4bch06(basic Properties Of Circles 1)

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 4bch06(basic Properties Of Circles 1) as PDF for free.

More details

  • Words: 9,610
  • Pages: 34
Certificate Mathematics in Action Full Solutions 4B

6 Basic Properties of Circles (I) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MF = EM = 8 cm

Activity

(line from centre ⊥ chord bisects chord)

Activity 6.1 (p. 14) (c) ∠AOB = 2∠APB No matter where points B and P are, ∠AOB = 2∠APB. (or any other reasonable answers)

2. 3.

Activity 6.2 (p. 25) 1.

yes 2.

yes

3.

yes 4.

p. 9 1. ∵ ∴

yes

Activity 6.3 (p. 35)

∠A + ∠C = 180°

3.

= 3.5 cm

∠B + ∠D = 180°

4.

ON = OM = 4 cm (given) CD = AB (chords equidistant from centre are equal) = 7 cm CN = ND (line from centre ⊥ chord bisects chord) 1  =  × 7  cm 2 

The sum of the opposite angles of a cyclic quadrilateral is 180°.





Term minor arc

region BCE





major arc

AFB

AFB





diameter

region BECFA





chord

AB





major segment

PB = AP (line from centre ⊥ chord bisects chord) = 4 cm (line from centre ⊥ chord bisects chord) ∴ AB = (2 × 4) cm = 8 cm ∵ OQ = OP = 2 cm (given) (given) ∴ BC = AB (chords equidistant from centre are equal) = 8 cm (chords equidistant from ∴ BC = AB centre are equal) = 8 cm QC = BQ (line from centre ⊥ chord bisects chord) 1  =  × 8  cm 2  = 4 cm

OB





minor segment

(line from centre ⊥ chord bisects chord)

region OBEC





sector

AC





radius

2.

Follow-up Exercise p. 3 Element AB



AB

p. 7 1.

2.



MB = AM = 8 cm

(line from centre ⊥ chord bisects chord)

∠OND = 90°

(line joining centre to mid-pt. of chord ⊥ chord)

3.



= 10 2 − 6 2 cm = 8 cm

1

∴ ∵ ∴

Consider △OEM. EM = OE 2 − OM 2 (Pyth. theorem)

AB = (2 × 5) cm = 10 cm CN = ND

(line from centre ⊥ chord bisects chord) (line from centre ⊥ chord bisects chord)

(line from centre ⊥ chord bisects chord)

Consider △OND. ∠OND + ∠NOD + ∠ODN = 180° ∠ ( sum of △) 90° + ∠NOD + 35° = 180° ∠NOD = 55° 3.

MB = AM MB = AM

p. 18

CD = ( 2 × 5) cm = 10 cm AB = CD OM = ON = 2.5 cm

(equal chords, equidistant from centre)

6 1 ∠AOB 2 1 = × 60° 2 = 30°

x= 1.

2.

3.

∴ (∠ at centre twice ∠ at ☉ )



ce

2. (∠ at centre twice ∠ at ☉ )

x = 2∠APB = 2 × 120° = 240°

(∠ at centre twice ∠ at ☉ )

∵ ∴ ∵

AB = DC x = 65°

(given) (equal chords, equal ∠s) (given)



DC = AB y=6

∴ 3.

ce

Reflex ∠AOB = 360° – 140° (∠s at a pt.) = 220° 1 x = reflex ∠AOB 2 (∠ at centre twice ∠ at ☉ ) ce 1 = × 220° 2 = 110°

5.

x = 90°

6.

∠APB = 90° Consider △APB. ∠APB + 40° + x = 180° 90° + 40° + x = 180° x = 50°

(equal arcs, equal chords)





DC = AB

(equal chords, equal arcs)

(∠ in semi-circle) (∠ in semi-circle) (∠ sum of △)

1.

x = ∠BAC = 40°

(∠s in the same segment)

2.

x = 90°

(∠ in semi-circle)

y = ∠ACB = 20°

(∠s in the same segment)

4.



ce

4.

3.



(equal ∠s, equal arcs)

(given)



p. 20



CD = AB CD = AB x=5

∵ ∴

x = 2∠APB = 2 × 50° = 100°



DC = AB x=4

Basic Properties of Circles (I)

∠EAC = ∠CBE = 30° x = ∠ADC + ∠DAC = 25° + 30° = 55°

(∠s in the same segment) △ (ext. ∠ of )

Consider △ABD. ∠ABD + ∠BAD + ∠ADB = 180° (∠ sum of △) ∠ABD + ( 40° + 20°) + 70° = 180° ∠ABD = 50° x = ∠ABD (∠s in the same segment) = 50°

p. 28 1. ∵

∠DOC = ∠AOB = 43° (given)

2

Certificate Mathematics in Action Full Solutions 4B

4.

Join OB. ∵ BC = ED (given) ∠ BOC = ∠ EOD ∴ (equal chords, equal ∠s) = 55° ∵ AB = BC (given) ∠ AOB = ∠ BOC ∴ (equal chords, equal ∠s) = 55° x = ∠BOC + ∠AOB = 55° + 55° = 110°

p. 31 1.

 

x BC = ∠AOB AB 2 x = (80°) 5 = 32°



y cm ∠DOC = AB ∠AOB

(arcs prop. to ∠s at centre)

(arcs prop. to ∠s at centre)

 48°  y = 5   80°  =3 2.



x cm ∠DOC = AB ∠AOB

(arcs prop. to ∠s at centre)

 50°  x = 6   30°  = 10 ∠BOC = 180° − ∠AOB − ∠DOC (adj. ∠s on st. line) = 180° − 30° − 50° = 100° y cm ∠BOC = (arcs prop. to ∠s at centre) AB ∠AOB



 100°  y = 6   30°  = 20°

3

7

Basic Properties of Circles (I)



(arcs prop. to ∠s at ☉ce)

∠CED ∠BEC

(arcs prop. to ∠s at ☉ce)

x AB = ∠CFD CD

3.

6 (15°) 2 = 45°

x=

4.



x cm BC

=

(arcs prop. to ∠s at ☉ ) ce



y AB = BC ∠BEC

 30°  x = 10   40°  = 7.5

(arcs prop. to ∠s at ☉ce)

6 (arcs prop. to ∠s at ☉ ) y = 10 (40°) ce = 24° 5.



∠ACB AB = ∠DBC CD

(arcs prop. to ∠s at ☉ce) 3 ( 48°) 4 = 36°

(arcs prop. to ∠s at ☉ ) ∠ACB = ce

x = 180° − ∠DBC − ∠ACB ∠ ( sum of △) = 180° − 48° − 36° = 96°

p. 38119 1.

2.

∠DEC = ∠ABC = 81° x = 180° − ∠DEC − ∠ECD = 180° − 81° − 65° = 34° x + ∠DAB = 180° x = 180° − 93° = 87° y = ∠CDE = 113°

3.

x + ∠CBA = 180° x = 180° − 127° = 53°

(ext. ∠, cyclic quad.) (∠ sum of △)

(opp. ∠s, cyclic quad.) (ext. ∠, cyclic quad.)

(opp. ∠s, cyclic quad.)

(∠ in semi-circle) ∠ACD = 90° (∠ sum of △) x + y + ∠ACD = 180° y = 180° − 90° − 53° = 37°

4

Certificate Mathematics in Action Full Solutions 4B OB = OC = ON + NC = (5 + 8) cm = 13 cm Consider △ONB.

3.

NB = OB 2 − ON 2

(Pyth. theorem)

= 13 2 − 5 2 cm = 12 cm ∵ AN = NB ∴ AB = (2 × 12) cm = 24 cm

(line from centre ⊥ chord bisects chord)

∵ ∴

Exercise

∵ ∴

Exercise 6A (p.10 10) Level 1 1.



ON ⊥ AB NB = AN



1  =  × 16  cm 2  = 8 cm

4.

