4bch06(basic Properties Of Circles 1)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 4bch06(basic Properties Of Circles 1) as PDF for free.

More details

  • Words: 10,099
  • Pages: 36
Certificate Mathematics in Action Full Solutions 4B

Basic Properties of Circles (I)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Activity

EM = OE

−OM

2

(Pyth. theorem)

= 10 2 −6 2 cm = 8 cm (line from centre ⊥ chord bisects chord) MF = EM =8 cm

Activity 6.1 (p. 14)

(c) ∠ AOB = 2∠ APB No matter where points B and P are, ∠ AOB = 2∠ APB. (or any other reasonable answers)

2. 3.

2

Activity 6.2 (p. 25) 1.

yes 2.

yes

3.

yes 4.

yes

p. 9 1. ∵ ∴

Activity 6.3 (p. 35) 3.

∠ A +∠ C =180 °

4.

The sum of the opposite angles of a cyclic quadrilateral is 180°.

∠ B +∠ D =180 °

ON = OM = 4 cm (given) CD = AB (chords equidistant from centre are equal) = 7 cm CN = ND (line from centre ⊥ chord bisects chord)

1  × 7  cm 2 

= 

= 3.5 cm

Follow-up Exercise p. 3



Element AB





Term minor arc

region BCE





major arc

AFB

AFB



region BECFA

AB

AB





= 8 cm

OQ = OP = 2 cm BC = AB = 8 cm

(given) (given) (chords equidistant from centre are equal)

BC = AB = 8 cm (chords equidistan centre are equal) QC = BQ

t from

(line from centre

⊥chord

∴ •



chord





major segment





minor segment

region OBEC





sector

AC





radius

1.

PB = AP (line from centre ⊥ chord bisects chord) = 4 cm (line from centre ⊥chord bisects chord) AB = ( 2 ×4) cm ∴ ∵ ∴

diameter

OB

p. 7

2.

MB = AM =8 cm

(line from centre ⊥ chord bisects chord) 1  =  × 8  cm 2  = 4 cm

bisects

chord)

(line from centre ⊥ chord bisects 3.

chord)

MB = AM MB = AM

(line from centre ⊥ chord bisects chord) (line from centre ⊥chord

bisects 2.

∠ OND = 90°

(line joining centre to mid-pt. of chord ⊥ chord)

Consider △OND. ∠OND +∠NOD +∠ODN =180 ° ∠ ( 90 °+∠NOD +35 ° =180 ° ∠NOD =55 ° sum of △)



1

Consider △OEM.

AB = ( 2 ×5) cm =10 cm

CN = ND

(line from centre ⊥ chord bisects chord)

∴ ∵

3.

chord)

CD = ( 2 ×5) cm =10 cm AB = CD

Basic Properties of Circles (I) OM = ON = 2.5 cm



(equal chords, equidistant from centre)

(∠s inthe

same segment)

(ext. ∠of

p. 18

1 ∠AOB 2 1 = ×60 ° 2 = 30 °

)

x= 1.

2.

3.

4.

(∠ at centre twice ∠ at ☉ )

4.

ce

x =2∠ APB =2 ×50 ° =100 °

(∠ at centre twice ∠ at ☉ )

x =2∠ APB =2 ×120 ° =240 °

(∠ at centre twice ∠ at ☉ )

ce

segment)

ce

p. 28 1. ∵

Reflex ∠ AOB = 360° – 140° (∠ s at a pt.) = 220°

∴ ∴

2.

☉ ) ce

p. 20

x =90 °

x =∠ BAC =40 °

2.

x =90 °

y =∠ ACB =20 °

3.

(∠ in semi-circle)

∠ APB = 90° (∠ in semi-circle) Consider △APB. ∠ APB +40 °+x =180 ° (∠ sum of △) 90 °+40 °+x =180 ° x =50 °

1.

(∠ s in the same

x =∠ ABD =50 °

1 reflex ∠AOB 2 (∠ at centre twice ∠ at 1 = ×220 ° 2 =110 °

6.

∠ABD = 50 °

sum of △)

x=

5.

Consider △ABD.

∠ABD +∠BAD +∠ADB =180 ° (∠ ∠ABD +( 40 ° + 20 °) +70 ° =180 °

3.

 

∠ DOC = ∠ AOB = 43°(given) (equal ∠ s, equal arcs)

=

DC AB x =4



CD AB

(given)

∴ ∴

CD = AB

(equal arcs, equal chords)

∵ ∴ ∵ ∴ ∴

=

x =5

AB = DC

DC = AB

(given) (equal chords, equal ∠ s) (given)

=

(equal chords, equal arcs)

 x =65 °

DC AB y =6

(∠ s in the same segment)

(∠ in semi-circle) (∠ s in the same segment)

∠EAC = ∠CBE = 30 ° x = ∠ADC + ∠DAC



= 25 ° + 30 ° = 55 °

2

Certificate Mathematics in Action Full Solutions 4B (adj. ∠ s on st. line)

4.



ycm ∠B O C = AB ∠AO B Join OB. ∵ BC = ED

(given)



∠BOC = ∠EOD = 55 °



AB = BC



∠AOB = ∠BOC = 55 °

∠ s)

∠ s)

100 °  y = 6   30 °  = 20 °

(equal chords, equal

(given) (equal chords, equal

x = ∠BOC +∠AOB =55 °+55 ° =110 °

p. 31 1.

x ∠A O

 

B C (arcs prop. to ∠s at centre)

= BAB

2 (80 °) 5 =32 °

x=



ycm ∠D O C = AB ∠AO B

(arcs prop. to ∠s at centre)

 48 °  y = 5   80 °  =3

2.



xcm ∠D O C = AB ∠AO B

(arcs prop. to ∠s at centre)

 50 °  x = 6   30 °  =10

∠BOC =180 °−∠AOB −∠DOC =180 °−30 °−50 ° =100 °

3

(arcs prop. to ∠s at centre)

 

x AB = ∠C F DC D

3.

Basic Properties of Circles (I) △)

(arcs prop. to ∠ s at ☉ce)

2.

(ext. ∠ , cyclic quad.)

y =∠CDE =113 °

6 (15 °) 2 = 45 °

3.



x cm ∠C E D = BC ∠BEC ce

y AB = ∠B E C B C

x + ∠CBA = 180 ° x = 180 ° − 127 ° = 53°

(opp. ∠ s, cyclic quad.)

(∠ in semi-circle) ∠ ACD = 90° (∠ sum of △) x + y + ∠ ACD = 180° y = 180° − 90° − 53° = 37°

(arcs prop. to ∠ s at ☉ ) ce

 30 °  x =10    40 °  = 7 .5

 

(arcs prop. to ∠ s at ☉ )

(opp. ∠ s, cyclic quad.)

= 87 °

x =

4.

x + ∠DAB = 180 ° x = 180 ° − 93 °

(arcs prop. to ∠ s at ☉ce)

6 (arcs prop. to ∠ s at ☉ ) y = 10 ( 40 °) ce = 24 °

5.

 

∠ A C B AB = ∠D B CC D

(arcs prop. to ∠ s at ☉ce)

Exercise 6A (p.10 10) Level 1

3 (arcs prop. to ∠ s at ☉ ) ∠ACB = ( 48 °) ce 4 = 36 ° x =180 °−∠ DBC −∠ ACB =180 °−48 °−36 ° =96 °



ON ⊥ AB

NB = AN



1  =  × 16  cm 2  = 8 cm

(line from centre bisects

(given)

⊥chord

chord)

(ext. ∠ , cyclic quad.)

x =180 °−∠ DEC −∠ ECD =180 °−81 °−65 ° =34 °

1.

(∠ sum of

△)

p. 38119 ∠DEC = ∠ABC 1. =81 °

Exercise

(∠ sum of Join OB. Consider △NOB.

4

Certificate Mathematics in Action Full Solutions 4B OB =



NB

2

+ON

2

(Pyth. theorem)

= 8 2 + 6 2 cm =10 cm The radius of the circle is 10 cm.



OM ⊥ AB



∠ OMK = 90°

∠MKN

(line joining centre to mid-pt. of chord ⊥ chord)

=180 °−∠DKB =180 °−43 ° =137 °

line)

(adj. ∠ s on st.

Consider quadrilateral OMKN. ∠ MON

2.

5.

∵ ∴



Join OB.

