = 30°
x= 1.
2.
3.
∴ (∠ at centre twice ∠ at ☉ )
∴
ce
2. (∠ at centre twice ∠ at ☉ )
x = 2∠APB = 2 × 120° = 240°
(∠ at centre twice ∠ at ☉ )
∵ ∴ ∵
AB = DC x = 65°
(given) (equal chords, equal ∠s) (given)
∴
DC = AB y=6
∴ 3.
ce
Reflex ∠AOB = 360° – 140° (∠s at a pt.) = 220° 1 x = reflex ∠AOB 2 (∠ at centre twice ∠ at ☉ ) ce 1 = × 220° 2 = 110°
5.
x = 90°
6.
∠APB = 90° Consider △APB. ∠APB + 40° + x = 180° 90° + 40° + x = 180° x = 50°
(equal arcs, equal chords)
DC = AB
(equal chords, equal arcs)
(∠ in semi-circle) (∠ in semi-circle) (∠ sum of △)
1.
x = ∠BAC = 40°
(∠s in the same segment)
2.
x = 90°
(∠ in semi-circle)
y = ∠ACB = 20°
(∠s in the same segment)
4.
ce
4.
3.
(equal ∠s, equal arcs)
(given)
∴
p. 20
CD = AB CD = AB x=5
∵ ∴
x = 2∠APB = 2 × 50° = 100°
DC = AB x=4
Basic Properties of Circles (I)
∠EAC = ∠CBE = 30° x = ∠ADC + ∠DAC = 25° + 30° = 55°
(∠s in the same segment) △ (ext. ∠ of )
Consider △ABD. ∠ABD + ∠BAD + ∠ADB = 180° (∠ sum of △) ∠ABD + ( 40° + 20°) + 70° = 180° ∠ABD = 50° x = ∠ABD (∠s in the same segment) = 50°
p. 28 1. ∵
∠DOC = ∠AOB = 43° (given)
2
Certificate Mathematics in Action Full Solutions 4B
4.
Join OB. ∵ BC = ED (given) ∠ BOC = ∠ EOD ∴ (equal chords, equal ∠s) = 55° ∵ AB = BC (given) ∠ AOB = ∠ BOC ∴ (equal chords, equal ∠s) = 55° x = ∠BOC + ∠AOB = 55° + 55° = 110°
p. 31 1.
x BC = ∠AOB AB 2 x = (80°) 5 = 32°
y cm ∠DOC = AB ∠AOB
(arcs prop. to ∠s at centre)
(arcs prop. to ∠s at centre)
48° y = 5 80° =3 2.
x cm ∠DOC = AB ∠AOB
(arcs prop. to ∠s at centre)
50° x = 6 30° = 10 ∠BOC = 180° − ∠AOB − ∠DOC (adj. ∠s on st. line) = 180° − 30° − 50° = 100° y cm ∠BOC = (arcs prop. to ∠s at centre) AB ∠AOB
100° y = 6 30° = 20°
3
7
Basic Properties of Circles (I)
(arcs prop. to ∠s at ☉ce)
∠CED ∠BEC
(arcs prop. to ∠s at ☉ce)
x AB = ∠CFD CD
3.
6 (15°) 2 = 45°
x=
4.
x cm BC
=
(arcs prop. to ∠s at ☉ ) ce
y AB = BC ∠BEC
30° x = 10 40° = 7.5
(arcs prop. to ∠s at ☉ce)
6 (arcs prop. to ∠s at ☉ ) y = 10 (40°) ce = 24° 5.
∠ACB AB = ∠DBC CD
(arcs prop. to ∠s at ☉ce) 3 ( 48°) 4 = 36°
(arcs prop. to ∠s at ☉ ) ∠ACB = ce
x = 180° − ∠DBC − ∠ACB ∠ ( sum of △) = 180° − 48° − 36° = 96°
p. 38119 1.
2.
∠DEC = ∠ABC = 81° x = 180° − ∠DEC − ∠ECD = 180° − 81° − 65° = 34° x + ∠DAB = 180° x = 180° − 93° = 87° y = ∠CDE = 113°
3.
x + ∠CBA = 180° x = 180° − 127° = 53°
(ext. ∠, cyclic quad.) (∠ sum of △)
(opp. ∠s, cyclic quad.) (ext. ∠, cyclic quad.)
(opp. ∠s, cyclic quad.)
(∠ in semi-circle) ∠ACD = 90° (∠ sum of △) x + y + ∠ACD = 180° y = 180° − 90° − 53° = 37°
4
Certificate Mathematics in Action Full Solutions 4B OB = OC = ON + NC = (5 + 8) cm = 13 cm Consider △ONB.
3.
NB = OB 2 − ON 2
(Pyth. theorem)
= 13 2 − 5 2 cm = 12 cm ∵ AN = NB ∴ AB = (2 × 12) cm = 24 cm
(line from centre ⊥ chord bisects chord)
∵ ∴
Exercise
∵ ∴
Exercise 6A (p.10 10) Level 1 1.
∵
ON ⊥ AB NB = AN
∴
1 = × 16 cm 2 = 8 cm
4.
(Pyth. theorem)
= 8 + 6 cm = 10 cm ∴ The radius of the circle is 10 cm. 2
2
∵ ∴
CN = ND ON ⊥ CD
∴ ∵ ∴
∠ONK = 90° AM = MB OM ⊥ AB
∴ ∠OMK = 90° ∠MKN = 180° − ∠DKB = 180° − 43° = 137°
(line from centre ⊥ chord bisects chord)
(given) (chords equidistant from centre are equal)
(given) (line joining centre to midpt. of chord ⊥ chord) (given) (line joining centre to mid-pt. of chord ⊥ chord) (adj. ∠s on st. line)
Consider quadrilateral OMKN. ∠MON = 360° − ∠OMK − ∠ONK − ∠MKN = 360° − 90° − 90° − 137° = 43°
2.
5.
∵ ∴
∴ Join OB.
5
AM = MB AB = (2 × 6) cm = 12 cm ON = OM CD = AB = 12 cm
(given) (line from centre ⊥ chord bisects chord)
Join OB. Consider △NOB. OB = NB 2 + ON 2
(radii)
OM ⊥ AB AM = MB 1 MB = × 6 cm 2 = 3 cm
(given) (line joining from centre ⊥ chord bisects chord)
7 Consider △OMB.
Consider △OAC. ∵ OC = OA (radii) ∴ ∠OCA = ∠OAC (base ∠s, isos. △) ∠OCA + ∠OAC + ∠AOC = 180° ∠ ( sum of △) 2∠OCA + 122° = 180° ∠OCA = 29°
OM = OB 2 − MB 2 = 5 2 − 3 2 cm = 4 cm ON = MN − OM = (7 − 4) cm = 3 cm
(Pyth. theorem)
Join OD. Consider △OND. OD = OB = 5 cm
(radii)
ND = OD 2 − ON 2
(Pyth. theorem)
= 5 − 3 cm = 4 cm ∵ ON ⊥ CD ∴ CN = ND ∴
1 AB 2 1 = ( AM + MB ) 2 1 = (16 + 4) cm 2 = 10 cm OM = OB − MB ∴ = (10 − 4) cm = 6 cm OB =
7.
2
Basic Properties of Circles (I)
2
CD = (2 × 4) cm = 8 cm
(given) (line from centre ⊥ chord bisects chord)
Join OD. Consider △OMD. OD = OB = 10 cm
(radii)
MD = OD 2 − OM 2
(Pyth. theorem)
= 10 2 − 6 2 cm = 8 cm ∵ OM ⊥ CD ∴ CM = MD
6.