(Pyth. theorem)

= 8 + 6 cm = 10 cm ∴ The radius of the circle is 10 cm. 2

2

∵ ∴

CN = ND ON ⊥ CD

∴ ∵ ∴

∠ONK = 90° AM = MB OM ⊥ AB

∴ ∠OMK = 90° ∠MKN = 180° − ∠DKB = 180° − 43° = 137°

(line from centre ⊥ chord bisects chord)

(given) (chords equidistant from centre are equal)

(given) (line joining centre to midpt. of chord ⊥ chord) (given) (line joining centre to mid-pt. of chord ⊥ chord) (adj. ∠s on st. line)

Consider quadrilateral OMKN. ∠MON = 360° − ∠OMK − ∠ONK − ∠MKN = 360° − 90° − 90° − 137° = 43°

2.

5.

∵ ∴

∴ Join OB.

5

AM = MB AB = (2 × 6) cm = 12 cm ON = OM CD = AB = 12 cm

(given) (line from centre ⊥ chord bisects chord)

Join OB. Consider △NOB. OB = NB 2 + ON 2

(radii)

OM ⊥ AB AM = MB 1  MB =  × 6  cm 2  = 3 cm

(given) (line joining from centre ⊥ chord bisects chord)

7 Consider △OMB.

Consider △OAC. ∵ OC = OA (radii) ∴ ∠OCA = ∠OAC (base ∠s, isos. △) ∠OCA + ∠OAC + ∠AOC = 180° ∠ ( sum of △) 2∠OCA + 122° = 180° ∠OCA = 29°

OM = OB 2 − MB 2 = 5 2 − 3 2 cm = 4 cm ON = MN − OM = (7 − 4) cm = 3 cm

(Pyth. theorem)

Join OD. Consider △OND. OD = OB = 5 cm

(radii)

ND = OD 2 − ON 2

(Pyth. theorem)

= 5 − 3 cm = 4 cm ∵ ON ⊥ CD ∴ CN = ND ∴

1 AB 2 1 = ( AM + MB ) 2 1 = (16 + 4) cm 2 = 10 cm OM = OB − MB ∴ = (10 − 4) cm = 6 cm OB =

7.

2

Basic Properties of Circles (I)

2

CD = (2 × 4) cm = 8 cm

(given) (line from centre ⊥ chord bisects chord)

Join OD. Consider △OMD. OD = OB = 10 cm

(radii)

MD = OD 2 − OM 2

(Pyth. theorem)

= 10 2 − 6 2 cm = 8 cm ∵ OM ⊥ CD ∴ CM = MD

6.

∵ ∴

CM = MD OM ⊥ CD

∴ ∠OMC = 90° ∠AOC = ∠OCM + ∠OMC = 32° + 90° = 122°

(given) (line joining centre to mid-pt. of chord ⊥ chord) (ext. ∠ of △)

8.



CD = (2 × 8) cm = 16 cm

∵ ∴

BM = MC = 6 cm OM ⊥ BC

(given) (line from centre ⊥ chord bisects chord)

(given) (line joining centre to midpt. of chord ⊥ chord)

Consider △OMB. OM = OB 2 − BM 2

(Pyth. theorem)

= 10 2 − 6 2 cm = 8 cm Consider △OMD. MD = OD 2 − OM 2

(Pyth. theorem)

= 17 − 8 cm = 15 cm 2

2

6

Certificate Mathematics in Action Full Solutions 4B



7

CD = MD − MC = (15 − 6) cm = 9 cm

7 9.

Construct a circle with centre O lying on BH, such that the circle cuts AB at two points P and Q, and cuts BC at two points R and S are shown.

Draw OM and ON such that OM ⊥ AB and ON ⊥ BC. OB = OB common side ∠ABH = ∠CBH given ∠OMB = ∠ONB = 90° constructed ∴ △OBM ≅ △OBN AAS ∴ OM = ON corr. sides, ≅ △s ∴ PQ = RS chords equidistant from centre are equal

Basic Properties of Circles (I)



∠MND = ∠OND + ∠ONM = 90° + 15° = 105°



∠OND = 90°

(line joining centre to mid-pt. of chord ⊥ chord)

SMEFSU08EX@F04 Construct the traingle ABC as shown. AC tan 60° = 12 cm AC = 12 tan 60° cm = 12 3 cm 1 × BC × AC 2 1  =  × 12 × 12 3  cm 2 2   =



Area of △ABC

= 72 3 cm 2

110.

Level 2 10. (a)

∵ ∴



AM = MB ∠OMA = 90°

(given) (line joining centre to mid-pt. of chord ⊥ chord) ∠OMN = ∠OMA − ∠AMN = 90° − 75° = 15°

Let M be a point on AB such that OM ⊥ AB.

(b)

Join ON. ∵ CN = ND ∴ ∠OND = 90°

∵ ∴

CD = AB ON = OM



∠ONM = ∠OMN = 15°

(given) (line joining centre to mid-pt. of chord ⊥ chord) (given) (equal chords, equidistant from centre) (base ∠s, isos. △)

8

Certificate Mathematics in Action Full Solutions 4B OM ⊥ AB AM = MB

(constructed) (line from centre ⊥ chord bisects chord) ∴ 1  =  × 24  cm 2  = 12 cm Consider △OMA. ∵

OM = OA 2 − AM 2

(Pyth. theorem)

= 15 − 12 cm = 9 cm Consider △OMC. MC = MB + BC = (12 + 28) cm = 40 cm 2

2

OC = OM 2 + MC 2

(Pyth. theorem)

= 9 2 + 40 2 cm = 41 cm 12. (a)

Consider △OAB and △OAC. common side OA = OA radii OB = OC given AB = AC ∴ ∴ ∴

(b)

Consider △ABN and △ACN. (proved in (a)) ∠OAB = ∠OAC (given) AB = AC (common side) AN = AN ∴ ∴ ∴

(c)

△OAB ≅ △OAC SSS ∠OAB = ∠OAC corr. ∠s, ≅ △s OA bisects ∠BAC.

△ABN ≅ △ACN BN = CN ON ⊥ BC

(SAS) (corr. sides, ≅ △s) (line joining centre to mid-pt. of chord ⊥ chord)

ON = AN − OA = (8 − 5) cm = 3 cm Consider △ONC. NC = OC 2 − ON 2

(Pyth. theorem)

= 5 − 3 cm = 4 cm Consider △ANC. 2

AC =

2

AN 2 + NC 2

= 8 2 + 4 2 cm = 4 5 cm 13. (a)

9

ON = OY − NY = ( r − 3) cm

(Pyth. theorem)

7 (b) ∵ ∴

ON ⊥ AB AN = NB 1  =  × 18  cm 2  = 9 cm

Join OA. Consider △OAN. OA = r cm ON 2 + AN 2 = OA 2

(radius)

( r − 3) 2 + 9 2 = r 2

(Pyth. theorem)



15.