OB = OC = ON + NC = (5 + 8) cm = 13 cm

(radii)

2

∵ ∴

3.

∵ ∴ ∵ ∴

2

2

− MB

2

= 5 2 −3 2 cm = 4 cm ON = MN −OM = (7 − 4) cm = 3 cm

(Pyth. theorem)

= 13 −5 cm =12 cm AN = NB (line from centre ⊥ chord bisects chord) AB =( 2 ×12 ) cm =24 cm 2

AM = MB

(given) (line joining from centre ⊥ chord bisects chord)

1  MB =  × 6  cm 2  = 3 cm

OM = OB

−ON

2

OM ⊥ AB AM = MB

Consider △OMB.

Consider △ONB. NB = OB

=360 °−∠ OMK −∠ ONK −∠ MKN =360 °−90 °−90 °−137 ° =43 °

(line from centre ⊥ chord bisects chord)

AB = (2 ×6) cm =12 cm

ON = OM CD = AB = 12 cm

(given) (chords equidistant from centre are equal) Join OD. Consider △OND.

OD = OB = 5 cm

ND = OD

∵ ∴ ∴

5

∵ ∴

CN = ND ON ⊥ CD

∴ ∵

∠ ONK = 90° AM = MB

(given) (line joining centre to mid-pt. of chord ⊥ chord) (given)

(radii) 2

−ON

= 5 −3 = 4 cm ON ⊥ CD CN = ND 2

4.

(Pyth. theorem)

2

2

(Pyth. theorem)

cm

(given) (line from centre ⊥ chord bisects chord) CD =( 2 ×4) cm =8 cm

Basic Properties of Circles (I)

6.

∵ ∴

CM = MD OM ⊥ CD



∠ OMC = 90°

(given) (line joining centre to mid-pt. of chord ⊥ chord)

∠AOC = ∠OCM +∠OMC

△)

= 32 ° +90 ° =122 °

Consider △OAC. ∵ OC = OA (radii) ∴ ∠ OCA = ∠ OAC (base ∠ s, isos. △) ∠OCA +∠OAC +∠AOC =180 ° (∠ 2∠OCA +122 ° =180 ° ∠OCA = 29 ° sum of △)

1 AB 2 1 = ( AM + MB) 2 1 = (16 + 4) cm 2 = 10 cm

OB =

(ext. ∠ of 7.



OM = OB − MB = (10 − 4) cm = 6 cm

Join OD. Consider △OMD.

OD = OB = 10 cm

(radii)

MD = OD

∵ ∴ ∴

8.

∵ ∴

2

−OM

2

(Pyth. theorem)

= 10 2 −6 2 cm = 8 cm OM ⊥ CD (given) CM = MD (line from centre ⊥ chord bisects chord) CD =( 2 ×8) cm =16 cm

BM = MC = 6 cm OM ⊥ BC

(given) (line joining centre to mid-pt. of chord ⊥ chord)

Consider △OMB. OM = OB

2

− BM

= 10 −6 = 8 cm Consider △OMD. 2

MD = OD

2

2

(Pyth. theorem)

cm

−OM

= 17 −8 =15 cm 2

2

2

2

(Pyth. theorem)

cm

6

Certificate Mathematics in Action Full Solutions 4B



7

CD = MD −MC = (15 −6) cm = 9 cm

6 9.

Construct a circle with centre O lying on BH, such that the circle cuts AB at two points P and Q, and cuts BC at two points R and S are shown.

Basic Properties of Circles (I)



= 15° ∠MND = ∠OND +∠ONM =90 °+15 ° =105 °



∠ OND = 90°

(line joining centre to mid-pt. of chord ⊥ chord)

Draw OM and ON such that OM ⊥ AB and ON ⊥ BC.

OB = OB

∠ABH = ∠CBH ∠OMB = ∠ONB = 90 ° common side given constructe ∴ ∴ ∴

SMEFSU08EX@F04 Construct the traingle ABC as shown.

AC 12 cm AC = 12 tan 60 ° cm

tan 60 ° =

d

△OBM ≅ △OBN OM = ON PQ = RS

AAS corr. sides, ≅ △s chords equidistant from centre are equal

= 12 3 cm ∴

Area of △ABC

1 × BC × AC 2 1  =  ×12 ×12 3  cm 2 2  =

= 72 3 cm 2 110.

Level 2 10. (a)

∵ ∴ ∴

AM = MB ∠ OMA = 90° ∠OMN

(given) (line joining centre to mid-pt. of chord ⊥ chord) =∠OMA −∠ AMN =90 °−75 ° =15 °

Let M be a point on AB such that OM ⊥ AB.

(b)

Join ON. ∵ CN = ND ∴ ∠ OND = 90° ∵ ∴ ∴

(given) (line joining centre to mid-pt. of chord ⊥ chord) CD = AB (given) ON = OM (equal chords, equidistant from centre) ∠ ONM = ∠ OMN (base ∠ s, isos. △)

8

Certificate Mathematics in Action Full Solutions 4B ∵

OM ⊥ AB

1  =  × 24  cm 2   = 12 cm



chord

bisects

1  =  × 18  cm 2   = 9 cm

(line from centre

chord)

(given)

AN = NB





(line from centre

ON ⊥ AB

(b) ∵

(constructed)

AM = MB

chord

bisects



chord)

Consider △OMA. OM = OA 2 − AM = 15 −12 = 9 cm Consider △OMC. 2

2

2

(Pyth. theorem)

cm

MC = MB + BC = (12 + 28 ) cm

Join OA. Consider △OAN. OA = r cm ON 2 + AN 2 = OA

= 40 cm OC = OM

2

+MC

= 9 +40 = 41 cm 2

12. (a)

2

2

(Pyth. theorem)

cm

(r −3) 2 + 9 2 = r 2

Consider △OAB and △OAC. common OA = OA

OB = OC AB = AC

∴ ∴ ∴ (b)

Consider △ABN and △ACN.

∠OAB = ∠OAC

(proved in (a)) (given) (common side)

AB = AC AN = AN ∴ ∴ ∴

(c)

side

radii given SSS corr. ∠ s, ≅ △s

△OAB ≅ △OAC ∠ OAB = ∠ OAC OA bisects ∠ BAC.

r



△ABN ≅ △ACN (SAS) BN = CN (corr. sides, ≅ △s) ON ⊥ BC (line joining centre to mid-pt. of chord ⊥ chord)

14. ∵

2

(radius) 2

(Pyth. theorem)

−6r +90 = r r =15

2

OM ⊥ CD

(given)

CM = MD 1  =  × 12  cm 2   = 6 cm



(line from centre chord

bisects



chord)

Let r cm be the radius of the circle. OM = AM −OA

= (18 − r ) cm

ON = AN − OA = (8 − 5) cm = 3 cm

Consider △ONC. NC = OC

2

−ON

= 5 −3 = 4 cm Consider △ANC. 2

AC =

AN

2

2

+NC

= 4 5 cm

9

(Pyth. theorem)

cm

= 8 2 +4 2 cm

13. (a)

2

ON = OY − NY = ( r −3) cm

Join OC. Consider △OCM. OC = r cm

OM

2

+ CM

2

(radius)

= OC 2

(18 − r ) 2 + 6 2 = r 2

2

(Pyth. theorem)

360 − 36 r + r 2 = r 2 r = 10



MB = OB −OM

(Pyth. theorem)

6 =[ r −(18 −r )] cm

Basic Properties of Circles (I)

15.

=( 2r −18 ) cm =(2 ×10 −18) cm =2 cm

Let M be a point on AB such that OM ⊥ AB. ∵ OM ⊥ AB (constructed)

MB = AM

1  =  × 18  cm 2  = 9 cm



(line from centre chord

bisects



chord)

Join OB. OB = 13 cm Consider △OMB. OM = OB

2

(radius) −MB

2

(Pyth. theorem)

= 13 2 −9 2 cm = 88 cm

Let N be a point on CD such that ON ⊥ CD. ∵ ON ⊥ CD (constructed)

NC = DN

1  =  × 24  cm 2  = 12 cm



(line from centre chord

∵ ∴ ∴ ∴

bisects



chord)

∠ONK = ∠OMK = 90 ° ONKM is a rectangle. NK = OM KC = NC −NK = NC −OM

(property of rectangle)

=(12 − 88 ) cm =2.62 cm (cor. to 2 d.p.)