∵ ∴
CM = MD OM ⊥ CD
∴ ∠OMC = 90° ∠AOC = ∠OCM + ∠OMC = 32° + 90° = 122°
(given) (line joining centre to mid-pt. of chord ⊥ chord) (ext. ∠ of △)
8.
∴
CD = (2 × 8) cm = 16 cm
∵ ∴
BM = MC = 6 cm OM ⊥ BC
(given) (line from centre ⊥ chord bisects chord)
(given) (line joining centre to midpt. of chord ⊥ chord)
Consider △OMB. OM = OB 2 − BM 2
(Pyth. theorem)
= 10 2 − 6 2 cm = 8 cm Consider △OMD. MD = OD 2 − OM 2
(Pyth. theorem)
= 17 − 8 cm = 15 cm 2
2
6
Certificate Mathematics in Action Full Solutions 4B
∴
7
CD = MD − MC = (15 − 6) cm = 9 cm
7 9.
Construct a circle with centre O lying on BH, such that the circle cuts AB at two points P and Q, and cuts BC at two points R and S are shown.
Draw OM and ON such that OM ⊥ AB and ON ⊥ BC. OB = OB common side ∠ABH = ∠CBH given ∠OMB = ∠ONB = 90° constructed ∴ △OBM ≅ △OBN AAS ∴ OM = ON corr. sides, ≅ △s ∴ PQ = RS chords equidistant from centre are equal
Basic Properties of Circles (I)
∴
∠MND = ∠OND + ∠ONM = 90° + 15° = 105°
∴
∠OND = 90°
(line joining centre to mid-pt. of chord ⊥ chord)
SMEFSU08EX@F04 Construct the traingle ABC as shown. AC tan 60° = 12 cm AC = 12 tan 60° cm = 12 3 cm 1 × BC × AC 2 1 = × 12 × 12 3 cm 2 2 =
∴
Area of △ABC
= 72 3 cm 2
110.
Level 2 10. (a)
∵ ∴
∴
AM = MB ∠OMA = 90°
(given) (line joining centre to mid-pt. of chord ⊥ chord) ∠OMN = ∠OMA − ∠AMN = 90° − 75° = 15°
Let M be a point on AB such that OM ⊥ AB.
(b)
Join ON. ∵ CN = ND ∴ ∠OND = 90°
∵ ∴
CD = AB ON = OM
∴
∠ONM = ∠OMN = 15°
(given) (line joining centre to mid-pt. of chord ⊥ chord) (given) (equal chords, equidistant from centre) (base ∠s, isos. △)
8
Certificate Mathematics in Action Full Solutions 4B OM ⊥ AB AM = MB
(constructed) (line from centre ⊥ chord bisects chord) ∴ 1 = × 24 cm 2 = 12 cm Consider △OMA. ∵
OM = OA 2 − AM 2
(Pyth. theorem)
= 15 − 12 cm = 9 cm Consider △OMC. MC = MB + BC = (12 + 28) cm = 40 cm 2
2
OC = OM 2 + MC 2
(Pyth. theorem)
= 9 2 + 40 2 cm = 41 cm 12. (a)
Consider △OAB and △OAC. common side OA = OA radii OB = OC given AB = AC ∴ ∴ ∴
(b)
Consider △ABN and △ACN. (proved in (a)) ∠OAB = ∠OAC (given) AB = AC (common side) AN = AN ∴ ∴ ∴
(c)
△OAB ≅ △OAC SSS ∠OAB = ∠OAC corr. ∠s, ≅ △s OA bisects ∠BAC.
△ABN ≅ △ACN BN = CN ON ⊥ BC
(SAS) (corr. sides, ≅ △s) (line joining centre to mid-pt. of chord ⊥ chord)
ON = AN − OA = (8 − 5) cm = 3 cm Consider △ONC. NC = OC 2 − ON 2
(Pyth. theorem)
= 5 − 3 cm = 4 cm Consider △ANC. 2
AC =
2
AN 2 + NC 2
= 8 2 + 4 2 cm = 4 5 cm 13. (a)
9
ON = OY − NY = ( r − 3) cm
(Pyth. theorem)
7 (b) ∵ ∴
ON ⊥ AB AN = NB 1 = × 18 cm 2 = 9 cm
Join OA. Consider △OAN. OA = r cm ON 2 + AN 2 = OA 2
(radius)
( r − 3) 2 + 9 2 = r 2
(Pyth. theorem)
∴
15.
Let M be a point on AB such that OM ⊥ AB. ∵ OM ⊥ AB (constructed) (line from centre ⊥ MB = AM chord bisects chord) ∴ 1 = × 18 cm 2 = 9 cm Join OB. OB = 13 cm (radius) Consider △OMB. OM = OB 2 − MB 2
r − 6r + 90 = r r = 15 2
14. ∵
(given) (line from centre ⊥ chord bisects chord)
2
OM ⊥ CD CM = MD
(Pyth. theorem)
= 13 − 9 cm 2
2
= 88 cm Let N be a point on CD such that ON ⊥ CD. ∵ ON ⊥ CD (constructed) (line from centre ⊥ NC = DN chord bisects chord) ∴ 1 = × 24 cm 2 = 12 cm ∵ ∠ONK = ∠OMK = 90° ∴ ONKM is a rectangle. ∴ NK = OM (property of rectangle) KC = NC − NK = NC − OM ∴
(given) (line from centre ⊥ chord bisects chord)
1 = × 12 cm 2 = 6 cm Let r cm be the radius of the circle. OM = AM − OA = (18 − r ) cm ∴
Basic Properties of Circles (I)
= (12 − 88 ) cm = 2.62 cm (cor. to 2 d.p.) Join OC. Consider △OCM. OC = r cm OM 2 + CM 2 = OC 2 (18 − r ) 2 + 6 2 = r 2 360 − 36r + r 2 = r 2 r = 10 ∴ MB = OB − OM = [r − (18 − r )] cm = ( 2r − 18) cm = (2 × 10 − 18) cm = 2 cm
16. (radius) (Pyth. theorem)
(a)
Join OD, OB and OA as shown. Let ∠OAB = x, then ∠OAD = 90° − x. ∵ OB = OA ∴ ∠OBA = ∠OAB =x ∴ ∠AOB = 180° − ∠OAB − ∠OBA = 180° − 2 x ∵ OD = OA ∴ ∠ODA = ∠OAD
radii base ∠s, isos. △ ∠ sum of △ radii base ∠s,
10
Certificate Mathematics in Action Full Solutions 4B isos. △ = 90° − x ∠AOD = 180° − ∠OAD − ∠ODA ∴ ∠ sum of △ = 180° − 2(90° − x) = 2x ∠AOB + ∠AOD ∴ = (180° − 2 x) + 2 x = 180° ∴ BOD is a straight line. (b) Draw OM ⊥ AB and ON ⊥ DA. ∵ OM ⊥ AB and ON ⊥ DA (constructed) ∴ AM = MB and DN = NA (line from centre ⊥ chord bisects chord) 1 NA = AD 2 1 = × 18 cm 2 = 9 cm ∵ AMON is a rectangle. ∴ OM = NA (property of rectangle) = 9 cm
FN = NG DE = 2( LM − EM ) = 2( MN − EM ) = 2( MN − MF ) = 2 FN = FG
Level 1 1.
2.
Consider △OAM. AM = OA 2 − OM 2
17. (a)
∵ ∴ ∵ ∴
(Pyth. theorem)
∠ALM = ∠BMN = ∠CNG = 90° given LA // MB // NC corr. ∠s equal LA // MB // NC and AB = BC given LM = MN intercept theorem
4.