Let M be a point on AB such that OM ⊥ AB. ∵ OM ⊥ AB (constructed) (line from centre ⊥ MB = AM chord bisects chord) ∴ 1  =  × 18  cm 2  = 9 cm Join OB. OB = 13 cm (radius) Consider △OMB. OM = OB 2 − MB 2

r − 6r + 90 = r r = 15 2

14. ∵

(given) (line from centre ⊥ chord bisects chord)

2

OM ⊥ CD CM = MD

(Pyth. theorem)

= 13 − 9 cm 2

2

= 88 cm Let N be a point on CD such that ON ⊥ CD. ∵ ON ⊥ CD (constructed) (line from centre ⊥ NC = DN chord bisects chord) ∴ 1  =  × 24  cm 2  = 12 cm ∵ ∠ONK = ∠OMK = 90° ∴ ONKM is a rectangle. ∴ NK = OM (property of rectangle) KC = NC − NK = NC − OM ∴

(given) (line from centre ⊥ chord bisects chord)

1  =  × 12  cm 2   = 6 cm Let r cm be the radius of the circle. OM = AM − OA = (18 − r ) cm ∴

Basic Properties of Circles (I)

= (12 − 88 ) cm = 2.62 cm (cor. to 2 d.p.) Join OC. Consider △OCM. OC = r cm OM 2 + CM 2 = OC 2 (18 − r ) 2 + 6 2 = r 2 360 − 36r + r 2 = r 2 r = 10 ∴ MB = OB − OM = [r − (18 − r )] cm = ( 2r − 18) cm = (2 × 10 − 18) cm = 2 cm

16. (radius) (Pyth. theorem)

(a)

Join OD, OB and OA as shown. Let ∠OAB = x, then ∠OAD = 90° − x. ∵ OB = OA ∴ ∠OBA = ∠OAB =x ∴ ∠AOB = 180° − ∠OAB − ∠OBA = 180° − 2 x ∵ OD = OA ∴ ∠ODA = ∠OAD

radii base ∠s, isos. △ ∠ sum of △ radii base ∠s,

10

Certificate Mathematics in Action Full Solutions 4B isos. △ = 90° − x ∠AOD = 180° − ∠OAD − ∠ODA ∴ ∠ sum of △ = 180° − 2(90° − x) = 2x ∠AOB + ∠AOD ∴ = (180° − 2 x) + 2 x = 180° ∴ BOD is a straight line. (b) Draw OM ⊥ AB and ON ⊥ DA. ∵ OM ⊥ AB and ON ⊥ DA (constructed) ∴ AM = MB and DN = NA (line from centre ⊥ chord bisects chord) 1 NA = AD 2 1  =  × 18  cm 2  = 9 cm ∵ AMON is a rectangle. ∴ OM = NA (property of rectangle) = 9 cm

FN = NG DE = 2( LM − EM ) = 2( MN − EM ) = 2( MN − MF ) = 2 FN = FG

Level 1 1.

2.

Consider △OAM. AM = OA 2 − OM 2

17. (a)

∵ ∴ ∵ ∴

(Pyth. theorem)

∠ALM = ∠BMN = ∠CNG = 90° given LA // MB // NC corr. ∠s equal LA // MB // NC and AB = BC given LM = MN intercept theorem

4.

5.

∠ACB + 138° = 180° ∠ACB = 42° (adj. ∠s on st. line)

(adj. ∠s on st. line)

x = 2∠ACB = 2 × 42° = 84°

(∠ at centre twice ∠ at ☉ )

6.

DL = EL

11

line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord

ce

∠ACB = 90° ∵ CA = CB ∴ x = ∠CBA ∠ACB + ∠CBA + x = 180° 2 x + 90° = 180° x = 45°

(∠ in semi-circle) (given) (base ∠s, isos. △)

∠ACD = ∠ABD = 55° x + ∠ACD = 125° x + 55° = 125° x = 70°

(∠s in the same segment)

∠DAC = ∠DBE = 25° x = ∠DAC + ∠ADC = 25° + 42° = 67°

(∠s in the same segment)

∠AOC = 2∠ABC = 2 ×140° = 280° (∠ at centre twice ∠ at )

Reflex

x = 360° − reflex ∠AOC = 360° − 280° = 80°

(b) EM = MF

by (a) proved

Exercise 6B (p. 21)

3.

= 15 2 − 9 2 cm = 12 cm AB = 2 AM = ( 2 × 12) cm = 24 cm

line from centre ⊥ chord bisects chord

(∠ sum of △)

(ext. ∠ of △)

(ext. ∠ of △)

(∠ at centre twice at ☉ ) ce

(∠s at a pt.)

∠ACD = 180° − ∠CAD − ∠CDA = 180° − 32° − 90° = 58° ∠ACB = 90°

(∠ sum of △) (∠ in semi-circle)

7



7.

8.

Basic Properties of Circles (I)

x = ∠ACB − ∠ACD = 90° − 58° = 32°

∠ABC = 90° ∠BCA = ∠BDA =x ∠BCA = 180° − ∠ABC − ∠BAC x = 180° − 90° − 65° = 25°

(∠ in semi-circle) (∠s in the same segment)

(∠ sum of △)

∠AOB = 2∠ACB (∠ at centre twice ∠ at ☉ ) = 2 × 70° ce = 140° (radii) OB = OA (base ∠s, isos.△ ) ∠OBA = x x + ∠OBA + ∠AOB = 180° ∠ ( sum of △) 2 x + 140° = 180° x = 20°

12

Certificate Mathematics in Action Full Solutions 4B 9.

12.

Join OC. 1 ∠AOB 2 1 = ×130° 2 = 65° OC = OA ∠OCA = ∠OAC = 20° OB = OC x = ∠OCB = ∠ACB − ∠OCA = 65° − 20° = 45° ∠ACB =

10.

11.

(∠ at centre twice ∠ at ☉ ) ce

Level 2 14. ∵ ∴ ∵

(radii) (base ∠s, isos. △)



(radii) (base ∠s, isos. △)

(∠ at centre twice ∠ at ) (ext. ∠ of

)

DC = DA ∠DCA = x BD = BC ∠BDC = ∠DCA =x ∠ADB = 90°

(given) (base ∠s, isos. △) (given) (base ∠s, isos. △)

of △) (∠ sum of △) 15. (a)

x

(∠ at centre twice ∠ at ☉ )

∠OAB + ∠AOC = 180° (int. ∠s, BA // CO) ∠AOC = 180° − 32° = 148° (∠s at a pt.) (int. ∠s, BA // CO) ∴ Reflex ∠AOC = 360° − ∠AOC = 360° − 148° = 212°

∠AOC = 360° − ∠AOC = 360° − 148° = 212°

ce

(∠s at a pt.) 1 reflex ∠AOC 2 1 = × 212° 2 = 106°

∠ABC =

(alt. ∠s, DO // AC)

(b)

∠BKD = ∠ODK + ∠BOD (ext. ∠ of △) = 18° + 36° = 54° (ext. ∠ of △) ce

(∠ at centre twice ∠ at ☉ )

13

)

(∠ in semi-circle) ∠DAC + ∠DCA + ∠ADC = 180° (∠ sum x + x + (90° + x ) = 180° x = 30°

(opp. ∠s of // gram)

(ext. ∠ of △)

(ext. ∠ of

13. ∠DAC, ∠ACD, ∠DAB, ∠DBA, ∠EFD and ∠FED (any four of the above angles)

∠DAC = 90° (∠ in semi-circle) ∠ACD = 180° − ∠DAC − ∠ADC (∠ sum of △) = 180° − 90° − 55° = 35° (given) AB = AC (base ∠s, isos.△ ) ∠ABC = ∠ACB = 35° ∠ABC + ∠BAD = 55° (ext. ∠ of △) ∠BAD = 55° − 35° = 20° ∠BOD = 36° 1 ∠BCD = ∠BOD 2 1 = × 36° 2 = 18° ∠ODC = ∠BCD = 18°

65° + ∠BCA = 118° ∠BCA = 53° ∠AOB = 2∠BCA = 2 × 53° = 106° ∠AOB + ∠OAK = 118° ∠OAK = 118° − 106° = 12°

(∠ at centre twice ∠ at ☉ ) ce

7

16.

∠DCB + ∠CKB = 50° ∠DCB = 50° − 28° = 22° ∠DAB = ∠DCB = 22° ∠ACB = 90° ∠CAB = 180° − ∠ACB − ∠CBA = 180° − 90° − 50° = 40° ∠CAD = ∠CAB − ∠DAB ∴ = 40° − 22° = 18° ∠BAC = ∠BDC

17.

(∠ ext. ∠ of △)

20. (a)

(∠s in the same segment)

(∠ in semi-circle) (∠ sum of △)

(∠s in the same segment) (alt. ∠s, DC // AB) (∠ in semi -circle)

OABC is a parallelogram. OA = OC ∴ OABC is a rhombus.

