Certificate Mathematics in Action Full Solutions 4B
Basic Properties of Circles (I)
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Activity
EM = OE
−OM
2
(Pyth. theorem)
= 10 2 −6 2 cm = 8 cm (line from centre ⊥ chord bisects chord) MF = EM =8 cm
Activity 6.1 (p. 14)
(c) ∠ AOB = 2∠ APB No matter where points B and P are, ∠ AOB = 2∠ APB. (or any other reasonable answers)
2. 3.
2
Activity 6.2 (p. 25) 1.
yes 2.
yes
3.
yes 4.
yes
p. 9 1. ∵ ∴
Activity 6.3 (p. 35) 3.
∠ A +∠ C =180 °
4.
The sum of the opposite angles of a cyclic quadrilateral is 180°.
∠ B +∠ D =180 °
ON = OM = 4 cm (given) CD = AB (chords equidistant from centre are equal) = 7 cm CN = ND (line from centre ⊥ chord bisects chord)
1 × 7 cm 2
=
= 3.5 cm
Follow-up Exercise p. 3
Element AB
•
•
Term minor arc
region BCE
•
•
major arc
AFB
AFB
region BECFA
AB
AB
•
•
= 8 cm
OQ = OP = 2 cm BC = AB = 8 cm
(given) (given) (chords equidistant from centre are equal)
BC = AB = 8 cm (chords equidistan centre are equal) QC = BQ
t from
(line from centre
⊥chord
∴ •
•
chord
•
•
major segment
•
•
minor segment
region OBEC
•
•
sector
AC
•
•
radius
1.
PB = AP (line from centre ⊥ chord bisects chord) = 4 cm (line from centre ⊥chord bisects chord) AB = ( 2 ×4) cm ∴ ∵ ∴
diameter
OB
p. 7
2.
MB = AM =8 cm
(line from centre ⊥ chord bisects chord) 1 = × 8 cm 2 = 4 cm
bisects
chord)
(line from centre ⊥ chord bisects 3.
chord)
MB = AM MB = AM
(line from centre ⊥ chord bisects chord) (line from centre ⊥chord
bisects 2.
∠ OND = 90°
(line joining centre to mid-pt. of chord ⊥ chord)
Consider △OND. ∠OND +∠NOD +∠ODN =180 ° ∠ ( 90 °+∠NOD +35 ° =180 ° ∠NOD =55 ° sum of △)
∴
1
Consider △OEM.
AB = ( 2 ×5) cm =10 cm
CN = ND
(line from centre ⊥ chord bisects chord)
∴ ∵
3.
chord)
CD = ( 2 ×5) cm =10 cm AB = CD
Basic Properties of Circles (I) OM = ON = 2.5 cm
∴
(equal chords, equidistant from centre)
(∠s inthe
same segment)
(ext. ∠of
p. 18
1 ∠AOB 2 1 = ×60 ° 2 = 30 °
)
x= 1.
2.
3.
4.
(∠ at centre twice ∠ at ☉ )
4.
ce
x =2∠ APB =2 ×50 ° =100 °
(∠ at centre twice ∠ at ☉ )
x =2∠ APB =2 ×120 ° =240 °
(∠ at centre twice ∠ at ☉ )
ce
segment)
ce
p. 28 1. ∵
Reflex ∠ AOB = 360° – 140° (∠ s at a pt.) = 220°
∴ ∴
2.
☉ ) ce
p. 20
x =90 °
x =∠ BAC =40 °
2.
x =90 °
y =∠ ACB =20 °
3.
(∠ in semi-circle)
∠ APB = 90° (∠ in semi-circle) Consider △APB. ∠ APB +40 °+x =180 ° (∠ sum of △) 90 °+40 °+x =180 ° x =50 °
1.
(∠ s in the same
x =∠ ABD =50 °
1 reflex ∠AOB 2 (∠ at centre twice ∠ at 1 = ×220 ° 2 =110 °
6.
∠ABD = 50 °
sum of △)
x=
5.
Consider △ABD.
∠ABD +∠BAD +∠ADB =180 ° (∠ ∠ABD +( 40 ° + 20 °) +70 ° =180 °
3.