5.
∠ACB + 138° = 180° ∠ACB = 42° (adj. ∠s on st. line)
(adj. ∠s on st. line)
x = 2∠ACB = 2 × 42° = 84°
(∠ at centre twice ∠ at ☉ )
6.
DL = EL
11
line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord
ce
∠ACB = 90° ∵ CA = CB ∴ x = ∠CBA ∠ACB + ∠CBA + x = 180° 2 x + 90° = 180° x = 45°
(∠ in semi-circle) (given) (base ∠s, isos. △)
∠ACD = ∠ABD = 55° x + ∠ACD = 125° x + 55° = 125° x = 70°
(∠s in the same segment)
∠DAC = ∠DBE = 25° x = ∠DAC + ∠ADC = 25° + 42° = 67°
(∠s in the same segment)
∠AOC = 2∠ABC = 2 ×140° = 280° (∠ at centre twice ∠ at )
Reflex
x = 360° − reflex ∠AOC = 360° − 280° = 80°
(b) EM = MF
by (a) proved
Exercise 6B (p. 21)
3.
= 15 2 − 9 2 cm = 12 cm AB = 2 AM = ( 2 × 12) cm = 24 cm
line from centre ⊥ chord bisects chord
(∠ sum of △)
(ext. ∠ of △)
(ext. ∠ of △)
(∠ at centre twice at ☉ ) ce
(∠s at a pt.)
∠ACD = 180° − ∠CAD − ∠CDA = 180° − 32° − 90° = 58° ∠ACB = 90°
(∠ sum of △) (∠ in semi-circle)
7
∴
7.
8.
Basic Properties of Circles (I)
x = ∠ACB − ∠ACD = 90° − 58° = 32°
∠ABC = 90° ∠BCA = ∠BDA =x ∠BCA = 180° − ∠ABC − ∠BAC x = 180° − 90° − 65° = 25°
(∠ in semi-circle) (∠s in the same segment)
(∠ sum of △)
∠AOB = 2∠ACB (∠ at centre twice ∠ at ☉ ) = 2 × 70° ce = 140° (radii) OB = OA (base ∠s, isos.△ ) ∠OBA = x x + ∠OBA + ∠AOB = 180° ∠ ( sum of △) 2 x + 140° = 180° x = 20°
12
Certificate Mathematics in Action Full Solutions 4B 9.
12.
Join OC. 1 ∠AOB 2 1 = ×130° 2 = 65° OC = OA ∠OCA = ∠OAC = 20° OB = OC x = ∠OCB = ∠ACB − ∠OCA = 65° − 20° = 45° ∠ACB =
10.
11.
(∠ at centre twice ∠ at ☉ ) ce
Level 2 14. ∵ ∴ ∵
(radii) (base ∠s, isos. △)
∴
(radii) (base ∠s, isos. △)
(∠ at centre twice ∠ at ) (ext. ∠ of
)
DC = DA ∠DCA = x BD = BC ∠BDC = ∠DCA =x ∠ADB = 90°
(given) (base ∠s, isos. △) (given) (base ∠s, isos. △)
of △) (∠ sum of △) 15. (a)
x
(∠ at centre twice ∠ at ☉ )
∠OAB + ∠AOC = 180° (int. ∠s, BA // CO) ∠AOC = 180° − 32° = 148° (∠s at a pt.) (int. ∠s, BA // CO) ∴ Reflex ∠AOC = 360° − ∠AOC = 360° − 148° = 212°
∠AOC = 360° − ∠AOC = 360° − 148° = 212°
ce
(∠s at a pt.) 1 reflex ∠AOC 2 1 = × 212° 2 = 106°
∠ABC =
(alt. ∠s, DO // AC)
(b)
∠BKD = ∠ODK + ∠BOD (ext. ∠ of △) = 18° + 36° = 54° (ext. ∠ of △) ce
(∠ at centre twice ∠ at ☉ )
13
)
(∠ in semi-circle) ∠DAC + ∠DCA + ∠ADC = 180° (∠ sum x + x + (90° + x ) = 180° x = 30°
(opp. ∠s of // gram)
(ext. ∠ of △)
(ext. ∠ of
13. ∠DAC, ∠ACD, ∠DAB, ∠DBA, ∠EFD and ∠FED (any four of the above angles)
∠DAC = 90° (∠ in semi-circle) ∠ACD = 180° − ∠DAC − ∠ADC (∠ sum of △) = 180° − 90° − 55° = 35° (given) AB = AC (base ∠s, isos.△ ) ∠ABC = ∠ACB = 35° ∠ABC + ∠BAD = 55° (ext. ∠ of △) ∠BAD = 55° − 35° = 20° ∠BOD = 36° 1 ∠BCD = ∠BOD 2 1 = × 36° 2 = 18° ∠ODC = ∠BCD = 18°
65° + ∠BCA = 118° ∠BCA = 53° ∠AOB = 2∠BCA = 2 × 53° = 106° ∠AOB + ∠OAK = 118° ∠OAK = 118° − 106° = 12°
(∠ at centre twice ∠ at ☉ ) ce
7
16.
∠DCB + ∠CKB = 50° ∠DCB = 50° − 28° = 22° ∠DAB = ∠DCB = 22° ∠ACB = 90° ∠CAB = 180° − ∠ACB − ∠CBA = 180° − 90° − 50° = 40° ∠CAD = ∠CAB − ∠DAB ∴ = 40° − 22° = 18° ∠BAC = ∠BDC
17.
(∠ ext. ∠ of △)
20. (a)
(∠s in the same segment)
(∠ in semi-circle) (∠ sum of △)
(∠s in the same segment) (alt. ∠s, DC // AB) (∠ in semi -circle)
OABC is a parallelogram. OA = OC ∴ OABC is a rhombus.
(c)
∴
∠ABC = x x 180° − = x 2 3 x = 180° 2 x = 120°
OK ⊥ EB BK = EK
(corr. sides, ~ △s)
given line from centre ⊥ chord bisects chord given common side SAS
(∠ in semicircle) ∠BDC = 180° – ∠CBD – ∠BCD (∠ sum of △) = 180° – 90° – 42° = 48° ∠KED = ∠KBD (corr. ∠s, ≅ △s) ∠KED + ∠KBD = ∠BDC (ext. ∠ of △) 2∠KED = 48 ∠KED = 24 ∴ ∠BAD = ∠BED (∠s in the same segment) = 24°
22.
(given) (radii)
(b) Reflex ∠AOC = 360° − x ∠s at a pt. 1 ∠ABC = reflex ∠AOC 2 ∠ at centre twice ∠ at ☉ 1 ce = (360° − x) 2 x = 180° − 2
∵ ∴
vert. opp. ∠s ∠s in the same segment ∠s in the same segment AAA
(b) ∠ABD = 90°
∠ABE =
19. (a)
∴
AK KD = BK KC 6 KD = 3 2 cm KD = 4 cm
∠BKD = ∠EKD = 90° KD = KD ∴ △BKD ≅ △EKD
∠BDC = ∠ABD ∠ADB = 90° ∠ABD + ∠BAD + ∠ADB = 180° (∠ sum of △) ∠ABD + (44° + ∠BAC) + 90° = 180° ∠ABD + ∠ABD + 134° = 180° ∠ABD = 23°
1 (∠ at centre twice ∠AOE 2 ∠ at ☉ce) 18. 1 = × 124° 2 = 62° ∠ACE + ∠BEC = ∠ABE (ext. ∠ of △) ∠BEC = 62° − 36° = 26° ∠BAD = ∠BEC (∠s in the same segment) = 26° ∠AKE = ∠BAD + ∠ABE ∴ (ext. ∠ of △) = 26° + 62° = 88°
∠AKB = ∠DKC ∠BAK = ∠CDK ∠ABK = ∠DCK ∴ △AKB ~ △DKC
(b)
21. (a)
Basic Properties of Circles (I)
Join AP. ∠APB = 90° ∠ACQ = ∠APQ = 90 ∴ QC ⊥ AB
∠ in semi-circle ∠s in the same segment
23.