16.

(a)

Join OD, OB and OA as shown. Let ∠ OAB = x, then ∠ OAD = 90° −x.

10

Certificate Mathematics in Action Full Solutions 4B ∵ OB = OA ∴ ∠ OBA = ∠ OAB

radii base ∠ s, isos. △

=x

∠AOB =180 ° −∠OAB −∠OBA =180 ° −2 x



∠ sum of △

∵ OD = OA ∴ ∠ ODA = ∠ OAD = 90° −x

DL = EL FN = NG

∠AOD =180 ° −∠OAD −∠ODA =180 ° −2(90 ° − x )



∠ sum of △

DE = 2( LM − EM ) = 2( MN − EM ) = 2( MN − MF ) = 2 FN = FG

=2x

∠AOB +∠AOD



= (180 ° −2 x) +2 x =180 °



(b) Draw OM ⊥ AB and ON ⊥ DA. ∵ OM ⊥ AB and ON ⊥ DA (constructed) ∴ AM = MB and DN = NA (line from centre ⊥ chord bisects chord)

1 AD 2 1  =  × 18  cm 2  = 9 cm

(adj. ∠ s on st. line) x =2∠ ACB =2 ×42 °

(∠ at centre twice ∠ at ☉ ) ce

=84 °

2.

AMON is a rectangle.

OM = NA = 9 cm

proved

Level 1 ∠ACB +138 ° =180 ° (adj. ∠ s on st. line) 1. ∠ACB = 42 °

NA =



by (a)

Exercise 6B (p. 21)

BOD is a straight line.



line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord

(b) EM = MF

radii base ∠ s, isos. △

(property of rectangle)

∠ ACB = 90° (∠ in semi-circle) ∵ CA = CB (given) ∴ x = ∠ CBA (base ∠ s, isos. △) ∠ACB +∠CBA +x =180 ° (∠ sum of 2 x +90 ° =180 ° x = 45 ° △)

3.

2

= 15 2 −9 2 cm =12 cm AB = 2 AM = (2 ×12 ) cm = 24 cm

17. (a)

∵ ∴ ∵ ∴

11

(∠ s in the same segment)

∠DAC = ∠DBE = 25 °

(∠ s in the same segment)

x +∠ACD =125 ° (ext. ∠ of △) x +55 ° =125 ° x =70 °

Consider △OAM. AM = OA 2 −OM

∠ACD = ∠ABD = 55 °

(Pyth. theorem)

∠ ALM = ∠ BMN = ∠ CNG = 90°given LA // MB // NC corr. ∠ s equal LA // MB // NC and AB = BC given LM = MN intercept theorem

4.

x = ∠DAC +∠ADC = 25 °+42 °

(ext. ∠ of △)

= 67 °

5.

Reflex

∠AOC =2∠ABC

twice at ☉ ) ce

=2 ×140 ° =280 °

(∠ at centre

6

Basic Properties of Circles (I)

(∠at centre twice ∠at ) x =360 °−reflex ∠ AOC =360 °−280 °

(∠ s at a pt.)

=80 °

6.

∠ACD =180 °−∠CAD −∠CDA

sum of △)

=180 °−32 °−90 ° = 58 °

∠ACB = 90 °

(∠ in semi-circle)

x =∠ACB −∠ACD =90 °−58 ° =32 °



7.

(∠

∠ ABC = 90°

(∠ in semi-circle)

∠BCA = ∠BDA =x

(∠ s in the same segment)

∠ BCA =180 °−∠ ABC −∠ BAC x =180 °−90 °−65 ° =25 °

(∠

sum of △)

8.

∠AOB = 2∠ACB

☉ )

(∠ at centre twice ∠ at

= 2 ×70 ° =140 °



ce

OB = OA ∠OBA = x (radii) (base ∠ s, isos.

)

x +∠OBA +∠AOB =180 ° 2 x +140 ° =180 ° x = 20 °

(∠ sum of

△)

12

Certificate Mathematics in Action Full Solutions 4B 9.

12.

Join OC.

65 ° + ∠BCA = 118 ° ∠BCA = 53 ° ∠AOB = 2∠BCA = 2 × 53 ° = 106 ° ∠AOB + ∠OAK = 118 ° ∠OAK = 118 ° −106 ° = 12 °

(ext. ∠of

1 ∠ACB = ∠AOB 2 1 = ×130 ° 2 = 65 °

(∠ at centre twice ∠ at

)

(∠at centre twice ∠at ) (ext. ∠of

☉ )

)

ce

OC = OA (radii) ∠ OCA = ∠ OAC (base ∠ s, isos. △) = 20° OB = OC (radii) x = ∠ OCB (base ∠ s, isos. △) = ∠ ACB − ∠ OCA = 65° −20° = 45 ° 10.

13. ∠ DAC, ∠ ACD, ∠ DAB, ∠ DBA, ∠ EFD and ∠ FED (any four of the above angles) Level 2 14. ∵ ∴ ∵

(∠ in semi-circle) ∠DAC = 90 ° ∠ACD =180 °−∠DAC −∠ADC (∠ =180 °−90 °−55 ° =35 °



∠ABC = ∠ACB = 35 ° (given) (base ∠ s, isos.



)

= 20 °

(opp. ∠ s of // gram)

1 ∠BOD 2 (∠ at centre twice ∠ at ☉ ) ce 1 x = ×36 ° 2 = 18 °

∠BCD =

∠ ODC

=∠ BCD =18 °

(∠ in semi-circle) (∠

(∠ sum of △)

∠ABC + ∠BAD = 55 ° (ext. ∠ of △) ∠BAD = 55 ° − 35 °

∠ BOD = 36°

(base ∠ s, isos. △)

sum of △)

15. (a)

11.

∠BDC = ∠DCA =x ∠ADB = 90 °

(given) (base ∠ s, isos. △) (given)

∠DAC +∠DCA +∠ADC =180 ° x +x +(90 °+x ) =180 ° x =30 °

sum of △)

AB = AC

DC = DA ∠ DCA = x BD = BC

∠OAB + ∠AOC = 180 ° ∠AOC = 180 ° − 32° = 148 °

(int. ∠ s, BA // CO) ∴ Reflex ∠ AOC = 360° −∠ AOC = 360° −148° = 212 ° ∠ AOC =360 °−∠ AOC =360 °−148 ° =212 °

1 reflex ∠AOC 2 1 = ×212 ° 2 =106 °

∠ABC =

∠BKD =∠ODK +∠BOD (ext. ∠ of =18 °+36 ° =54 ° (ext. ∠ of △) △)

(b)

twice ∠ at ☉ ) ce

ce

(∠ at centre twice ∠ at ☉ )

(ext. ∠ of △)

(∠ s at a pt.)

(∠ s at a pt.)

(alt. ∠ s, DO // AC)

13

(int. ∠ s, BA // CO)

(∠ at centre

6

19. (a)

Basic Properties of Circles (I)

OABC is a parallelogram. OA = OC ∴ OABC is a rhombus.

(given) (radii)

(b) Reflex ∠ AOC = 360° −x ∠ s at a pt.

1 reflex ∠AOC 2 1 = (360 ° − x) 2 x =180 ° − 2

∠ABC =

16.

∠DCB + ∠CKB = 50°

(∠ ext. ∠ of △)

∠DCB = 50° − 28° = 22° ∠DAB = ∠DCB (∠ s in the same segment) = 22 ° (∠ in semi-circle) ∠ACB = 90 ° ∠CAB =180 °−∠ACB −∠CBA (∠

sum of △) ∴

twice ∠ at ☉



=180 °−90 °−50 ° = 40 °

∠CAD =∠CAB −∠DAB =40 °−22 ° =18 °

20. (a)

∴ 21. (a)

(∠in semi - circle) ∠ ABD + ∠ BAD + ∠ ADB = 180°(∠ sum of △) ∠ ABD + (44° + ∠ BAC) + 90° = 180° ∠ ABD + ∠ ABD + 134° = 180° ∠ ABD

18.