(c)



∠ABC = x x 180° − = x 2 3 x = 180° 2 x = 120°

OK ⊥ EB BK = EK

(corr. sides, ~ △s)

given line from centre ⊥ chord bisects chord given common side SAS

(∠ in semicircle) ∠BDC = 180° – ∠CBD – ∠BCD (∠ sum of △) = 180° – 90° – 42° = 48° ∠KED = ∠KBD (corr. ∠s, ≅ △s) ∠KED + ∠KBD = ∠BDC (ext. ∠ of △) 2∠KED = 48 ∠KED = 24 ∴ ∠BAD = ∠BED (∠s in the same segment) = 24°

22.

(given) (radii)

(b) Reflex ∠AOC = 360° − x ∠s at a pt. 1 ∠ABC = reflex ∠AOC 2 ∠ at centre twice ∠ at ☉ 1 ce = (360° − x) 2 x = 180° − 2

∵ ∴

vert. opp. ∠s ∠s in the same segment ∠s in the same segment AAA

(b) ∠ABD = 90°

∠ABE =

19. (a)



AK KD = BK KC 6 KD = 3 2 cm KD = 4 cm

∠BKD = ∠EKD = 90° KD = KD ∴ △BKD ≅ △EKD

∠BDC = ∠ABD ∠ADB = 90° ∠ABD + ∠BAD + ∠ADB = 180° (∠ sum of △) ∠ABD + (44° + ∠BAC) + 90° = 180° ∠ABD + ∠ABD + 134° = 180° ∠ABD = 23°

1 (∠ at centre twice ∠AOE 2 ∠ at ☉ce) 18. 1 = × 124° 2 = 62° ∠ACE + ∠BEC = ∠ABE (ext. ∠ of △) ∠BEC = 62° − 36° = 26° ∠BAD = ∠BEC (∠s in the same segment) = 26° ∠AKE = ∠BAD + ∠ABE ∴ (ext. ∠ of △) = 26° + 62° = 88°

∠AKB = ∠DKC ∠BAK = ∠CDK ∠ABK = ∠DCK ∴ △AKB ~ △DKC

(b)

21. (a)

Basic Properties of Circles (I)

Join AP. ∠APB = 90° ∠ACQ = ∠APQ = 90 ∴ QC ⊥ AB

∠ in semi-circle ∠s in the same segment

23.

(opp. ∠s of // gram)

(proved in (b)) Join OA. ∠ABQ = ∠AOQ ∠s in the same segment = 2∠ABP ∠ at centre twice ∠ at ☉ce ∴ BP bisects ∠ABQ.

14

Certificate Mathematics in Action Full Solutions 4B

Exercise 6C (p. 32) Level 1 1.

6.

Reflex ∠AOB = 360° – ∠AOB = 360° – 80° = 280° x cm ∠AOB = Reflex ∠AOB Major AB



(∠s at a pt.)



(arcs prop. to ∠s at centre)

4 ( 48°) 3 = 64°

∠AOB =

(arcs prop. to ∠s at centre)

(b)

 80°  x = 14   280°  =4

2.

(a)



∠AOB AB = ∠BOC BC

∠BAC = 180° – ∠ABC – ∠ACB (∠ sum of △) = 180° – 50° – 75° = 55° x cm ∠BAC (arcs prop. to = ∠ABC ∠s at ce ) AC ☉  55°  x = 10   50°  = 11

1 ∠AOB (∠ at centre twice ∠ at ☉ce) 2 1 = × 64° 2 = 32°

∠ACB =



3.

∠ACB = 90° ∠BAC = 180° – x – ∠ACB = 180° – x – 90° = 90° – x

7.

(∠ in semi-circle) (∠ sum of △)



(arcs prop. to ∠s at ☉ )

90° − x 4 = x 5 450° − 5 x = 4 x x = 50°

4.

ce

 

∠COD CD = ∠BOC BC

(arcs prop. to ∠s at centre)

4 (84°) 6 = 56° ∠BOD = ∠BOC + ∠COD = 84° + 56° = 140° ce 1 x = ∠BOD (∠ at centre twice ∠ at ☉ ) 2 ∴ 1 = ×140° 2 = 70° ∠COD =

5.



15



∠ADC = ∠BAD AC AC = BD



BD

alt. ∠s, CD // AB equal ∠s, equal arcs

8.





AB : BC BC AB prop. to ∠s at = 27° : 54° = 1: 2

= ∠DEB : ∠BEC(arcs

∠BAC = 90° ∠BAD = ∠BAC + ∠CAD = 90° + 30° = 120°

(∠ in semi-circle)





∠BAC BC = x AC

∠BEC = 180° – ∠EBC – ∠ECB (∠ sum of △) = 180° – 62° – 64° = 54° ∠DEB = ∠EBC − ∠EDB (ext. ∠ of △) = 62° – 35° = 27°

☉ce)

7 ∵ AB = AD (given) ∴ ∠ABD = ∠ADB (base ∠s, isos. △) ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) 2∠ABD + 120° = 180° ∠ABD = 30° ∠ACB = 180° − ∠BAC − ∠ABC (∠ sum of △) = 180° − 90° − 30° = 60° ∴

9.





AB : BC BC AB (arcs prop. to ∠s = 60° : 90° = 2:3



(equal ∠s, equal arcs) AC = CD AC = CD ∠BPD = ∠BPC + ∠CPD = 10° + 15° = 25° = ∠EPF





 

 

(equal ∠s, equal arcs) BD = EF BD = EF ∠APD = ∠APB + ∠BPC + ∠CPD = 5° + 10° + 15° = 30° = ∠FPG

 

AD = FG AD = FG

11.

∠ABD = 180° – ∠BAD − ∠ADB (∠ sum of △) = 180° – (40° + 20°) – 70° = 50°

at ☉ce)

∠APC = ∠APB + ∠BPC = 5° + 10° = 125° = ∠CPD



Level 2

= ∠ACB : ∠BAC





Basic Properties of Circles (I)

(equal ∠s, equal arcs)

Join BC. ∠CBD = ∠CAD (∠s in the same segment) = 20° ∠CBA = ∠CBD + ∠ABD = 20° + 50° = 70°



ADC BC

=

∠CBA ∠BAC

12. ∠BAD = 90° ∠BAC = ∠BAD – ∠CAD = 90° – 50° = 40° x cm ∠BAC = CD ∠CAD  40°  x = 15   50°  = 12 13. ∠PRS = ∠PQS

 

AB = CD AB = CD

(given)

∴ ∠ADB = ∠DAC and ∠ACB = ∠DBC (equal arcs, equal ∠s) ∴ KD = KA and KC = KB (sides opp. equal ∠s) ∴ △AKD and △BKC are isosceles triangles.

  

AB = BC = CD AB = BC = CD (given) ∴ ∠ACB = ∠CAB and ∠BDDBC = ∠DBC (equal arcs, equal ∠s) ∴ BC = BA and CD = CB (sides opp. equal ∠s) ∴ △ABC and △BCD are isosceles triangles. ∵

ce

 70°  x = 10   40°  = 17.5



10. ∵

(arcs prop. to ∠s at ☉ )

(∠ in semi-circle)

(arcs prop. to ∠s at ☉ ) ce

(∠s in the same segment)

= 30° ∠PRQ = ∠QRS – ∠PRS = 75° − 30° = 45°

 

(given) QR = PQ QR = PQ ∠QSR = ∠PRQ = 45° ∴ ∠QSR = ∠PRQ (equal arcs, equal ∠s) = 45° ∠RQS = 180° – ∠QRS – ∠QSR (∠ sum of △) = 180° − 75° − 45° = 60° ∵

14. (a)

OD = OB (radii) ∠ODB = ∠OBD (base ∠s, isos. △) = 30° ∴ ∠BOA = ∠OBD + ∠ODB (ext. ∠ of △)

16

Certificate Mathematics in Action Full Solutions 4B = 30° + 30° = 60°







(b)