(opp. ∠s of // gram)
(proved in (b)) Join OA. ∠ABQ = ∠AOQ ∠s in the same segment = 2∠ABP ∠ at centre twice ∠ at ☉ce ∴ BP bisects ∠ABQ.
14
Certificate Mathematics in Action Full Solutions 4B
Exercise 6C (p. 32) Level 1 1.
6.
Reflex ∠AOB = 360° – ∠AOB = 360° – 80° = 280° x cm ∠AOB = Reflex ∠AOB Major AB
(∠s at a pt.)
(arcs prop. to ∠s at centre)
4 ( 48°) 3 = 64°
∠AOB =
(arcs prop. to ∠s at centre)
(b)
80° x = 14 280° =4
2.
(a)
∠AOB AB = ∠BOC BC
∠BAC = 180° – ∠ABC – ∠ACB (∠ sum of △) = 180° – 50° – 75° = 55° x cm ∠BAC (arcs prop. to = ∠ABC ∠s at ce ) AC ☉ 55° x = 10 50° = 11
1 ∠AOB (∠ at centre twice ∠ at ☉ce) 2 1 = × 64° 2 = 32°
∠ACB =
3.
∠ACB = 90° ∠BAC = 180° – x – ∠ACB = 180° – x – 90° = 90° – x
7.
(∠ in semi-circle) (∠ sum of △)
(arcs prop. to ∠s at ☉ )
90° − x 4 = x 5 450° − 5 x = 4 x x = 50°
4.
ce
∠COD CD = ∠BOC BC
(arcs prop. to ∠s at centre)
4 (84°) 6 = 56° ∠BOD = ∠BOC + ∠COD = 84° + 56° = 140° ce 1 x = ∠BOD (∠ at centre twice ∠ at ☉ ) 2 ∴ 1 = ×140° 2 = 70° ∠COD =
5.
∴
15
∠ADC = ∠BAD AC AC = BD
BD
alt. ∠s, CD // AB equal ∠s, equal arcs
8.
AB : BC BC AB prop. to ∠s at = 27° : 54° = 1: 2
= ∠DEB : ∠BEC(arcs
∠BAC = 90° ∠BAD = ∠BAC + ∠CAD = 90° + 30° = 120°
(∠ in semi-circle)
∴
∠BAC BC = x AC
∠BEC = 180° – ∠EBC – ∠ECB (∠ sum of △) = 180° – 62° – 64° = 54° ∠DEB = ∠EBC − ∠EDB (ext. ∠ of △) = 62° – 35° = 27°
☉ce)
7 ∵ AB = AD (given) ∴ ∠ABD = ∠ADB (base ∠s, isos. △) ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) 2∠ABD + 120° = 180° ∠ABD = 30° ∠ACB = 180° − ∠BAC − ∠ABC (∠ sum of △) = 180° − 90° − 30° = 60° ∴
9.
AB : BC BC AB (arcs prop. to ∠s = 60° : 90° = 2:3
∴
(equal ∠s, equal arcs) AC = CD AC = CD ∠BPD = ∠BPC + ∠CPD = 10° + 15° = 25° = ∠EPF
∵
∴
(equal ∠s, equal arcs) BD = EF BD = EF ∠APD = ∠APB + ∠BPC + ∠CPD = 5° + 10° + 15° = 30° = ∠FPG
AD = FG AD = FG
11.
∠ABD = 180° – ∠BAD − ∠ADB (∠ sum of △) = 180° – (40° + 20°) – 70° = 50°
at ☉ce)
∠APC = ∠APB + ∠BPC = 5° + 10° = 125° = ∠CPD
∴
Level 2
= ∠ACB : ∠BAC
∵
∵
Basic Properties of Circles (I)
(equal ∠s, equal arcs)
Join BC. ∠CBD = ∠CAD (∠s in the same segment) = 20° ∠CBA = ∠CBD + ∠ABD = 20° + 50° = 70°
ADC BC
=
∠CBA ∠BAC
12. ∠BAD = 90° ∠BAC = ∠BAD – ∠CAD = 90° – 50° = 40° x cm ∠BAC = CD ∠CAD 40° x = 15 50° = 12 13. ∠PRS = ∠PQS
AB = CD AB = CD
(given)
∴ ∠ADB = ∠DAC and ∠ACB = ∠DBC (equal arcs, equal ∠s) ∴ KD = KA and KC = KB (sides opp. equal ∠s) ∴ △AKD and △BKC are isosceles triangles.
AB = BC = CD AB = BC = CD (given) ∴ ∠ACB = ∠CAB and ∠BDDBC = ∠DBC (equal arcs, equal ∠s) ∴ BC = BA and CD = CB (sides opp. equal ∠s) ∴ △ABC and △BCD are isosceles triangles. ∵
ce
70° x = 10 40° = 17.5
10. ∵
(arcs prop. to ∠s at ☉ )
(∠ in semi-circle)
(arcs prop. to ∠s at ☉ ) ce
(∠s in the same segment)
= 30° ∠PRQ = ∠QRS – ∠PRS = 75° − 30° = 45°
(given) QR = PQ QR = PQ ∠QSR = ∠PRQ = 45° ∴ ∠QSR = ∠PRQ (equal arcs, equal ∠s) = 45° ∠RQS = 180° – ∠QRS – ∠QSR (∠ sum of △) = 180° − 75° − 45° = 60° ∵
14. (a)
OD = OB (radii) ∠ODB = ∠OBD (base ∠s, isos. △) = 30° ∴ ∠BOA = ∠OBD + ∠ODB (ext. ∠ of △)
16
Certificate Mathematics in Action Full Solutions 4B = 30° + 30° = 60°
∴
(b)
∠ADB AB = ∠CDB BC 3 = 2 2 ∠CDB = (30°) 3 = 20°
(b) (arcs prop. to ∠s at ☉ ) ce
OA = OC AB = CB OB = OB ∴ △ABO ≅ △CBO ∠AOB = ∠COB ∠AOD = ∠COD
(b) ∵ ∴
arcs 16. ∵ ∴ ∵ ∴ ∴ 17. (a)
BC = CD BC = CD ∠CAB = ∠DAC OC = OA ∠ACO = ∠CAB = ∠DAC OC // AD ∵ ∴
OE ⊥ BD BE = ED
AE = AE ∠AEB = ∠AED = 90° ∴ △ABE ≅ △ADE (b)
18. (a)
∠BAC = ∠DAC ∴
17
radii given common side SSS corr. ∠s, ≅ △s equal ∠s, equal
given equal arcs, equal ∠s radii base ∠s, isos. △ alt. ∠s equal given line from centre ⊥ chord bisects chord common side given SAS corr. ∠s, ≅ △s
BC = CD BC = CD equal ∠s, equal arcs
With the notations in the figure,
∠DFE = ∠BDF + ∠DBF = 20° + 30° = 50° ∠AGE = ∠CAG + ∠ACG = 40° + 50° = 90°
= 20° : 40° : 40° : 30° : 50° = 2 : 4 : 4 : 3:5
AD = DC AD = DC
∴
AB AB : BC BC : CD CD : DE DE : EA EA = ∠ADB : ∠BEC : ∠CAD : (arcs prop. to ∠s at ☉ce) ∠DBE : ∠ACE (arcs prop. to ∠s at ☉ce) to ∠s at △ce)
(cb)
15. (a)
x = 180° – ∠FGE – ∠GFE (∠ sum of △) = 180° – 90° – 50° = 40°
(ext. ∠ of △)
(ext. ∠ of △)
AB 2 = Circumference of the circle 2 + 4 + 4 + 3 + 5 (by (b)) 18 Circumference of the circle = π × cm 2 = 9π cm 9π ∴ Radius of the circle = cm 2π = 4.5 cm
7 Exercise 6D (p. 39) Level 1 1.
2.