1 ∠ABE = ∠AOE 2 1 = ×124 ° 2 = 62 °

(ext. ∠ of △)



(ext. ∠ of △)

(corr. sides, ~ △s)

KD =4 cm

OK ⊥ EB BK = EK

given line from centre ⊥ chord bisects chord

side

△BKD ≅ △EKD

(b) ∠ ABD = 90° ∠ BDC ∠ CBD – ∠ BCD (∠ sum of △) = 180° – 90° – 42° = 48° ∠ KED = ∠ KBD ∠ KED + ∠ KBD = ∠ BDC 2∠ KED = 48 ∠ KED = 24 ∠ BAD =∠ BED ∴ =24 °

= 26 °

∠AKE =∠BAD +∠ABE =26 °+62 ° =88 °

vert. opp. ∠ s ∠ s in the same segment ∠ s in the same segment AAA

KD = KD

given common

(∠ at centre twice ∠ at ☉ce)

∠BEC = 62 ° − 36 ° = 26 ° ∠BAD = ∠BEC (∠ s in the same segment)

∵ ∴

(proved in (b))

∠BKD = ∠EKD = 90 °

= 23 °

∠ACE + ∠BEC = ∠ABE



AK KD = BK KC 6 KD = 3 2 cm

(b)

∠BDC =∠ABD ∠ADB =90 ° (∠ s inthe same segment) (alt. ∠ s, DC // AB )

(opp. ∠ s of // gram)

x 180° − = x 2 3 x = 180 ° 2 x = 120 °

∠ AKB = ∠ DKC ∠ BAK = ∠ CDK ∠ ABK = ∠ DCK ∴ △AKB ~ △DKC

∠BAC =∠BDC 17.

ce

∠ ABC = x

(c)

∠ at centre

SAS (∠ in semicircle) = 180° –

(corr. ∠ s, ≅ △s) (ext. ∠ of △) (∠ s in the same segment)

22.

14

Certificate Mathematics in Action Full Solutions 4B

 

= 180° – x – 90° = 90° – x

∠ BAC BC = x AC

Join AP. ∠ APB = 90°

∠ACQ = ∠APQ = 90

∠s inthe ∴

∠ in semi-circle

same segment

QC ⊥ AB

4.

∠C O D C D = ∠BO C BC

4 (84 °) 6 = 56 °

∠BOD = ∠BOC + ∠COD = 84 ° + 56 °

Exercise 6C (p. 32) Level 1

Reflex ∠ AOB = 360° – ∠ AOB (∠ s at a pt.) = 360° – 80° = 280°

= 140 ° (∠ at centre twice ∠ at ☉ce) 1 x = ∠BOD 2 1 = ×140 ° 2 = 70 °





x cm

(arcs prop. to ∠

 80°  x = 14   280 °  =4



6. ∠ BAC = 180° – ∠ ABC – ∠ ACB = 180° – 50° – 75° = 55°



x cm AC

=

∠BAC ∠ABC

3.

15

∠ ACB = 90° ∠ BAC= 180° – x – ∠ ACB

(a)

(∠ sum of △)

AC

AC

= BD

alt. ∠ s, CD // AB

BD

∠ A O B A B (arcs prop. to ∠ s at centre) = ∠BO C BC 4 ( 48 °) 3 =64 °

(b)

∠ACB =

centre twice ∠ at ☉ce) (∠ in semi-circle) (∠ sum of △)

equal ∠ s, equal arcs

∠AOB =

(arcsce prop. to ⊙ ∠ s at )

 55°  x = 10   50°  = 11

   

∠ ADC = ∠ BAD

5.

centre)

2.

(arcs prop. to ∠ s at centre)

∠COD =

Join OA. ∠ ABQ = ∠ AOQ ∠ s in the same segment = 2∠ ABP ∠ at centre twice ∠ at ☉ce ∴ BP bisects ∠ ABQ.

∠AOB = Reflex ∠AOB Major AB

ce

 

23.

1.

(arcs prop. to ∠ s at ⊙ )

90° − x 4 = x 5 450° − 5 x = 4 x x = 50°

1 ∠AOB 2

(∠ at

6 ∵ ∴

1 ×64 ° 2 =32 ° =

Basic Properties of Circles (I)

AB = AD ∠ ABD = ∠ ADB

(given) (base ∠ s, isos. △)

∠ABD +∠ADB +∠BAD =180 ° 2∠ABD +120 ° =180 ° ∠ABD =30 °

sum of △)

∠ACB =180 °−∠BAC −∠ABC

7.

∠ BEC △)

= 180° – ∠ EBC – ∠ ECB

= 180° – 62° – 64° = 54° ∠ DEB = ∠ EBC − ∠ EDB = 62° – 35° = 27°

(ext. ∠ of △)



= ∠ DEB : ∠ BEC

 

AB

AB : BC

BC

(arcs prop. to ∠ s at = 27° : 54° = 1: 2 8.

∠ BAC = 90° ∠ BAD = ∠ BAC + ∠ CAD = 90° + 30° = 120°



AB

AB : BC



⊙ce) ∴ ∵

∴ ∵



10. ∵



(∠

= ∠ ACB : ∠ BAC

BC

(arcs prop. to ∠ s = 60° : 90° = 2:3 9.

(∠ in semi-circle)



sum of △)

(∠ sum of

=180 °−90 °−30 ° = 60 °

(∠

at ⊙ce)

∠ APC= ∠ APB + ∠ BPC = 5° + 10° = 125° = ∠ CPD

A C= C DAC = CD



(equal ∠ s, equal arcs)

∠ BPD = ∠ BPC + ∠ CPD = 10° + 15° = 25° = ∠ EPF

B D= E F

(equal ∠ s, equal arcs)



A D= F GAD = FG

(equal ∠ s, equal arcs)



(given)

BD = EF

∠ APD = ∠ APB + ∠ BPC + ∠ CPD = 5° + 10° + 15° = 30° = ∠ FPG

A B= C DAB = CD

∴ ∠ ADB = ∠ DAC and ∠ ACB = ∠ DBC (equal arcs, equal ∠ s) ∴ KD = KA and KC = KB (sides opp. equal ∠ s) ∴ △AKD and △BKC are isosceles triangles.

16



Certificate Mathematics in Action Full Solutions 4B 13. ∠ PRS = ∠ PQS

A B= B C= C D



AB = BC = CD ∠ PRQ

(given) ∴ ∠ ACB = ∠ CAB and ∠ BDDBC = ∠ DBC (equal arcs, equal ∠ s) ∴ BC = BA and CD = CB (sides opp. equal ∠ s) ∴ △ABC and △BCD are isosceles triangles.



= 30°

= 75° −30° = 45°

(∠ s in the same segment) = ∠ QRS – ∠ PRS

Q R= P QQR = PQ (given)



∠QSR = ∠PRQ = 45 ° ∴

∠ QSR = ∠ PRQ (equal arcs, equal ∠ s) = 45° ∠ RQS = 180° – ∠ QRS – ∠ QSR (∠ sum of △) = 180° −75° − 45° = 60 °

Level 2 11.

∠ ABD = 180° – ∠ BAD − ∠ ADB (∠ sum of △) = 180° – (40° + 20°) – 70° = 50°

Join BC. ∠ CBD= ∠ CAD = 20° ∠ CBA = 20° + 50° = 70°



AD C ∠CBA = BC ∠BAC  7 0°  x = 1 0   4 0°  = 1 7.5

14. (a)

OD = OB (radii) ∠ ODB = ∠ OBD (base ∠ s, isos. △) = 30° ∴ ∠ BOA = ∠ OBD + ∠ ODB (ext. ∠ of △) = 30° + 30° = 60 °

 

(∠ s in the same segment) = ∠ CBD + ∠ ABD

(b)

(arcs prop. to ∠ s at ☉ ) ce



x cm CD

=

∠ BAC ∠ CAD

 40°  x = 15   50°  = 12

17

(arcs prop. to ∠ s at

☉ ) ce

15. (a) 12. ∠ BAD = 90° (∠ in semi-circle) ∠ BAC = ∠ BAD – ∠ CAD = 90° – 50° = 40°

∠ ADB AB = ∠ CDB BC 3 = 2 2 ∠ CDB = (30° ) 3 = 20°

OA = OC

radii

AB = CB OB = OB

given common

∴ (b) ∵ ∴

(arcs prop. to ∠ s at ☉ )



ce

equal arcs



side

△ABO ≅ △CBO

SSS

∠ AOB = ∠ COB ∠ AOD = ∠ COD

corr. ∠ s, ≅ △s

A D= D CAD = DC

equal ∠ s,



6

16. ∵

B C= C D

∴ ∵ ∴

∠ CAB = ∠ DAC OC = OA ∠ ACO = ∠ CAB = ∠ DAC OC // AD

∴ 17. (a)