∠ADB AB = ∠CDB BC 3 = 2 2 ∠CDB = (30°) 3 = 20°

(b) (arcs prop. to ∠s at ☉ ) ce

OA = OC AB = CB OB = OB ∴ △ABO ≅ △CBO ∠AOB = ∠COB ∠AOD = ∠COD

(b) ∵ ∴

 

arcs 16. ∵ ∴ ∵ ∴ ∴ 17. (a)

 

BC = CD BC = CD ∠CAB = ∠DAC OC = OA ∠ACO = ∠CAB = ∠DAC OC // AD ∵ ∴

OE ⊥ BD BE = ED

AE = AE ∠AEB = ∠AED = 90° ∴ △ABE ≅ △ADE (b)

18. (a)

 

∠BAC = ∠DAC ∴

17

radii given common side SSS corr. ∠s, ≅ △s equal ∠s, equal

given equal arcs, equal ∠s radii base ∠s, isos. △ alt. ∠s equal given line from centre ⊥ chord bisects chord common side given SAS corr. ∠s, ≅ △s

BC = CD BC = CD equal ∠s, equal arcs

With the notations in the figure,

∠DFE = ∠BDF + ∠DBF = 20° + 30° = 50° ∠AGE = ∠CAG + ∠ACG = 40° + 50° = 90°







= 20° : 40° : 40° : 30° : 50° = 2 : 4 : 4 : 3:5

AD = DC AD = DC





AB AB : BC BC : CD CD : DE DE : EA EA = ∠ADB : ∠BEC : ∠CAD : (arcs prop. to ∠s at ☉ce) ∠DBE : ∠ACE (arcs prop. to ∠s at ☉ce) to ∠s at △ce)

(cb)

15. (a)



x = 180° – ∠FGE – ∠GFE (∠ sum of △) = 180° – 90° – 50° = 40°

(ext. ∠ of △)

(ext. ∠ of △)



AB 2 = Circumference of the circle 2 + 4 + 4 + 3 + 5 (by (b)) 18   Circumference of the circle =  π ×  cm 2   = 9π cm 9π ∴ Radius of the circle = cm 2π = 4.5 cm

7 Exercise 6D (p. 39) Level 1 1.

2.

3.

4.

∠BCD = 95° ∠BCD + x = 180° x = 180° − 95° = 85°

7. (ext. ∠, cyclic quad.) (adj. ∠s on st. line)

∠BCD + ∠BAD = 180° ∠BCD = 180° − 76° = 104° ∵ CD = CB ∴ ∠BDC = x ∠BDC + x + ∠BCD = 180° ∴ 2 x + 104° = 180° x = 38°

6.

∠FCD + ∠DEF = 180° ∠FCD = 180° − 130° = 50° x = ∠FCD = 50°

(opp. ∠s, cyclic quad.) (ext. ∠, cyclic quad.)

∠ABD = y (ext. ∠, cyclic quad.) ∵ AD = AB (given) ∴ ∠ADB = ∠ABD (base ∠s, isos. △) =y ∠BAD + ∠ABD + ∠ADB = 180° (∠ sum of △) x + 2 y = 180° 2 y = 180° − 50° y = 65°

(opp. ∠s, cyclic quad.) (given) (base ∠s, isos. △) (∠ sum of △) 8.

∠ACB = 90° (∠ in semi-circle) ∠ABC + ∠ACB + ∠BAC = 180° (∠ sum of △) ∠ABC = 180° − 90° − 40° = 50° x + ∠ABC = 180° (opp. ∠s, cyclic quad.) x = 180° − 50° = 130° x = ∠ABD = 46°

Join AD. ∠ABC + ∠CDA = 180° ∠ADE = 90° ∠ABC + ∠CDE = ∠ABC + (∠CDA + ∠ADE ) = (∠ABC + ∠CDA) + ∠ADE = 180° + 90° = 270°

(∠s in the same segment)

y + ∠BCD = 180° (opp. ∠s, cyclic quad.) y + (54° + x) = 180° y = 180° − (54° + 46°) = 80°

5.

Basic Properties of Circles (I)

∠EBC + ∠CDE = 180° (opp. ∠s, cyclic quad.) ∠EBC = 180° − 110° = 70° ∠ECB + ∠BAE = 180° (opp. ∠s, cyclic quad.) ∠ECB = 180° − 120° = 60° ∠BEC + ∠EBC + ∠ECB = 180° (∠ sum of △) ∠BEC = 180° − 70° − 60° = 50°

(a)

(b)

∠ADE = ∠CAD + ∠ACD = 36° + 60° = 96°

∠APB = 9.

(a)

(b)

(ext. ∠ of △)

∠DFE = ∠BCD (ext. ∠, cyclic quad.) = 60° ∠DFE + ∠FDE + ∠DEF = 180° (∠ sum of △) ∠DEF = 180° − 60° − 96° = 24°

1 ∠AOB 2 1 = × 40° 2 = 20°

opp. ∠s, cyclic quad. ∠ in semi-circle

10.

(∠ at centre twice ∠ at ☉ ) ce

∠BAP + ∠BCP = 180° (opp. ∠s, cyclic quad.) ∠BAP = 180° − 50° = 130° ∠ABP + ∠BAP + ∠APB = 180° (∠ sum of △) ∠ABP = 180° − 130° − 20° = 30°

∠DAC + ∠ADC + ∠ACD = 180° (∠ sum of △) ∠DAC = 180° − 115° − 30° = 35° ∠ABC + ∠ADC = 180° (opp. ∠s, cyclic quad.) ∠ABC = 180° − 115° = 65° ∵ BC = CD (given) ∠ BAC = ∠ DAC ∴ (equal chords, equal ∠s) = 35° ∠ACB + ∠ABC + ∠BAC = 180° (∠ sum of △)

18

Certificate Mathematics in Action Full Solutions 4B ∠ACB = 180° − 65° − 35° = 80°

19

7 Level 2 11.

15.

Reflex ∠AOC = 2∠ABC

(∠ at centre twice = 2 × 110° ∠ at

☉ce) = 220° ∠AOC = 360° − reflex ∠AOC (∠s at a pt.) = 360° − 220° = 140° ∴ ∠CPB + ∠AOC = 180° (opp. ∠s, cyclic quad.) ∠CPB = 180° − 140° = 40° 12.

∠COD = ∠BAD = 40° OD = OC ∠ODC = ∠OCD ∠COD + ∠ODC + ∠OCD = 180° 40° + 2∠ODC = 180° ∠ODC = 70° ∠ODC + ∠ABC = 180° ∠ABC = 180° − 70° = 110°

13. (a)

∠KAD = ∠KCB ∠KDA = ∠KBC ∠AKD = ∠CKB ∴ △KAD ~ △KCB

KA KD = KC KB KA KD = KD + DC KA + AB (b) 2 cm 3 cm = 3 cm + DC (2 + 4) cm 4 cm = 3 cm + DC DC = 1 cm 14.

Basic Properties of Circles (I)

∠ACD + ∠ADC + ∠CAD = 180° (∠ sum of △) ∠ACD = 180° − 40° − ∠ADC = 140° − ∠ADC ∠ABC + ∠ADC = 180° (opp. ∠s, cyclic quad.) ∠ABC = 180° − ∠ADC

(corr. ∠s, OC // AB) (radii) (base ∠s, isos. △) (∠ sum of △)

(opp. ∠s, cyclic quad.)

ext. ∠, cyclic quad. ext. ∠, cyclic quad. common angle AAA

(corr. sides, ~ △s)

∠BAD = ∠BCE (ext. ∠, cyclic quad.) = 65° ∠ADB = 90° (∠ in semi-circle) ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) ∠ABD = 180° − 90° − 65° = 25° ∠BDC = ∠ABD (alt. ∠s, DC // AB) = 25° ∠DBC + ∠BDC = ∠BCE (ext. ∠ of △) ∠DBC = 65° − 25° = 40°

20

Certificate Mathematics in Action Full Solutions 4B ∠AED + ∠ACD = 180° (opp. ∠s, cyclic quad.) ∠AED = 180° − ∠ACD = 180 − (140° − ∠ADC ) = 40° + ∠ADC ∠ ABC + ∠ AED = (180° − ∠ADC ) + ( 40° + ∠ADC ) ∴ = 220° 16.