3.
4.
∠BCD = 95° ∠BCD + x = 180° x = 180° − 95° = 85°
7. (ext. ∠, cyclic quad.) (adj. ∠s on st. line)
∠BCD + ∠BAD = 180° ∠BCD = 180° − 76° = 104° ∵ CD = CB ∴ ∠BDC = x ∠BDC + x + ∠BCD = 180° ∴ 2 x + 104° = 180° x = 38°
6.
∠FCD + ∠DEF = 180° ∠FCD = 180° − 130° = 50° x = ∠FCD = 50°
(opp. ∠s, cyclic quad.) (ext. ∠, cyclic quad.)
∠ABD = y (ext. ∠, cyclic quad.) ∵ AD = AB (given) ∴ ∠ADB = ∠ABD (base ∠s, isos. △) =y ∠BAD + ∠ABD + ∠ADB = 180° (∠ sum of △) x + 2 y = 180° 2 y = 180° − 50° y = 65°
(opp. ∠s, cyclic quad.) (given) (base ∠s, isos. △) (∠ sum of △) 8.
∠ACB = 90° (∠ in semi-circle) ∠ABC + ∠ACB + ∠BAC = 180° (∠ sum of △) ∠ABC = 180° − 90° − 40° = 50° x + ∠ABC = 180° (opp. ∠s, cyclic quad.) x = 180° − 50° = 130° x = ∠ABD = 46°
Join AD. ∠ABC + ∠CDA = 180° ∠ADE = 90° ∠ABC + ∠CDE = ∠ABC + (∠CDA + ∠ADE ) = (∠ABC + ∠CDA) + ∠ADE = 180° + 90° = 270°
(∠s in the same segment)
y + ∠BCD = 180° (opp. ∠s, cyclic quad.) y + (54° + x) = 180° y = 180° − (54° + 46°) = 80°
5.
Basic Properties of Circles (I)
∠EBC + ∠CDE = 180° (opp. ∠s, cyclic quad.) ∠EBC = 180° − 110° = 70° ∠ECB + ∠BAE = 180° (opp. ∠s, cyclic quad.) ∠ECB = 180° − 120° = 60° ∠BEC + ∠EBC + ∠ECB = 180° (∠ sum of △) ∠BEC = 180° − 70° − 60° = 50°
(a)
(b)
∠ADE = ∠CAD + ∠ACD = 36° + 60° = 96°
∠APB = 9.
(a)
(b)
(ext. ∠ of △)
∠DFE = ∠BCD (ext. ∠, cyclic quad.) = 60° ∠DFE + ∠FDE + ∠DEF = 180° (∠ sum of △) ∠DEF = 180° − 60° − 96° = 24°
1 ∠AOB 2 1 = × 40° 2 = 20°
opp. ∠s, cyclic quad. ∠ in semi-circle
10.
(∠ at centre twice ∠ at ☉ ) ce
∠BAP + ∠BCP = 180° (opp. ∠s, cyclic quad.) ∠BAP = 180° − 50° = 130° ∠ABP + ∠BAP + ∠APB = 180° (∠ sum of △) ∠ABP = 180° − 130° − 20° = 30°
∠DAC + ∠ADC + ∠ACD = 180° (∠ sum of △) ∠DAC = 180° − 115° − 30° = 35° ∠ABC + ∠ADC = 180° (opp. ∠s, cyclic quad.) ∠ABC = 180° − 115° = 65° ∵ BC = CD (given) ∠ BAC = ∠ DAC ∴ (equal chords, equal ∠s) = 35° ∠ACB + ∠ABC + ∠BAC = 180° (∠ sum of △)
18
Certificate Mathematics in Action Full Solutions 4B ∠ACB = 180° − 65° − 35° = 80°
19
7 Level 2 11.
15.
Reflex ∠AOC = 2∠ABC
(∠ at centre twice = 2 × 110° ∠ at
☉ce) = 220° ∠AOC = 360° − reflex ∠AOC (∠s at a pt.) = 360° − 220° = 140° ∴ ∠CPB + ∠AOC = 180° (opp. ∠s, cyclic quad.) ∠CPB = 180° − 140° = 40° 12.
∠COD = ∠BAD = 40° OD = OC ∠ODC = ∠OCD ∠COD + ∠ODC + ∠OCD = 180° 40° + 2∠ODC = 180° ∠ODC = 70° ∠ODC + ∠ABC = 180° ∠ABC = 180° − 70° = 110°
13. (a)
∠KAD = ∠KCB ∠KDA = ∠KBC ∠AKD = ∠CKB ∴ △KAD ~ △KCB
KA KD = KC KB KA KD = KD + DC KA + AB (b) 2 cm 3 cm = 3 cm + DC (2 + 4) cm 4 cm = 3 cm + DC DC = 1 cm 14.
Basic Properties of Circles (I)
∠ACD + ∠ADC + ∠CAD = 180° (∠ sum of △) ∠ACD = 180° − 40° − ∠ADC = 140° − ∠ADC ∠ABC + ∠ADC = 180° (opp. ∠s, cyclic quad.) ∠ABC = 180° − ∠ADC
(corr. ∠s, OC // AB) (radii) (base ∠s, isos. △) (∠ sum of △)
(opp. ∠s, cyclic quad.)
ext. ∠, cyclic quad. ext. ∠, cyclic quad. common angle AAA
(corr. sides, ~ △s)
∠BAD = ∠BCE (ext. ∠, cyclic quad.) = 65° ∠ADB = 90° (∠ in semi-circle) ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) ∠ABD = 180° − 90° − 65° = 25° ∠BDC = ∠ABD (alt. ∠s, DC // AB) = 25° ∠DBC + ∠BDC = ∠BCE (ext. ∠ of △) ∠DBC = 65° − 25° = 40°
20
Certificate Mathematics in Action Full Solutions 4B ∠AED + ∠ACD = 180° (opp. ∠s, cyclic quad.) ∠AED = 180° − ∠ACD = 180 − (140° − ∠ADC ) = 40° + ∠ADC ∠ ABC + ∠ AED = (180° − ∠ADC ) + ( 40° + ∠ADC ) ∴ = 220° 16.
Join BD. Let ∠CBE = x. ∵ CE = CB (given) ∠ CEB = ∠ CBE ∴ (base ∠s, isos. △) =x ∠CBE + ∠BCE + ∠CEB = 180° (∠ sum of △) ∠BCE = 180° − 2 x ∠BDE + ∠BCE = 180° (opp. ∠s, cyclic quad.) ∠BDE = 180° − (180° − 2 x) = 2x ∠DBE = 90° (∠ in semi-circle) ∠ABD + ∠DBE + ∠CBE = 180° (adj. ∠s on st. line) ∠ABD = 180° − 90° − x = 90° − x ∠BAD + ∠ABD = ∠BDE (ext. ∠ of △) 27° + (90° − x) = 2 x
∴
17. (a)
(b)
21
3 x = 117° x = 39° ∠CBE = 39° ∠APC = ∠ABC + ∠PCB = ( x + x) + y = 2x + y ∠ARB = ∠ACB + ∠RBC = ( y + y) + x = x + 2y ∠APC + ∠ARB = 180° ( 2 x + y ) + ( x + 2 y ) = 180° 3 x + 3 y = 180° x + y = 60°
(ext. ∠ of △) (ext. ∠ of △)
(opp. ∠s, cyclic quad.)