∵ ∴

equal arcs, equal ∠ s radii base ∠ s, isos. △

 π × 18  cm 2  

= 9π cm ∴

Radius of the circle =

9π cm 2π

=

4.5 cm

alt. ∠ s equal

OE ⊥ BD BE = ED



∠ BAC = ∠ DAC ∴

Circumference of the circle =

BC = CD given

AE = AE ∠ AEB = ∠ AED = 90° ∴ △ABE ≅ △ADE (b)

Basic Properties of Circles (I)

given line from centre ⊥ chord bisects chord common side given SAS corr. ∠ s, ≅ △s

B C= C DBC = CD

equal ∠ s, equal

arcs 18. (a)

With the notations in the figure,

∠ DFE= ∠ BDF + ∠ DBF (ext. ∠ of △) = 20° + 30° = 50° ∠ AGE= ∠ CAG + ∠ ACG (ext. ∠ of △) = 40° + 50° = 90° ∴ x = 180° – ∠ FGE – ∠ GFE(∠ sum of △) = 180° – 90° – 50° = 40 °



(b)

EA



AB BC CD D E AB :

BC :

CD :

DE :

EA = ∠ ADB : ∠ BEC : ∠ CAD : (arcs prop. to ∠ s at ☉ ∠ DBE : ∠ ACE (arcs prop. to ∠ s at ☉ce) = 20° : 40° : 40° : 30° : 50° = 2 : 4 : 4 :3:5

(cb)

to ∠ s at △ce)



AB 2 = C irc u m fne creeo f th ec irc le 2 + 4 + 4 + 3 + 5 (by (b))

18

Certificate Mathematics in Action Full Solutions 4B Exercise 6D (p. 39) Level 1 1. ∠BCD = 95 °

(ext. ∠ , cyclic quad.)

∠BCD + x = 180 ° x = 180 ° − 95 ° = 85 °

2.

(adj. ∠ s on st. line)

∵ ∴ ∴

∠BCD = 180 ° − 76 ° = 104 °

(opp. ∠ s, cyclic

CD = CB (given) ∠ BDC = x (base ∠ s, isos. △) ∠ BDC +x +∠ BCD =180 ° 2 x +104 ° =180 ° (∠ sum x =38 °

of △) 3.

∠ ACB = 90°

(∠ in semi-circle)

∠ABC + ∠ACB + ∠BAC =180 ° (∠ sum of

△)

∠ABC =180 °−90 °−40 ° =50 °

x + ∠ABC = 180 ° x = 180 ° − 50 °

(opp. ∠ s, cyclic quad.)

= 130 °

4.

x =∠ABD =46 °

(∠ s in the same segment)

y +∠BCD =180 ° (opp. ∠ s, cyclic quad.) y +(54 °+ x ) =180 ° y =180 °−(54 °+46 °) =80 °

5.

∠EBC + ∠CDE = 180 °

quad.)

∠EBC = 180 ° − 110° = 70°

∠ECB + ∠BAE = 180 °

quad.)

∠ECB = 180 ° − 120 ° = 60°

(opp. ∠ s, cyclic

(opp. ∠ s, cyclic

∠BEC + ∠EBC + ∠ECB =180 ° (∠ sum of △)

6.

(a) of △)

19

∠ BEC

∠DFE = ∠BCD (ext. ∠ , cyclic quad.) = 60 ° ∠DFE +∠FDE +∠DEF =180 ° (∠

sum of △) ∠ DEF

∠BCD + ∠BAD = 180 °

quad.)

(b)

=180 °−70 °−60 ° =50 °

∠ADE =∠CAD +∠ACD =36 °+60 ° =96 °

(ext. ∠

=180 °−60 °−96 ° =24 °

6

7.

∠FCD + ∠DEF = 180 ° ∠FCD = 180 ° − 130 ° = 50 °

quad.)

(opp. ∠ s, cyclic

(ext. ∠ , cyclic quad.)

x =∠FCD =50 °

∠ ABD = y ∵ AD = AB ∠ A DB =∠ABD ∴ =y

(ext. ∠ , cyclic quad.) (given) (base ∠ s, isos. △)

∠BAD +∠ABD +∠ADB =180 ° sum of △)

Basic Properties of Circles (I)

∠ABC + ∠ADC =180 ° (opp. ∠ s, cyclic quad.)



∠ABC =180 °−115 ° =65 ° BC = CD

(given)

∠BAC =∠DAC ∴ (equal chords, equal ∠ s) =35 ° (∠ ∠ACB + ∠ABC + ∠BAC =180 ° sum of △)

∠ ACB

=180 °−65 °−35 ° =80 °

(∠

x + 2 y =180 ° 2 y =180 ° − 50 ° y = 65 °

8.

Join AD. ∠ ABC + ∠ CDA = 180° ∠ ADE = 90° ∠ ABC + ∠ CDE

opp. ∠ s, cyclic quad. ∠ in semi-circle

= ∠ABC +(∠CDA +∠ADE ) = (∠ABC +∠CDA ) +∠ADE =180 °+90 ° = 270 °

1 ∠AOB 2 1 = ×40 ° 2 = 20 °

∠APB = 9.

(a)

(∠ at centre twice ∠

at ☉ ) ce

(b) ∠BAP + ∠BCP =180 ° quad.)

(opp. ∠ s, cyclic

∠BAP =180 °−50 ° =130 ° ∠ABP +∠BAP +∠APB =180 ° (∠ sum of △)

10.

∠ ABP =180 °−130 °−20 ° =30 °

∠DAC + ∠ADC + ∠ACD =180 ° sum of △)

(∠

∠DAC =180 °−115 °−30 ° = 35 °

20

Certificate Mathematics in Action Full Solutions 4B Level 2 11.

Reflex ∠ AOC centre twice

= 2∠ ABC

(∠ at

= 2 × 110° ∠ at

☉ ) ce

= 220°

∠AOC =360 °−reflex ∠AOC =360 °−220 ° =140 °

pt.)

(∠ s at a

∴ ∠CPB +∠AOC =180 ° (opp. ∠ s, cyclic quad.) ∠ CPB =180 °−140 ° =40 ° 12.

∠COD = ∠BAD = 40 °

(corr. ∠ s, OC //

OD = OC ∠ ODC = ∠ OCD

(radii) (base ∠ s, isos. △)

AB)

∠COD +∠ODC +∠OCD =180 °

sum of △)

40 ° + 2∠ODC =180 ° ∠ODC = 70 °

(∠

∠ODC + ∠ABC =180 ° (opp. ∠ s, cyclic ∠ABC =180 ° − 70 ° =110 °

quad.) 13. (a)

∠ KAD = ∠ KCB ∠ KDA = ∠ KBC ∠ AKD = ∠ CKB ∴ △KAD ~ △KCB

ext. ∠ , cyclic quad. ext. ∠ , cyclic quad. common angle AAA

KA KD = KC KB KA KD = KD + DC KA + AB (b) 2 cm 3 cm = 3 cm + DC (2 + 4) cm 4 cm = 3 cm + DC DC =1 cm

(corr. sides,

~ △s)

14.

∠BAD = ∠BCE = 65 °

∠ ADB = 90°

(ext. ∠ , cyclic quad.) (∠ in semi-circle) (∠

∠ABD + ∠ADB +∠BAD =180 °

sum of △)

∠ABD =180 ° −90 ° −65 ° = 25 °

21

∠BDC = ∠ABD = 25 °

(alt. ∠ s, DC // AB)

∠DBC +∠BDC = ∠BCE ∠DBC = 65 ° −25 ° = 40 °

△)

(ext. ∠ of

6 15. ∠ACD + ∠ADC + ∠CAD =180 ° sum of △)

Basic Properties of Circles (I)

∠AED +∠ACD =180 ° (opp. ∠ s, cyclic quad.) ∠AED = 180 ° − ∠ACD = 180 − (140 ° − ∠ADC ) = 40 ° + ∠ADC

(∠

∠ACD =180 ° −40 ° −∠ADC =140 ° −∠ADC ∠ABC + ∠ADC = 180° (opp. ∠ s, cyclic quad.) ∠ABC = 180° − ∠ADC



∠ ABC +∠ AED =(180 °−∠ ADC ) +( 40 °+∠ ADC ) =220 °

16.