Join BD. Let ∠CBE = x. ∵ CE = CB (given) ∠ CEB = ∠ CBE ∴ (base ∠s, isos. △) =x ∠CBE + ∠BCE + ∠CEB = 180° (∠ sum of △) ∠BCE = 180° − 2 x ∠BDE + ∠BCE = 180° (opp. ∠s, cyclic quad.) ∠BDE = 180° − (180° − 2 x) = 2x ∠DBE = 90° (∠ in semi-circle) ∠ABD + ∠DBE + ∠CBE = 180° (adj. ∠s on st. line) ∠ABD = 180° − 90° − x = 90° − x ∠BAD + ∠ABD = ∠BDE (ext. ∠ of △) 27° + (90° − x) = 2 x



17. (a)

(b)

21

3 x = 117° x = 39° ∠CBE = 39° ∠APC = ∠ABC + ∠PCB = ( x + x) + y = 2x + y ∠ARB = ∠ACB + ∠RBC = ( y + y) + x = x + 2y ∠APC + ∠ARB = 180° ( 2 x + y ) + ( x + 2 y ) = 180° 3 x + 3 y = 180° x + y = 60°

(ext. ∠ of △) (ext. ∠ of △)

(opp. ∠s, cyclic quad.)

7

Basic Properties of Circles (I)

∠BAC + ∠ABC + ∠ACB = 180° (∠ sum of △) ∠BAC + 2 x + 2 y = 180° ∠BAC + 2( x + y ) = 180° ∠BAC + 120° = 180° ∠BAC = 60°

22

Certificate Mathematics in Action Full Solutions 4B Revision Exercise 6 (p. 47) Level 1

(b)

1.

Join OF. Draw ON such that ON ⊥ FE. OF = OB 1 = BC (radii) 2 1  =  × 20  cm 2  = 10 cm ON = AB (property of rectangle) = 6 cm Consider △ONF. FN = OF 2 − ON 2 = 10 − 6 cm = 8 cm ∵ ON ⊥ FE ∴ FN = NE 2



2.

3.

∠AEC = 90° ∠EBC = ∠EAC = 30° ∠AEB = ∠EDC + ∠EBC = 35° + 30° = 65° ∠BEC = ∠AEC − ∠AEB = 90° − 65° = 25° (a)

(Pyth. theorem)

2

FE = ( 2 × 8) cm = 16 cm

(constructed) (line from centre ⊥ chord bisects chord)

(∠ in semi-circle) (∠s in the same segment) (ext. ∠ of △)

∠POR + ∠OPQ = 180°

(int. ∠s, OR // PQ)

∠POR = 180° − 42° = 138° ∠POR = 360° − ∠POR ∴ Reflex (∠s at a pt.) = 360° − 138° = 222° (∠ at centre twice ∠ at ☉ce)

23

1 reflex ∠POR 2 1 = × 222° 2 = 111° ∠ORQ + ∠PQR = 180° (int. ∠s, OR // PQ) ∠ORQ = 180° − 111° = 69°

∠PQR =

7 4.

With the notations in the figure,

Basic Properties of Circles (I)

(opp. ∠s, cyclic quad.)

(arcs prop. to ∠s at ☉ce)

1 ∠AOB 2 1 = × 54° 2 = 27° ∠ONC = ∠OBC + ∠BCA = 42° + 27° = 69° ∠OAC + ∠AOB = ∠ONC ∠OAC = 69° − 54° = 15° ∠BCA =

5.

 

AD = DC AD = DC ∠ACD = ∠CAD ∴ = 35° ∠BCA = 90° ∠BCD = ∠BCA + ∠ACD = 90° + 35° = 125° ∠BAD + ∠BCD = 180° (∠BAC + 35°) + 125° = 180° ∠BAC = 20° ∵

(∠ at centre twice ∠ at ☉ce)

(ext. ∠ of △)

(ext. ∠ of △)

(given) (equal arcs, equal ∠s) (∠ in semi-circle)

(opp. ∠s, cyclic quad.)



6.



∠CDB BC = ∠CBD CD 2 = 1 1 ∴ ∠CBD = ∠CDB 2 ∠ABC + ∠ADC = 180° (62° + ∠CBD ) + (58° + ∠CDB) = 180° 1 120° + ∠CDB + ∠CDB = 180° 2 3 ∴ ∠CDB = 60° 2 ∠CDB = 40° ∠KDC = 40°

(arcs prop. to ∠s at ☉ce)

(opp. ∠s, cyclic quad.)

24

Certificate Mathematics in Action Full Solutions 4B

7.

∠ABC + ∠ADC = 180° ∠ABC = 180° − 115° = 65°

 

∠ACB AB = ∠BAC BC 3 = 2 3 ∠ACB = ∠BAC ∴ 2 ∠ACB + ∠ABC + ∠BAC = 180° 3 ∠BAC + 65° + ∠BAC = 180° 2 5 ∠BAC = 115° 2 ∠BAC = 46° 8.

(a)

OC = OB ∠OCB = ∠OBC

(∠ sum of △)

(radii) (base ∠s, isos. △)

∠OCB + ∠OBC + ∠BOC = 180° ∠ ( sum of △) 2∠OCB + 80° = 180° ∠OCB = 50° 1 ∠BOC (∠ at centre twice 2 ∠ at ☉ce) 1 = × 80° 2 = 40° ∠DAB + ∠BCD = 180° (opp. ∠s, cyclic quad.) (∠DAC + ∠BAC ) + (∠OCB + ∠OCD ) = 180° 36° + 40° + 50° + ∠OCD = 180° ∠OCD = 54° ∠BAC = (b)

9.

Produce CO to cut AB at E. Join BC. ∠BEC = ∠OCD (alt. ∠s, AB // DC) = 36° ∠BOC = ∠ABO + ∠BEC (ext. ∠ of △) = 28° + 36° = 64° OC = OB (radii) ∠OCB = ∠OBC (base ∠s, isos. △) ∠BOC + ∠OCB + ∠OBC = 180° (∠ sum of △) 64° + 2∠OCB = 180° ∠OCB = 58° ∠BAD + ∠BCD = 180° (opp. ∠s, cyclic quad.) ∠BAD + (58° + 36°) = 180° ∠BAD = 86°

25

7

Basic Properties of Circles (I)

∠AOC + reflex ∠AOC = 360° ∠ ( s at a pt.) ∠ABC + 2∠ABC = 360° ∠ABC = 120°

10.

13.

Draw OM such that OM ⊥ BC. ∵ OM ⊥ BC (constructed) ∴ BM = MC (line from centre ⊥ chord bisects chord) 1  ∴ MC =  2 × 6  cm   = 3 cm Consider △OMC. OM = OC − MC 2

2

(Pyth. theorem)

= 5 − 3 cm = 4 cm Consider △OAM. 2

2

AM = OA 2 − OM 2

(Pyth. theorem)

= 7 2 − 4 2 cm



Join BD and DC. ∠ABD = 90° ∠ACD = 90° ∴ ∠ABD = ∠ACD AD = AD AB = AC ∴ △ABD ≅ △ACD ∴ ∠BAD = ∠CAD ∴ AD bisects ∠BAC.

= 33 cm AB = AM − BM = AM − MC

∠ in semi-circle ∠ in semi-circle common side given RHS corr. ∠s, ≅ △s

14. ∠ACD = p + q (ext. ∠ of △) ∠BDC = p (∠s in the same segment) r = ∠ACD + ∠BDC (ext. ∠ of △) = p+q+ p = 2p +q 15.

= ( 33 − 3) cm = 2.74 cm (cor. to 2 d.p.) 11.