7
Basic Properties of Circles (I)
∠BAC + ∠ABC + ∠ACB = 180° (∠ sum of △) ∠BAC + 2 x + 2 y = 180° ∠BAC + 2( x + y ) = 180° ∠BAC + 120° = 180° ∠BAC = 60°
22
Certificate Mathematics in Action Full Solutions 4B Revision Exercise 6 (p. 47) Level 1
(b)
1.
Join OF. Draw ON such that ON ⊥ FE. OF = OB 1 = BC (radii) 2 1 = × 20 cm 2 = 10 cm ON = AB (property of rectangle) = 6 cm Consider △ONF. FN = OF 2 − ON 2 = 10 − 6 cm = 8 cm ∵ ON ⊥ FE ∴ FN = NE 2
∴
2.
3.
∠AEC = 90° ∠EBC = ∠EAC = 30° ∠AEB = ∠EDC + ∠EBC = 35° + 30° = 65° ∠BEC = ∠AEC − ∠AEB = 90° − 65° = 25° (a)
(Pyth. theorem)
2
FE = ( 2 × 8) cm = 16 cm
(constructed) (line from centre ⊥ chord bisects chord)
(∠ in semi-circle) (∠s in the same segment) (ext. ∠ of △)
∠POR + ∠OPQ = 180°
(int. ∠s, OR // PQ)
∠POR = 180° − 42° = 138° ∠POR = 360° − ∠POR ∴ Reflex (∠s at a pt.) = 360° − 138° = 222° (∠ at centre twice ∠ at ☉ce)
23
1 reflex ∠POR 2 1 = × 222° 2 = 111° ∠ORQ + ∠PQR = 180° (int. ∠s, OR // PQ) ∠ORQ = 180° − 111° = 69°
∠PQR =
7 4.
With the notations in the figure,
Basic Properties of Circles (I)
(opp. ∠s, cyclic quad.)
(arcs prop. to ∠s at ☉ce)
1 ∠AOB 2 1 = × 54° 2 = 27° ∠ONC = ∠OBC + ∠BCA = 42° + 27° = 69° ∠OAC + ∠AOB = ∠ONC ∠OAC = 69° − 54° = 15° ∠BCA =
5.
AD = DC AD = DC ∠ACD = ∠CAD ∴ = 35° ∠BCA = 90° ∠BCD = ∠BCA + ∠ACD = 90° + 35° = 125° ∠BAD + ∠BCD = 180° (∠BAC + 35°) + 125° = 180° ∠BAC = 20° ∵
(∠ at centre twice ∠ at ☉ce)
(ext. ∠ of △)
(ext. ∠ of △)
(given) (equal arcs, equal ∠s) (∠ in semi-circle)
(opp. ∠s, cyclic quad.)
6.
∠CDB BC = ∠CBD CD 2 = 1 1 ∴ ∠CBD = ∠CDB 2 ∠ABC + ∠ADC = 180° (62° + ∠CBD ) + (58° + ∠CDB) = 180° 1 120° + ∠CDB + ∠CDB = 180° 2 3 ∴ ∠CDB = 60° 2 ∠CDB = 40° ∠KDC = 40°
(arcs prop. to ∠s at ☉ce)
(opp. ∠s, cyclic quad.)
24
Certificate Mathematics in Action Full Solutions 4B
7.
∠ABC + ∠ADC = 180° ∠ABC = 180° − 115° = 65°
∠ACB AB = ∠BAC BC 3 = 2 3 ∠ACB = ∠BAC ∴ 2 ∠ACB + ∠ABC + ∠BAC = 180° 3 ∠BAC + 65° + ∠BAC = 180° 2 5 ∠BAC = 115° 2 ∠BAC = 46° 8.
(a)
OC = OB ∠OCB = ∠OBC
(∠ sum of △)
(radii) (base ∠s, isos. △)
∠OCB + ∠OBC + ∠BOC = 180° ∠ ( sum of △) 2∠OCB + 80° = 180° ∠OCB = 50° 1 ∠BOC (∠ at centre twice 2 ∠ at ☉ce) 1 = × 80° 2 = 40° ∠DAB + ∠BCD = 180° (opp. ∠s, cyclic quad.) (∠DAC + ∠BAC ) + (∠OCB + ∠OCD ) = 180° 36° + 40° + 50° + ∠OCD = 180° ∠OCD = 54° ∠BAC = (b)
9.
Produce CO to cut AB at E. Join BC. ∠BEC = ∠OCD (alt. ∠s, AB // DC) = 36° ∠BOC = ∠ABO + ∠BEC (ext. ∠ of △) = 28° + 36° = 64° OC = OB (radii) ∠OCB = ∠OBC (base ∠s, isos. △) ∠BOC + ∠OCB + ∠OBC = 180° (∠ sum of △) 64° + 2∠OCB = 180° ∠OCB = 58° ∠BAD + ∠BCD = 180° (opp. ∠s, cyclic quad.) ∠BAD + (58° + 36°) = 180° ∠BAD = 86°
25
7
Basic Properties of Circles (I)
∠AOC + reflex ∠AOC = 360° ∠ ( s at a pt.) ∠ABC + 2∠ABC = 360° ∠ABC = 120°
10.
13.
Draw OM such that OM ⊥ BC. ∵ OM ⊥ BC (constructed) ∴ BM = MC (line from centre ⊥ chord bisects chord) 1 ∴ MC = 2 × 6 cm = 3 cm Consider △OMC. OM = OC − MC 2
2
(Pyth. theorem)
= 5 − 3 cm = 4 cm Consider △OAM. 2
2
AM = OA 2 − OM 2
(Pyth. theorem)
= 7 2 − 4 2 cm
∴
Join BD and DC. ∠ABD = 90° ∠ACD = 90° ∴ ∠ABD = ∠ACD AD = AD AB = AC ∴ △ABD ≅ △ACD ∴ ∠BAD = ∠CAD ∴ AD bisects ∠BAC.
= 33 cm AB = AM − BM = AM − MC
∠ in semi-circle ∠ in semi-circle common side given RHS corr. ∠s, ≅ △s
14. ∠ACD = p + q (ext. ∠ of △) ∠BDC = p (∠s in the same segment) r = ∠ACD + ∠BDC (ext. ∠ of △) = p+q+ p = 2p +q 15.
= ( 33 − 3) cm = 2.74 cm (cor. to 2 d.p.) 11.
Join BD. ∠ABD = 90° (∠ in semi-circle) ∠EBD = ∠ABD − ∠ABE = 90° − 44° = 46° ∠ECD = ∠EBD (∠s in the same segment) = 46° 12. (a)
(b)
∵ ∴ ∵ ∴
AB // OC and OA // CB (given) OABC is a parallelogram. OA = OC (radii) OABC is a rhombus.