Join BD. Let ∠ CBE = x. ∵ CE = CB

(given)

∠CEB = ∠CBE ∴ (base ∠ s, isos. △) =x ∠CBE + ∠BCE + ∠CEB = 180 ° (∠ sum

∠BCE = 180 ° − 2 x

of △)

(opp. ∠ s, cyclic quad.) ∠BDE +∠BCE =180 ° ∠BDE =180 ° −(180 °−2 x ) ∠ DBE = 90°

=2x

(∠ in semi-circle)

∠ABD + ∠DBE + ∠CBE =180 ° (adj. ∠ s

on st. line)

∠ABD =180 °−90 °− x =90 °−x ∠BAD +∠ABD = ∠BDE (ext. ∠ of △) 27 ° +(90 ° − x ) = 2 x 3 x =117 ° x = 39 ° ∴ 17. (a)

∠ CBE

=39 °

∠APC =∠ABC +∠PCB =( x + x ) + y =2 x + y

(ext. ∠

of △)

∠ARB =∠ACB +∠RBC =( y + y ) + x

(ext. ∠

= x +2 y of △) (b) ∠APC +∠ARB =180 ° (opp. ∠ s, cyclic quad.) ( 2 x + y ) +( x + 2 y ) =180 °

3 x +3 y =180 ° x + y = 60 °

22

Certificate Mathematics in Action Full Solutions 4B ∠BAC + ∠ABC + ∠ACB = 180 ° (∠ sum of △)

23

∠BAC +2 x +2 y =180 ° ∠BAC +2( x + y ) =180 ° ∠BAC +120 ° =180 ° ∠BAC = 60 °

6 Revision Exercise 6 (p. 47) Level 1

Basic Properties of Circles (I)

1 (∠ at centre twice reflex ∠ POR ∠ at ☉ce) 2 1 = ×222 ° 2 =111 °

∠PQR =

1.

(b)

∠ORQ +∠PQR =180 ° (int. ∠ s, OR // PQ)

∠ ORQ

=180 °−111 ° =69 °

Join OF. Draw ON such that ON ⊥ FE.

OF = OB

1 BC 2 1  =  × 20  cm 2  = 10 cm =

(radii)

ON = AB = 6 cm

(property of rectangle)

Consider △ONF. FN = OF

2

= 10 −6 =8 cm ON ⊥ FE FN = NE 2

∵ ∴ ∴

2.

2

2

(Pyth. theorem)

cm

(constructed) (line from centre ⊥ chord bisects chord) FE =( 2 ×8) cm

=16 cm

∠ AEC = 90°

(∠ in semi-circle)

∠EBC = ∠EAC (∠ s in the same segment) = 30 ° ∠AEB = ∠EDC +∠EBC (ext. ∠ of △) =35 ° +30 ° = 65 ° ∠ BEC

3.

−ON

(a)

=∠ AEC −∠ AEB =90 °−65 ° =25 °

∠POR +∠OPQ =180 ° (int. ∠ s, OR // PQ)

∠POR =180 °−42 ° =138 ° ∴ Reflex

∠ POR =360 °−∠ POR =360 °−138 ° =222 °

(∠ s at a pt.)

24

(opp. ∠ s, cyclic quad.)

Certificate Mathematics in Action Full Solutions 4B 4.

(arcs prop. to ∠ s at ☉ce)

∠ABC + ∠ADC =180 ° (62 ° + ∠CBD ) + (58 ° + ∠CDB ) =180 °

With the notations in the figure,

120 ° + ∴

1 ∠CDB + ∠CDB =180 ° 2 3 ∠CDB = 60 ° 2 ∠CDB = 40 ° ∠KDC = 40 °

1 ∠AOB 2 1 = ×54 ° 2 = 27 °

∠BCA =

(∠ at centre twice ∠ at ☉ce)

∠ONC = ∠OBC +∠BCA (ext. ∠ of △) = 42 ° + 27 ° = 69 °

∠OAC +∠AOB =∠ONC (ext. ∠ of △) ∠OAC =69 ° −54 ° =15 °

5.

∵ ∴



A D= D CAD = DC ∠ACD = ∠CAD =35 °

∠ BCA = 90°

(given)

(equal arcs, equal ∠ s) (∠ in semi-circle)

∠BCD = ∠BCA +∠ACD =90 ° +35 ° =125 °

∠BAD +∠BCD =180 ° (opp. ∠ s, (∠BAC +35 °) +125 ° =180 ° ∠BAC =20 ° cyclic quad.)

∠CDB BC = ∠CBD CD 2 = 1

6.



25

 

∠CBD =

1 ∠CDB 2

(arcs prop. to ∠ s at ☉ce)

(opp. ∠ s, cyclic quad.)

6

7.

∠ABC + ∠ADC = 180 °

 

∠ABC = 180 ° − 115 ° = 65°

∠ACB AB = ∠BAC BC 3 = 2

3 ∠BAC 2 ∠ACB +∠ABC +∠BAC =180 ° 3 ∠BAC + 65 ° +∠BAC =180 ° ∠ ( sum 2 5 ∠BAC =115 ° 2 ∠BAC = 46 °



∠ACB =

Basic Properties of Circles (I)

∠BOC = ∠ABO +∠BEC (ext. ∠ of △) = 28 ° +36 ° = 64 ° OC = OB ∠ OCB = ∠ OBC

(radii) (base ∠ s, isos. △)

∠BOC +∠OCB +∠OBC =180 ° (∠ sum 64 ° +2∠OCB =180 ° ∠OCB = 58 °

of △)

∠BAD +∠BCD =180 ° ∠BAD +(58 °+36 °) =180 ° ∠BAD =86 °

(opp. ∠ s, cyclic

quad.)

of △) 8.

(a)

OC = OB ∠ OCB =∠ OBC

(radii) (base ∠ s, isos. △) ∠OCB +∠OBC +∠BOC =180 ° 2∠OCB +80 ° =180 ° ∠OCB =50 °

(∠ sum of △)

1 (∠ at centre twice ∠BOC ∠ at ☉ce) 2 1 = ×80 ° 2 = 40 °

∠BAC = (b)

∠DAB + ∠BCD =180 ° (opp. ∠ s, cyclic quad.) (∠DAC +∠BAC ) +(∠OCB +∠OCD ) =180 ° 36 °+40 °+50 °+∠OCD =180 ° ∠OCD =54 ° 9.

Produce CO to cut AB at E. Join BC. ∠BEC = ∠OCD (alt. ∠ s, AB // DC)

=36 °

26

Certificate Mathematics in Action Full Solutions 4B 10.

∠ AOC +reflex ∠ AOC ∠ ABC +2∠ ABC

=360 ° =360 °

∠ ABC

=120 °

(∠ s at a pt.) 13.

Draw OM such that OM ⊥ BC. ∵ OM ⊥ BC (constructed) ∴ BM = MC (line from centre ⊥ chord bisects chord) ∴

1  MC =  ×6  cm 2  = 3 cm

Join BD and DC. ∠ ABD = 90° ∠ ACD = 90° ∴ ∠ ABD = ∠ ACD AD = AD AB = AC ∴ △ABD ≅ △ACD ∴ ∠ BAD = ∠ CAD ∴ AD bisects ∠ BAC.

Consider △OMC. OM = OC

2

− MC

2

(Pyth. theorem)

= 5 2 −32 cm = 4 cm Consider △OAM. AM = OA

2

−OM

2

(Pyth. theorem)

= 7 2 −4 2 cm = 33 cm AB = AM −BM

= 2 p +q

=( 33 −3) cm = 2.74 cm

common side given RHS corr. ∠ s, ≅ △s

14. ∠ ACD = p + q (ext. ∠ of △) ∠ BDC = p (∠ s in the same segment) r =∠ACD +∠BDC (ext. ∠ of △) = p +q + p

= AM −MC



∠ in semi-circle ∠ in semi-circle

(cor. to 2 d.p.)

15.

11.