Join BD. ∠ABD = 90° (∠ in semi-circle) ∠EBD = ∠ABD − ∠ABE = 90° − 44° = 46° ∠ECD = ∠EBD (∠s in the same segment) = 46° 12. (a)

(b)

∵ ∴ ∵ ∴

AB // OC and OA // CB (given) OABC is a parallelogram. OA = OC (radii) OABC is a rhombus.

∠AOC = ∠ABC Reflex ∠AOC = 2∠ABC

(property of rhombus) (∠ at centre twice ∠ at ☉ce)

Let O be the centre of the circle and r cm be the radius. Join OA. OA = r cm (radius) OM = OC − MC = ( r − 1) cm ∵ OM ⊥ AB (given) AM = MB (line from centre ⊥ chord bisects chord) ∴ 1  =  ×10  cm 2  = 5 cm Consider △OAM. OA 2 = AM 2 + OM 2 r 2 = 5 2 + (r − 1) 2

(Pyth. theorem) r 2 = 25 + r 2 − 2r + 1 2r = 26 r = 13 ∴ The radius of the circle is 13 cm.

26

Certificate Mathematics in Action Full Solutions 4B Level 2 16.

∠AOD + ∠BOD = 180° ∠AOD = 180° − 140° = 40° ∠ODC = ∠AOD = 40° 1 ∠DCA = ∠AOD 2 1 = × 40° 2 = 20° ∠OKC = ∠ODC + ∠DCA = 40° + 20° = 60° ∠AKO + ∠OKC = 180° ∠AKO = 180° − 60° = 120°

(adj. ∠s on st. line) (b) (alt. ∠s, CD // BA) (∠ at centre twice ∠ at ☉ce)

(ext. ∠ of △)

(adj. ∠s on st. line)

17. (a) ∠ABC + ∠AFC = 180° (opp. ∠s, cyclic quad.) ∠AFC = 180° − 102° = 78° ∠CDE = ∠AFC (ext. ∠, cyclic quad.) = 78°

(b)

18. (a)

(b)

∠COE = 2∠CDE (∠ at centre twice ∠ at ☉ce) = 2 × 78° = 156° ∠BAF + ∠ABO + ∠COE + ∠FEO = 360° ∠BAF + 102° + 156° + 38° = 360° ∠BAF = 64° ∠ADC = 90° (∠ in semi-circle) ∠APD + ∠ADC + ∠BAD = 180° ∠ ( sum of △) 20° + 90° + (∠BAC + 54°) = 180° ∠BAC = 16° ∠BDC = ∠BAC

(∠s in the same segment)

= 16° ∠ADB = ∠ADC − ∠BDC = 90° − 16° = 74° ∠AKD + ∠ADB + ∠CAD = 180° (∠ sum of △) ∠AKD = 180° − 74° − 54° = 52° 19. (a)

∠ACB = 90° ∠DBA = ∠DCA

(∠ in semi-circle) (∠s in the same segment) (ext. ∠ of △)

∠CAB = ∠CEA + ∠DCA = 25° + ∠DCA ∠CAB + ∠CBA + ∠ACB = 180° (∠ sum of △) ( 25° + ∠DCA) + (37° + ∠DBA) + 90° = 180° 2∠DCA = 28° ∠DCA = 14°

27

∠CAB = 25° + ∠DCA = 25° + 14° = 39°

7 20.

Basic Properties of Circles (I)

1 ∠AOB (∠ at centre twice 2 ∠ at ☉ce) 1 = × 30° 2 = 15°

∠BCA = ∴

(b)

Join MN. ∠ABM = ∠MNC (ext. ∠, cyclic quad.) ∠ADM = ∠MNE (ext. ∠, cyclic quad.) ∠ABM + ∠ADM = ∠MNC + ∠MNE = 180° (adj. ∠s on st. line) ∠BAD + ∠ABM + ∠ADM + ∠BMD = 360° ∴ 65° + 180° + ∠BMD = 360° ∠BMD = 115°

23. (a)

∵ OC = OA (radii) ∴ ∠ACO = ∠CAO (base ∠s, isos. △) ∠CAO + ∠ACO + ∠AOC = 180° (∠ sum of △) 2∠CAO = 180° − 90° ∠CAO = 45° ∠CEO = ∠CAO + ∠AOB ∴ (ext. ∠ of △) = 45° + 30° = 75° ∠APD = ∠CPB ∠PAD = ∠PCB ∠PDA = ∠PBC ∴ △PAD ~ △PCB

common angle ext. ∠, cyclic quad. ext. ∠, cyclic quad. AAA

∠AKB = ∠DKC ∠BAK = ∠CDK ∠ABK = ∠DCK ∴ △AKB ~ △DKC

vert. opp. ∠s ∠s in the same segment ∠s in the same segment AAA

21. (b)

Join BE.





∠BEC BC = ∠CAD CD 3 ∠BEC = (28°) 2 = 42°

(c) (arcs prop. to ∠s at ☉ce)



AB BK = DC CK 10 BK = 4 3 cm ∴ BK = 7.5 cm



∠DBE DE = (arcs prop. to ∠CAD CD ∠s at ☉ce) 4 ∠DBE = (28°) 2 = 56° ∴ ∠BKE + ∠KEB + ∠KBE = 180° (∠ sum of △) ∠BKE = 180° − 42° − 56° = 82°

24. (a)

 

∠AOB AB = 22. (a) ∠BOC BC (arcs prop. to ∠s at centre) 1 = 2 ∠BOC = 2∠AOB ∠AOC = ∠AOB + ∠BOC 90° = ∠AOB + 2∠AOB 1 ∴ ∠AOB = 3 × 90° = 30°

PA PD = PC PB PA PD = (corr. sides, ~ △s) PD + DC PA + AB 6 cm 8 cm = 8 cm + DC (6 + 10) cm 12 cm = 8 cm + DC ∴ DC = 4 cm

(b)

(corr. sides, ~ △s)

∵ ∴

AM = MB and CN = ND ∠OMK = ∠ONK = 90°

∵ ∴

AB = DC OM = ON



OK = OK △OMK ≅ △ONK

∴ ∴

KM = KN BM = CN KM – BM = KB = KC



KB =KC AB =DC KA =KD



(c)

given line joining centre to mid-pt. of chord ⊥ chord given equal chords, equidistant from centre common side RHS corr. sides, ≅ △s given KN – CN

proved in (b) given

28

Certificate Mathematics in Action Full Solutions 4B ∴ isos. △ ∴

25. (a)

∠KAD =

∠KDA ∠KDA



∠BCD + = ∠BCD +∠KAD = 180° BC // AD

∵ ∴

AC = AB ∠ACB =∠ABC

given base ∠s, isos. △ = ∠ADE ext. ∠,

cyclic quad. ∴ BC // ED (b)

∠CED = ∠CBD = ∠BDE ∴ FE

base ∠s,

opp. ∠s, cyclic quad. int. ∠s supp.

corr. ∠s equal ∠s in the same segment alt. ∠s, BC // ED = FD sides opp. equal

∠s 26. ∠NBP = ∠MDP ∠BNP = 180° – ∠NBP – ∠NPB = 180° – ∠MDP – ∠DPM = ∠DMP = ∠NMC ∴ QM = QN

ext. ∠, cyclic quad. ∠ sum of △ given vert. opp. ∠s sides opp. equal ∠s

27.

Join BO and OE. ∠BOE = 2 ∠CAE ∠ACE + ∠BOE = 180°

∠ at centre twice ∠ at ☉ce opp. ∠s, cyclic quad.