∠AOC = ∠ABC Reflex ∠AOC = 2∠ABC
(property of rhombus) (∠ at centre twice ∠ at ☉ce)
Let O be the centre of the circle and r cm be the radius. Join OA. OA = r cm (radius) OM = OC − MC = ( r − 1) cm ∵ OM ⊥ AB (given) AM = MB (line from centre ⊥ chord bisects chord) ∴ 1 = ×10 cm 2 = 5 cm Consider △OAM. OA 2 = AM 2 + OM 2 r 2 = 5 2 + (r − 1) 2
(Pyth. theorem) r 2 = 25 + r 2 − 2r + 1 2r = 26 r = 13 ∴ The radius of the circle is 13 cm.
26
Certificate Mathematics in Action Full Solutions 4B Level 2 16.
∠AOD + ∠BOD = 180° ∠AOD = 180° − 140° = 40° ∠ODC = ∠AOD = 40° 1 ∠DCA = ∠AOD 2 1 = × 40° 2 = 20° ∠OKC = ∠ODC + ∠DCA = 40° + 20° = 60° ∠AKO + ∠OKC = 180° ∠AKO = 180° − 60° = 120°
(adj. ∠s on st. line) (b) (alt. ∠s, CD // BA) (∠ at centre twice ∠ at ☉ce)
(ext. ∠ of △)
(adj. ∠s on st. line)
17. (a) ∠ABC + ∠AFC = 180° (opp. ∠s, cyclic quad.) ∠AFC = 180° − 102° = 78° ∠CDE = ∠AFC (ext. ∠, cyclic quad.) = 78°
(b)
18. (a)
(b)
∠COE = 2∠CDE (∠ at centre twice ∠ at ☉ce) = 2 × 78° = 156° ∠BAF + ∠ABO + ∠COE + ∠FEO = 360° ∠BAF + 102° + 156° + 38° = 360° ∠BAF = 64° ∠ADC = 90° (∠ in semi-circle) ∠APD + ∠ADC + ∠BAD = 180° ∠ ( sum of △) 20° + 90° + (∠BAC + 54°) = 180° ∠BAC = 16° ∠BDC = ∠BAC
(∠s in the same segment)
= 16° ∠ADB = ∠ADC − ∠BDC = 90° − 16° = 74° ∠AKD + ∠ADB + ∠CAD = 180° (∠ sum of △) ∠AKD = 180° − 74° − 54° = 52° 19. (a)
∠ACB = 90° ∠DBA = ∠DCA
(∠ in semi-circle) (∠s in the same segment) (ext. ∠ of △)
∠CAB = ∠CEA + ∠DCA = 25° + ∠DCA ∠CAB + ∠CBA + ∠ACB = 180° (∠ sum of △) ( 25° + ∠DCA) + (37° + ∠DBA) + 90° = 180° 2∠DCA = 28° ∠DCA = 14°
27
∠CAB = 25° + ∠DCA = 25° + 14° = 39°
7 20.
Basic Properties of Circles (I)
1 ∠AOB (∠ at centre twice 2 ∠ at ☉ce) 1 = × 30° 2 = 15°
∠BCA = ∴
(b)
Join MN. ∠ABM = ∠MNC (ext. ∠, cyclic quad.) ∠ADM = ∠MNE (ext. ∠, cyclic quad.) ∠ABM + ∠ADM = ∠MNC + ∠MNE = 180° (adj. ∠s on st. line) ∠BAD + ∠ABM + ∠ADM + ∠BMD = 360° ∴ 65° + 180° + ∠BMD = 360° ∠BMD = 115°
23. (a)
∵ OC = OA (radii) ∴ ∠ACO = ∠CAO (base ∠s, isos. △) ∠CAO + ∠ACO + ∠AOC = 180° (∠ sum of △) 2∠CAO = 180° − 90° ∠CAO = 45° ∠CEO = ∠CAO + ∠AOB ∴ (ext. ∠ of △) = 45° + 30° = 75° ∠APD = ∠CPB ∠PAD = ∠PCB ∠PDA = ∠PBC ∴ △PAD ~ △PCB
common angle ext. ∠, cyclic quad. ext. ∠, cyclic quad. AAA
∠AKB = ∠DKC ∠BAK = ∠CDK ∠ABK = ∠DCK ∴ △AKB ~ △DKC
vert. opp. ∠s ∠s in the same segment ∠s in the same segment AAA
21. (b)
Join BE.
∠BEC BC = ∠CAD CD 3 ∠BEC = (28°) 2 = 42°
(c) (arcs prop. to ∠s at ☉ce)
AB BK = DC CK 10 BK = 4 3 cm ∴ BK = 7.5 cm
∠DBE DE = (arcs prop. to ∠CAD CD ∠s at ☉ce) 4 ∠DBE = (28°) 2 = 56° ∴ ∠BKE + ∠KEB + ∠KBE = 180° (∠ sum of △) ∠BKE = 180° − 42° − 56° = 82°
24. (a)
∠AOB AB = 22. (a) ∠BOC BC (arcs prop. to ∠s at centre) 1 = 2 ∠BOC = 2∠AOB ∠AOC = ∠AOB + ∠BOC 90° = ∠AOB + 2∠AOB 1 ∴ ∠AOB = 3 × 90° = 30°
PA PD = PC PB PA PD = (corr. sides, ~ △s) PD + DC PA + AB 6 cm 8 cm = 8 cm + DC (6 + 10) cm 12 cm = 8 cm + DC ∴ DC = 4 cm
(b)
(corr. sides, ~ △s)
∵ ∴
AM = MB and CN = ND ∠OMK = ∠ONK = 90°
∵ ∴
AB = DC OM = ON
∴
OK = OK △OMK ≅ △ONK
∴ ∴
KM = KN BM = CN KM – BM = KB = KC
∴
KB =KC AB =DC KA =KD
∴
(c)
given line joining centre to mid-pt. of chord ⊥ chord given equal chords, equidistant from centre common side RHS corr. sides, ≅ △s given KN – CN
proved in (b) given
28
Certificate Mathematics in Action Full Solutions 4B ∴ isos. △ ∴
25. (a)
∠KAD =
∠KDA ∠KDA
∴
∠BCD + = ∠BCD +∠KAD = 180° BC // AD
∵ ∴
AC = AB ∠ACB =∠ABC
given base ∠s, isos. △ = ∠ADE ext. ∠,
cyclic quad. ∴ BC // ED (b)
∠CED = ∠CBD = ∠BDE ∴ FE
base ∠s,
opp. ∠s, cyclic quad. int. ∠s supp.
corr. ∠s equal ∠s in the same segment alt. ∠s, BC // ED = FD sides opp. equal
∠s 26. ∠NBP = ∠MDP ∠BNP = 180° – ∠NBP – ∠NPB = 180° – ∠MDP – ∠DPM = ∠DMP = ∠NMC ∴ QM = QN
ext. ∠, cyclic quad. ∠ sum of △ given vert. opp. ∠s sides opp. equal ∠s
27.
Join BO and OE. ∠BOE = 2 ∠CAE ∠ACE + ∠BOE = 180°
∠ at centre twice ∠ at ☉ce opp. ∠s, cyclic quad.