Let O be the centre of the circle and r cm be the radius. Join OA. OA = r cm (radius) OM =OC −MC Join BD. ∠ ABD = 90°

(∠ in semi-circle)

∠EBD =∠ABD −∠ABE =90 °−44 ° = 46 °

∠ ECD =∠EBD

∴ (∠ s in the same segment)

=46 °

12. (a)

(b)

∵ ∴ ∵ ∴

∠ AOC = ∠ ABC

= ( r −1) cm OM ⊥ AB

AM = MB

1  =  × 10  cm 2  = 5 cm

(given) (line from centre ⊥ chord bisects chord)

Consider △OAM.

AB // OC and OA // CB (given) OABC is a parallelogram. OA = OC (radii) OABC is a rhombus.

Reflex ∠ AOC = 2∠ ABC

27



(property of rhombus) (∠ at centre twice ∠ at ☉ce)

OA 2 = AM 2 + OM

2

r 2 = 5 2 + ( r −1) 2

(Pyth. theorem)

r 2 = 25 + r 2 − 2r +1 2r = 26 r = 13 ∴

The radius of the circle is 13 cm.

6 Level 2 ∠AOD + ∠BOD = 180 ° 16. ∠AOD = 180 ° − 140 ° = 40°

(adj. ∠ s on st.

∠ ACB = 90° ∠ DBA = ∠ DCA

(∠ in semi-circle) (∠ s in the same segment) ∠CAB = ∠CEA + ∠DCA (ext. ∠

(alt. ∠ s, CD // BA)

∠ODC = ∠AOD = 40 °

1 ∠DCA = ∠AOD 2 1 = ×40 ° 2 = 20 °

(∠ at centre twice ∠ at ☉ce)

= 25 ° + ∠DCA

of △)

∠CAB +∠CBA +∠ACB =180 ° (∠ sum of △)

( 25 °+∠DCA ) +(37 °+∠DBA ) +90 ° =180 °

∠OKC = ∠ODC +∠DCA

∠AKO + ∠OKC = 180 ° ∠AKO = 180 ° − 60 °

2∠DCA = 28 °

(ext. ∠ of

= 40 ° + 20 ° = 60 °

△)

∠ AKD =180 °−74 °−54 ° =52 °

19. (a)

line)

Basic Properties of Circles (I)

(adj. ∠ s on st.

∠DCA =14 °

(b)

∠CAB =25 °+∠DCA =25 °+14 ° =39 °

= 120 °

line) 17. (a) ∠ABC +∠AFC =180 ° quad.)

(opp. ∠ s, cyclic

∠AFC =180 °−102 ° =78 °

∠ CDE

=∠ AFC =78 °

(ext. ∠ , cyclic

quad.)

(b)

∠COE = 2∠CDE = 2 ×78 ° =156 °

(∠ at centre twice ∠ at ☉ce)

∠BAF +∠ABO +∠COE +∠FEO =360 ° ∠BAF +102 °+156 °+38 ° =360 ° ∠BAF =64 °

18. (a)

∠ ADC = 90° (∠ ∠APD +∠ADC +∠BAD 20 °+90 °+(∠BAC +54 °) ∠BAC

in semi-circle) =180 ° ∠ ( =180 ° =16 °

sum of △) (b)

∠ BDC = ∠ BAC = 16°

(∠ s in the same segment)

∠ADB = ∠ADC −∠BDC = 90 ° −16 ° = 74 ° ∠AKD + ∠ADB + ∠CAD =180 ° (∠ sum of △)

28

 

Certificate Mathematics in Action Full Solutions 4B 20.

∠AOB AB = ∠BOC BC 1 = 2

22. (a)

∠BOC = 2∠AOB

Join MN. ∠ ABM = ∠ MNC (ext. ∠ , cyclic quad.) ∠ ADM = ∠ MNE (ext. ∠ , cyclic quad.) ∠ ABM + ∠ ADM = ∠ MNC + ∠ MNE = 180° (adj. ∠ s on st. line) ∴



∠BAD +∠ABM +∠ADM +∠BMD =360 ° 65 °+180 °+∠BMD =360 ° ∠BMD =115 °



∠AOC = ∠AOB + ∠BOC 90 ° = ∠AOB + 2∠AOB

1 ×90 ° 3 = 30 ° 1 (∠ B at centre twice ∠BCA = ∠AO 2 ∠ at ☉ce) 1 = ×30 ° 2 =15 °

∠AOB =

21.

(b)

Join BE.

 

∠BEC BC = ∠CAD CD 3 ∠ B E C= (2 8° ) 2 = 4 2°

 

2∠CAO =180 °−90 ° ∠CAO = 45 °

(arcs prop. to ∠ s at ☉ce)



∠CEO =∠CAO +∠AOB =45 °+30 ° =75 °

(ext. ∠

of △) (arcs prop. to ∠ s at ☉ce)

∴ ∠BKE +∠KEB + ∠KBE =180 ° (∠ sum of △)

29

∵ OC = OA ∴ ∠ ACO = ∠ CAO

(radii) (base ∠ s, isos. △) ∠CAO + ∠ACO + ∠AOC =180 ° (∠ sum of △)

∠DBE DE = ∠CAD CD 4 ∠ D B E= (2 8° ) 2 = 5 6°

∠ BKE

(arcs prop. to ∠ s at centre)

=180 °−42 °−56 ° =82 °

23. (a)

∠ APD = ∠ CPB ∠ PAD = ∠ PCB ∠ PDA = ∠ PBC ∴ △PAD ~ △PCB

common angle ext. ∠ , cyclic quad. ext. ∠ , cyclic quad. AAA

(b)

∠ AKB = ∠ DKC ∠ BAK = ∠ CDK ∠ ABK = ∠ DCK ∴ △AKB ~ △DKC

vert. opp. ∠ s ∠ s in the same segment ∠ s in the same segment AAA

(c)

PA PD = PC PB PA PD = PD + DC PA + AB 6 cm 8 cm = 8 cm + DC (6 +10) cm 12 cm = 8 cm + DC

sides, ~ △s) ∴

DC =4 cm

(corr.

6

∠ ACE + ∠ BOE = 180°

AB BK = DC CK 10 BK = 4 3 cm 24. (a)

(b)

BK =7.5 cm

∵ ∴

AM = MB and CN = ND ∠ OMK = ∠ ONK = 90°

∵ ∴

AB = DC OM = ON



OK = OK △OMK ≅ △ONK

∴ ∴ (c) ∴ ∴ isos. △ ∴ ∴ ∵ ∴ isos. △

25. (a)

(corr. sides, ~ △s)





given line joining centre to mid-pt. of chord ⊥ chord given equal chords, equidistant from centre common side RHS corr. sides, ≅ △s given KN – CN

KM = KN BM = CN KM – BM = KB = KC KB =KC AB =DC KA =KD ∠ KAD =

proved in (b) given ∠ KDA

base ∠ s,

∠ BCD + ∠ KDA = ∠ BCD +∠ KAD = 180° opp. ∠ s, cyclic quad. BC // AD int. ∠ s supp. AC = AB ∠ ACB =

cyclic quad. ∴ BC // ED (b) ∠ CED same segment = ∠ BDE ∴ FE ∠s

Basic Properties of Circles (I)

given ∠ ABC =

opp. ∠ s, cyclic quad.

∠ ACE + 2∠ CAE = 180° ∠ ACE + ∠ CAE = 180° – ∠ CAE (∠ ACE + ∠ CAE) +∠ CEA = 180° ∠ sum of △ (180° – ∠ CAE) + ∠ CEA = 180° ∠ CAE = ∠ CEA ∴ CA = CE sides opp. equal ∠ s 28. (a)

(b)

∵ CE = CD ∴ ∠ CED= ∠ CDE = ∠ ABC

given base ∠ s, isos. △ ext. ∠ , cyclic quad. ∴ ABE is an isosceles triangle. sides opp. equal ∠ s



Let ∠ ABD = x. ∵

C D= A DCD = AD (given)

∴ ∠ DBC= ∠ ABD =x ∠ ABE = ∠ ABD + ∠ DBC = 2x ∠ AEB = ∠ ABE = 2x ∠ EDC isos. △) = 2x ∠ DCB = 4x …… (1) ∠ BDC = 90°

(equal arcs, equal ∠ s)

(base ∠ s, isos. △) = ∠ AEB

(base ∠ s,

= ∠ AEB + ∠ EDC (∠ in semi-circle)

base ∠ s,

∠ ADE ext. ∠ ,

corr. ∠ s equal = ∠ CBD

∠ s in the

alt. ∠ s, BC // ED = FD sides opp. equal

26. ∠ NBP = ∠ MDP ∠ BNP = 180° – ∠ NBP – ∠ NPB = 180° – ∠ MDP – ∠ DPM = ∠ DMP = ∠ NMC ∴ QM = QN

ext. ∠ , cyclic quad. ∠ sum of △ given vert. opp. ∠ s sides opp. equal ∠ s

27.