∠ACE + 2∠CAE = 180° ∠ACE + ∠CAE = 180° – ∠CAE (∠ACE + ∠CAE) +∠CEA = 180° ∠ sum of △ (180° – ∠CAE) + ∠CEA = 180° ∠CAE = ∠CEA ∴ CA = CE sides opp. equal ∠s 28. (a)

(b)

∵ CE = CD ∴ ∠CED = ∠CDE = ∠ABC

given base ∠s, isos. △ ext. ∠, cyclic quad. ∴ ABE is an isosceles triangle. sides opp. equal ∠s

 

Let ∠ABD = x. ∵ CD = AD CD = AD ∴ ∠DBC = ∠ABD =x

29

(given) (equal arcs, equal ∠s)

∠ABE = ∠ABD + ∠DBC = 2x ∠AEB = ∠ABE = 2x ∠EDC = ∠AEB = 2x ∠DCB = ∠AEB + ∠EDC = 4x …… (1) ∠BDC = 90°

(base ∠s, isos. △) (base ∠s, isos. △)

(∠ in semi-circle)

7 ∠DBC + ∠DCB + ∠BDC =

180°

(∠ sum of

△) ∠DCB = 180° – x – 90° = 90° – x …… (2) From (1) and (2), we have 4 x = 90° − x x = 18° ∠BAD + ∠DCB = 180° (opp. ∠s, cyclic quad.) ∠BAD = 180° − 4 x (by (1)) = 180° − 4 × 18° = 108°



Basic Properties of Circles (I)

x = ∠ABD + ∠BAC = 19° + 32° = 51°

(ext. ∠ of △)

Multiple Choice Questions (p. 52) 1.

Answer: B ∵ OP ⊥ AB AP = PB ∴

1  =  × 12  cm 2  = 6 cm

OP = OA 2 − AP 2

(given) (line from centre ⊥ chord bisects chord)

(Pyth. theorem)

= 10 2 − 6 2 cm = 8 cm

Join OC. OC = OA = 10 cm ∵ OQ ⊥ CD CQ = QD ∴

(radii)

1  =  × 16  cm 2   = 8 cm

OQ = OC 2 − CQ 2

(given) (line from centre ⊥ chord bisects chord) bisects

(Pyth. theorem)

= 10 − 8 cm = 6 cm PQ = OP + OQ ∴ = (8 + 6) cm = 14 cm 2

2.

2

Answer: A ∠BCD = 90° ∠DCA = ∠BCD − ∠ACB = 90° − 71° = 19° ∠ABD = ∠DCA = 19°

(∠ in semi-circle)

(∠s in the same segment)

30

Certificate Mathematics in Action Full Solutions 4B 3.

Answer: D ∠BDC = 90° (∠ in semi-circle) ∠BDC + ∠DCB + ∠DBC = 180° (∠ sum of △) ∠DCB = 180° − 90° − 32° = 58° ∠BAD + ∠DCB = 180° (opp. ∠s, cyclic quad.) ∠BAD = 180° − 58° = 122° AB = AD (given) ∠ABD = ∠ADB (base ∠s, isos. △) ∴ ∠ABD + ∠ADB + ∠BAD = 180° (∠ sum of △) 2∠ABD + 122° = 180° ∠ABD = 29°

4.

Answer: D ∠ADE = ∠CAD + ∠ACD (ext. ∠ of △) = 52° + x ∠CBF = ∠ADE (ext. ∠, cyclic quad.) = 52° + x ∴ ∠CBE + ∠BEC + ∠BCE = 180° (∠ sum of △) (52° + x) + 30° + x = 180° 2 x = 98° x = 49°

5.

Answer: C Reflex ∠AOC = 360° – x 1 ∠ABC = reflex ∠AOC 2 1 = (360° − x) 2 x = 180° − 2 ∴ ∠ABC + ∠BCA + ∠BAC = 180° x  180° −  + 35° + 28° = 180° 2  x = 126°

6.

Answer: C ∠BDC = ∠BAC

7.

31

(∠ sum of △)

(∠s in the same segment)

=x ∠PDC + ∠PCD + ∠CPD = 180° ( x + 46°) + (48° + x ) + 34° = 180° x = 26°

Answer: B ∠BED + ∠EBD = ∠BDC ∠EBD = 43° − 24° = 19°

(∠ at centre twice ∠ at ☉c e)

(∠s in the same segment)

= 46° ∠ACB = ∠ADB



(∠s at a pt.)

(∠ sum of △)

(ext. ∠ of △)

7 Join AD. ∠ADB = 90° ∠ADC + ∠ABC = 180° (90° + 43°) + (19° + x) = 180° x = 28° 8.

(∠ in semi-circle) (opp. ∠s, cyclic quad.)

Answer: A ∠DBC + ∠DCB + ∠BDC = 180° (∠ sum of △) ∠DBC = 180° − 83° − 46° = 51°

 

∠ABD AD = ∠DBC DC 2 ∠ABD = (51°) 3 = 34° ∠ABC + ∠ADC = 180° (34° + 51°) + (46° + x) = 180° x = 49° 9.

Basic Properties of Circles (I)

Answer: C ∠ADC + ∠ABC = 180°

(arcs prop. to ∠s at ☉ce)

(opp. ∠s, cyclic quad.)

(opp. ∠s, cyclic quad.)



∠ADC = 180° − ∠ABC



(arcs prop. to ∠s ∠ABC minor AC = at ☉ce) ∠ADC major AC ∠ABC 7+3 = 180° − ∠ABC 6 + 8 5 ∠ABC = (180° − ∠ABC ) 7 5 ∠ABC = × 180° 12 = 75° 10. Answer: B ∠DCB + ∠BAD = 180° (opp. ∠s, cyclic quad.) ∠DCB = 180° − 112° = 68° OD = OC (radii) ∴ ∠ODC = ∠OCD (base ∠s, isos. △) = 68° ∠DOC = ∠ABO (corr. ∠s, OD // BA) =x ∴ ∠DOC + ∠ODC + ∠OCD = 180° (∠ sum of △) x + 68° + 68° = 180° x = 44°

32

Certificate Mathematics in Action Full Solutions 4B 11. Answer: B ∠ADC + ∠ABC = 180°

(opp. ∠s, cyclic quad.)

∠ADC = 180° − x ∠ACD + ∠AED = 180°

(opp. ∠s, cyclic quad.)

∠ACD = 180° − y ∠ACD + ∠ADC + ∠CAD = 180° (180° − y ) + (180° − x ) + 45° = 180° x + y = 225°

(∠ sum of △)

12. Answer: A With the notations in the figure, join FC.

∠BFC = ∠BAC (∠s in the same segment) =a ∠CFD = ∠CED (∠s in the same segment) =b For A, x = ∠BFC + ∠CFD =a+b For B, if x = y,

 

then BCD = AFE BCD = AFE

(equal ∠s, equal

arcs) which is not always true. For C, ∵ x = a + b and x = y is not always true. ∴ y = a + b is not always true. For D, join BC and CD. ∵ x + ∠BCD = 180° (opp. ∠s, cyclic quad.) ∴ x + y = 180° is false. 13. Answer: A

Join BD. ∠ADB = 90° 1 ∠CBD = ∠COD 2 1 = × 48° 2 = 24° x = ∠ADB + ∠CBD = 90° + 24° = 114°

33

(∠ in semi-circle) (∠ at centre twice ∠ at ☉ ) ce

(ext. ∠ of △)

7

Basic Properties of Circles (I)

HKMO (p. 54) Let O be the centre of the circle. With the notations in the figure, join OC and OD.

  

∵ AC = CD = DB AC = CD = DB (given) ∴ ∠COA = ∠COD = ∠DOB (equal arcs, equal ∠s) 1 = ×180° 3 = 60° Join CD. OC = OD (radii) ∴ ∠OCD = ∠ODC (base ∠s, isos. △) ∠OCD + ∠ODC + ∠COD = 180° (∠ sum of △) ∠OCD = 60° ∴ ∠OCD = ∠COA ∴ CD // AB (alt. ∠s equal) Consider △CAD and △COD. ∵ They have the same base and the same height. ∴ Area of △CAD = area of △COD ∴ Shaded area = area of sector OCD 60° 2= × area of circle 360° 60° 2= ×Q ∴ 360° Q = 12

34

Related Documents