∠ACE + 2∠CAE = 180° ∠ACE + ∠CAE = 180° – ∠CAE (∠ACE + ∠CAE) +∠CEA = 180° ∠ sum of △ (180° – ∠CAE) + ∠CEA = 180° ∠CAE = ∠CEA ∴ CA = CE sides opp. equal ∠s 28. (a)
(b)
∵ CE = CD ∴ ∠CED = ∠CDE = ∠ABC
given base ∠s, isos. △ ext. ∠, cyclic quad. ∴ ABE is an isosceles triangle. sides opp. equal ∠s
Let ∠ABD = x. ∵ CD = AD CD = AD ∴ ∠DBC = ∠ABD =x
29
(given) (equal arcs, equal ∠s)
∠ABE = ∠ABD + ∠DBC = 2x ∠AEB = ∠ABE = 2x ∠EDC = ∠AEB = 2x ∠DCB = ∠AEB + ∠EDC = 4x …… (1) ∠BDC = 90°
(base ∠s, isos. △) (base ∠s, isos. △)
(∠ in semi-circle)
7 ∠DBC + ∠DCB + ∠BDC =
180°
(∠ sum of
△) ∠DCB = 180° – x – 90° = 90° – x …… (2) From (1) and (2), we have 4 x = 90° − x x = 18° ∠BAD + ∠DCB = 180° (opp. ∠s, cyclic quad.) ∠BAD = 180° − 4 x (by (1)) = 180° − 4 × 18° = 108°
∴
Basic Properties of Circles (I)
x = ∠ABD + ∠BAC = 19° + 32° = 51°
(ext. ∠ of △)
Multiple Choice Questions (p. 52) 1.
Answer: B ∵ OP ⊥ AB AP = PB ∴
1 = × 12 cm 2 = 6 cm
OP = OA 2 − AP 2
(given) (line from centre ⊥ chord bisects chord)
(Pyth. theorem)
= 10 2 − 6 2 cm = 8 cm
Join OC. OC = OA = 10 cm ∵ OQ ⊥ CD CQ = QD ∴
(radii)
1 = × 16 cm 2 = 8 cm
OQ = OC 2 − CQ 2
(given) (line from centre ⊥ chord bisects chord) bisects
(Pyth. theorem)
= 10 − 8 cm = 6 cm PQ = OP + OQ ∴ = (8 + 6) cm = 14 cm 2
2.
2
Answer: A ∠BCD = 90° ∠DCA = ∠BCD − ∠ACB = 90° − 71° = 19° ∠ABD = ∠DCA = 19°
(∠ in semi-circle)
(∠s in the same segment)
30
Certificate Mathematics in Action Full Solutions 4B 3.
Answer: D ∠BDC = 90° (∠ in semi-circle) ∠BDC + ∠DCB + ∠DBC = 180° (∠ sum of △) ∠DCB = 180° − 90° − 32° = 58° ∠BAD + ∠DCB = 180° (opp. ∠s, cyclic quad.) ∠BAD = 180° − 58° = 122° AB = AD (given) ∠ABD = ∠ADB (base ∠s, isos. △) ∴ ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) 2∠ABD + 122° = 180° ∠ABD = 29°
4.
Answer: D ∠ADE = ∠CAD + ∠ACD (ext. ∠ of △) = 52° + x ∠CBF = ∠ADE (ext. ∠, cyclic quad.) = 52° + x ∴ ∠CBE + ∠BEC + ∠BCE = 180° (∠ sum of △) (52° + x) + 30° + x = 180° 2 x = 98° x = 49°
5.
Answer: C Reflex ∠AOC = 360° – x 1 ∠ABC = reflex ∠AOC 2 1 = (360° − x) 2 x = 180° − 2 ∴ ∠ABC + ∠BCA + ∠BAC = 180° x 180° − + 35° + 28° = 180° 2 x = 126°
6.
Answer: C ∠BDC = ∠BAC
7.
31
(∠ sum of △)
(∠s in the same segment)
=x ∠PDC + ∠PCD + ∠CPD = 180° ( x + 46°) + (48° + x ) + 34° = 180° x = 26°
Answer: B ∠BED + ∠EBD = ∠BDC ∠EBD = 43° − 24° = 19°
(∠ at centre twice ∠ at ☉c e)
(∠s in the same segment)
= 46° ∠ACB = ∠ADB
∴
(∠s at a pt.)
(∠ sum of △)
(ext. ∠ of △)
7 Join AD. ∠ADB = 90° ∠ADC + ∠ABC = 180° (90° + 43°) + (19° + x) = 180° x = 28° 8.
(∠ in semi-circle) (opp. ∠s, cyclic quad.)
Answer: A ∠DBC + ∠DCB + ∠BDC = 180° (∠ sum of △) ∠DBC = 180° − 83° − 46° = 51°
∠ABD AD = ∠DBC DC 2 ∠ABD = (51°) 3 = 34° ∠ABC + ∠ADC = 180° (34° + 51°) + (46° + x) = 180° x = 49° 9.
Basic Properties of Circles (I)
Answer: C ∠ADC + ∠ABC = 180°
(arcs prop. to ∠s at ☉ce)
(opp. ∠s, cyclic quad.)
(opp. ∠s, cyclic quad.)
∠ADC = 180° − ∠ABC
(arcs prop. to ∠s ∠ABC minor AC = at ☉ce) ∠ADC major AC ∠ABC 7+3 = 180° − ∠ABC 6 + 8 5 ∠ABC = (180° − ∠ABC ) 7 5 ∠ABC = × 180° 12 = 75° 10. Answer: B ∠DCB + ∠BAD = 180° (opp. ∠s, cyclic quad.) ∠DCB = 180° − 112° = 68° OD = OC (radii) ∴ ∠ODC = ∠OCD (base ∠s, isos. △) = 68° ∠DOC = ∠ABO (corr. ∠s, OD // BA) =x ∴ ∠DOC + ∠ODC + ∠OCD = 180° (∠ sum of △) x + 68° + 68° = 180° x = 44°
32
Certificate Mathematics in Action Full Solutions 4B 11. Answer: B ∠ADC + ∠ABC = 180°
(opp. ∠s, cyclic quad.)
∠ADC = 180° − x ∠ACD + ∠AED = 180°
(opp. ∠s, cyclic quad.)
∠ACD = 180° − y ∠ACD + ∠ADC + ∠CAD = 180° (180° − y ) + (180° − x ) + 45° = 180° x + y = 225°
(∠ sum of △)
12. Answer: A With the notations in the figure, join FC.
∠BFC = ∠BAC (∠s in the same segment) =a ∠CFD = ∠CED (∠s in the same segment) =b For A, x = ∠BFC + ∠CFD =a+b For B, if x = y,
then BCD = AFE BCD = AFE
(equal ∠s, equal
arcs) which is not always true. For C, ∵ x = a + b and x = y is not always true. ∴ y = a + b is not always true. For D, join BC and CD. ∵ x + ∠BCD = 180° (opp. ∠s, cyclic quad.) ∴ x + y = 180° is false. 13. Answer: A
Join BD. ∠ADB = 90° 1 ∠CBD = ∠COD 2 1 = × 48° 2 = 24° x = ∠ADB + ∠CBD = 90° + 24° = 114°
33
(∠ in semi-circle) (∠ at centre twice ∠ at ☉ ) ce
(ext. ∠ of △)
7
Basic Properties of Circles (I)
HKMO (p. 54) Let O be the centre of the circle. With the notations in the figure, join OC and OD.
∵ AC = CD = DB AC = CD = DB (given) ∴ ∠COA = ∠COD = ∠DOB (equal arcs, equal ∠s) 1 = ×180° 3 = 60° Join CD. OC = OD (radii) ∴ ∠OCD = ∠ODC (base ∠s, isos. △) ∠OCD + ∠ODC + ∠COD = 180° (∠ sum of △) ∠OCD = 60° ∴ ∠OCD = ∠COA ∴ CD // AB (alt. ∠s equal) Consider △CAD and △COD. ∵ They have the same base and the same height. ∴ Area of △CAD = area of △COD ∴ Shaded area = area of sector OCD 60° 2= × area of circle 360° 60° 2= ×Q ∴ 360° Q = 12
34