Join BO and OE. ∠ BOE = 2 ∠ CAE

∠ at centre twice ∠ at ☉ce

30

Certificate Mathematics in Action Full Solutions 4B ∠ DBC + ∠ DCB + ∠ BDC =

△)

180°

∠ DCB = 180° – x – 90° = 90° – x …… (2) From (1) and (2), we have

4 x = 90 ° − x x =18 °

∠BAD + ∠DCB = 180 ° ∠BAD = 180 ° − 4 x = 180 ° − 4 × 18° = 108 °

(opp. ∠s, cyclic quad.) (by (1))

Multiple Choice Questions (p. 52) 1.

Answer: B ∵ OP ⊥ AB

AP = PB



1  =  × 12  cm 2   = 6 cm

OP = OA 2 − AP 2

(given) (line from centre ⊥ chord bisects chord)

(Pyth. theorem)

= 10 2 −6 2 cm = 8 cm

Join OC. OC = OA = 10 cm ∵ OQ ⊥ CD

(radii)

CQ = QD



1  =  ×16  cm 2  = 8 cm

OQ = OC



2.

31

2

−CQ

2

(given) (line from centre ⊥ chord bisects chord) bisects

(Pyth. theorem)

= 10 2 −8 2 cm = 6 cm PQ =OP +OQ =(8 +6) cm =14 cm

Answer: A ∠ BCD = 90°

(∠ in semi-circle)

(∠ sum of

∠DCA =∠BCD −∠ACB =90 °−71 ° =19 ° ∠ABD = ∠DCA (∠ s in the same segment) =19 ° ∴

x =∠ABD +∠BAC =19 °+32 ° =51 °

(ext. ∠ of △)

6 3.

Answer: D ∠ BDC = 90°

(∠ in semi-circle) (∠ ∠BDC +∠DCB +∠DBC =180 ° sum of △)

Basic Properties of Circles (I)

∠BED + ∠EBD = ∠BDC ∠EBD = 43 ° − 24 ° =19 °

(ext. ∠ of △)

∠DCB =180 °−90 °−32 ° =58 ° (opp. ∠ s, ∠BAD + ∠DCB = 180 ° ∠BAD = 180 ° − 58 ° = 122 °

cyclic quad.)

AB = AD (given) ∠ ABD = ∠ ADB (base ∠ s, isos. △) ∴ ∠ABD + ∠ADB + ∠BAD =180 ° (∠ sum of △) 2∠ ABD +122 ° =180 ° ∠ ABD =29 ° 4.

Answer: D

∠ADE = ∠CAD +∠ACD (ext. ∠ of △) = 52 ° + x ∠CBF = ∠ADE (ext. ∠ , cyclic quad.) = 52 ° + x ∴ ∠CBE +∠BEC +∠BCE =180 ° (∠ sum of △)

5.

(52 °+x ) +30 °+ x =180 ° 2 x =98 ° x =49 °

Answer: C Reflex ∠ AOC = 360° – x

(∠ s at a pt.)

1 reflex ∠AOC (∠ at centre c e twice ∠ at ☉ ) 2 1 = (360 ° − x ) 2 x =180 ° − 2

∠ABC =

∴ ∠ABC + ∠BCA + ∠BAC =180 ° (∠ sum of △)

x  180 ° −  +35 ° + 28 ° =180 ° 2   x =126 ° 6.

Answer: C ∠ BDC = ∠ BAC = 46° ∠ ACB = ∠ ADB

(∠ s in the same segment) (∠ s in the same segment)

=x ∴ ∠PDC +∠PCD +∠CPD =180 ° (∠ sum of △) ( x +46 °) +( 48 °+x ) +34 ° =180 °

x =26 ° 7.

Answer: B

32

Certificate Mathematics in Action Full Solutions 4B Join AD. ∠ ADB = 90° (∠ in semi-circle) ∠ADC +∠ABC =180 ° (opp. ∠ s, (90 °+43 °) +(19 °+ x ) =180 ° x = 28 ° cyclic quad.) 8.

Answer: A

∠DBC + ∠DCB + ∠BDC =180 °

(∠

sum of △)

 

∠DBC =180 °−83 °−46 ° (arcs prop. to ∠ s =51 ° ce at ☉ )

∠ABD AD = ∠DBC DC 2 ∠ A B D= (5 1° ) 3 = 3 4°

(opp. ∠ s, cyclic quad.)

∠ABC +∠ADC =180 ° (34 °+51 °) +( 46 °+x ) =180 ° x =49 ° 9.

Answer: C

(opp. ∠ s, cyclic quad.)

∠ A D C+ ∠ A B C= 1 8 0°

 

∠ A D C= 1 8 0° − ∠ A B C(arcsceprop. to ∠ s at ☉ )

∠ A B C m in o rA C = ∠ A D C m ajo rA C ∠ABC 7+ 3 = 1 8 0° − ∠ A B C 6 + 8 5 ∠ A B C= (1 8 0° − ∠ A B C) 7 5 ∠ A B C= × 1 8 0° 12 = 7 5° 10. Answer: B

∠DCB + ∠BAD = 180 ° ∠DCB = 180 ° − 112 ° = 68°



33

OD = OC ∠ ODC = ∠ OCD = 68° ∠ DOC = ∠ ABO =x

(opp. ∠ s, cyclic quad.)

(radii) (base ∠ s, isos. △) (corr. ∠ s, OD // BA)

6 ∴ ∠DOC + ∠ODC + ∠OCD =180 ° sum of △)

Basic Properties of Circles (I)

(∠

x +68 °+68 ° =180 ° x = 44 °

34

Certificate Mathematics in Action Full Solutions 4B 11. Answer: B

(opp. ∠ s, cyclic quad.)

∠ADC + ∠ABC =180 ° ∠ADC =180 ° − x

∠ACD + ∠AED =180 °

(opp. ∠ s, cyclic quad.)

∠ACD =180 ° − y ∠ACD +∠ADC +∠CAD =180 ° ∠ (180 °− y ) +(180 °−x ) +45 ° =180 ° ( x + y = 225 ° sum of △) 12. Answer: A With the notations in the figure, join FC.

∠BFC =∠BAC =a

(∠ s in the same

∠CFD = ∠CED =b

(∠ s in the same

segment)

segment)



For A, x = ∠ BFC + ∠ CFD =a+b For B, if x = y,

then

B C = DA F E

BCD = AFE (equal ∠ s,

equal arcs) which is not always true. For C, ∵ x = a + b and x = y is not always true. ∴ y = a + b is not always true. For D, join BC and CD. ∵ x + ∠ BCD = 180°(opp. ∠ s, cyclic quad.) ∴ x + y = 180° is false. 13. Answer: A

Join BD. ∠ ADB = 90°

35

(∠ in semi-circle)

1 ∠COD 2 1 = × 48 ° 2 = 24 °

∠CBD =

☉ )

(∠ at centre twice ∠ at

ce

x =∠ADB +∠CBD =90 °+24 ° =114 °

(ext. ∠ of △)

6

Basic Properties of Circles (I)

HKMO (p. 54) Let O be the centre of the circle. With the notations in the figure, join OC and OD.





A C= C D= D BAC = CD = DB (given)



∠COA = ∠COD = ∠DOB(equal arcs, equal ∠ s) 1 ×180 ° 3 = 60 °

= Join CD. OC = OD ∴ ∠ OCD = ∠ ODC

(radii) (base ∠ s, isos. △) ∠OCD +∠ODC +∠COD =180 ° (∠ sum of

∠OCD = 60 °

△)

∴ ∠ OCD = ∠ COA ∴ CD // AB (alt. ∠ s equal) Consider △CAD and △COD. ∵ They have the same base and the same height. ∴ Area of △CAD = area of △COD ∴ Shaded area = area of sector OCD

60 ° ×area of circle 360 ° 60 ° 2= ×Q 360 ° Q =12 2=



36

Related Documents