∠ DOC = ∠ AOB = 43°(given) (equal ∠ s, equal arcs)
=
DC AB x =4
∵
CD AB
(given)
∴ ∴
CD = AB
(equal arcs, equal chords)
∵ ∴ ∵ ∴ ∴
=
x =5
AB = DC
DC = AB
(given) (equal chords, equal ∠ s) (given)
=
(equal chords, equal arcs)
x =65 °
DC AB y =6
(∠ s in the same segment)
(∠ in semi-circle) (∠ s in the same segment)
∠EAC = ∠CBE = 30 ° x = ∠ADC + ∠DAC
△
= 25 ° + 30 ° = 55 °
2
Certificate Mathematics in Action Full Solutions 4B (adj. ∠ s on st. line)
4.
ycm ∠B O C = AB ∠AO B Join OB. ∵ BC = ED
(given)
∴
∠BOC = ∠EOD = 55 °
∵
AB = BC
∴
∠AOB = ∠BOC = 55 °
∠ s)
∠ s)
100 ° y = 6 30 ° = 20 °
(equal chords, equal
(given) (equal chords, equal
x = ∠BOC +∠AOB =55 °+55 ° =110 °
p. 31 1.
x ∠A O
B C (arcs prop. to ∠s at centre)
= BAB
2 (80 °) 5 =32 °
x=
ycm ∠D O C = AB ∠AO B
(arcs prop. to ∠s at centre)
48 ° y = 5 80 ° =3
2.
xcm ∠D O C = AB ∠AO B
(arcs prop. to ∠s at centre)
50 ° x = 6 30 ° =10
∠BOC =180 °−∠AOB −∠DOC =180 °−30 °−50 ° =100 °
3
(arcs prop. to ∠s at centre)
x AB = ∠C F DC D
3.
Basic Properties of Circles (I) △)
(arcs prop. to ∠ s at ☉ce)
2.
(ext. ∠ , cyclic quad.)
y =∠CDE =113 °
6 (15 °) 2 = 45 °
3.
x cm ∠C E D = BC ∠BEC ce
y AB = ∠B E C B C
x + ∠CBA = 180 ° x = 180 ° − 127 ° = 53°
(opp. ∠ s, cyclic quad.)
(∠ in semi-circle) ∠ ACD = 90° (∠ sum of △) x + y + ∠ ACD = 180° y = 180° − 90° − 53° = 37°
(arcs prop. to ∠ s at ☉ ) ce
30 ° x =10 40 ° = 7 .5
(arcs prop. to ∠ s at ☉ )
(opp. ∠ s, cyclic quad.)
= 87 °
x =
4.
x + ∠DAB = 180 ° x = 180 ° − 93 °
(arcs prop. to ∠ s at ☉ce)
6 (arcs prop. to ∠ s at ☉ ) y = 10 ( 40 °) ce = 24 °
5.
∠ A C B AB = ∠D B CC D
(arcs prop. to ∠ s at ☉ce)
Exercise 6A (p.10 10) Level 1
3 (arcs prop. to ∠ s at ☉ ) ∠ACB = ( 48 °) ce 4 = 36 ° x =180 °−∠ DBC −∠ ACB =180 °−48 °−36 ° =96 °
∵
ON ⊥ AB
NB = AN
∴
1 = × 16 cm 2 = 8 cm
(line from centre bisects
(given)
⊥chord
chord)
(ext. ∠ , cyclic quad.)
x =180 °−∠ DEC −∠ ECD =180 °−81 °−65 ° =34 °
1.
(∠ sum of
△)
p. 38119 ∠DEC = ∠ABC 1. =81 °
Exercise
(∠ sum of Join OB. Consider △NOB.
4
Certificate Mathematics in Action Full Solutions 4B OB =
∴
NB
2
+ON
2
(Pyth. theorem)
= 8 2 + 6 2 cm =10 cm The radius of the circle is 10 cm.
∴
OM ⊥ AB
∴
∠ OMK = 90°
∠MKN
(line joining centre to mid-pt. of chord ⊥ chord)
=180 °−∠DKB =180 °−43 ° =137 °
line)
(adj. ∠ s on st.
Consider quadrilateral OMKN. ∠ MON
2.
5.
∵ ∴
∴
Join OB.
OB = OC = ON + NC = (5 + 8) cm = 13 cm
(radii)
2
∵ ∴
3.
∵ ∴ ∵ ∴
2
2
− MB
2
= 5 2 −3 2 cm = 4 cm ON = MN −OM = (7 − 4) cm = 3 cm
(Pyth. theorem)
= 13 −5 cm =12 cm AN = NB (line from centre ⊥ chord bisects chord) AB =( 2 ×12 ) cm =24 cm 2
AM = MB
(given) (line joining from centre ⊥ chord bisects chord)
1 MB = × 6 cm 2 = 3 cm
OM = OB
−ON
2
OM ⊥ AB AM = MB
Consider △OMB.
Consider △ONB. NB = OB
=360 °−∠ OMK −∠ ONK −∠ MKN =360 °−90 °−90 °−137 ° =43 °
(line from centre ⊥ chord bisects chord)
AB = (2 ×6) cm =12 cm
ON = OM CD = AB = 12 cm
(given) (chords equidistant from centre are equal) Join OD. Consider △OND.
OD = OB = 5 cm
ND = OD
∵ ∴ ∴
5
∵ ∴
CN = ND ON ⊥ CD
∴ ∵
∠ ONK = 90° AM = MB
(given) (line joining centre to mid-pt. of chord ⊥ chord) (given)
(radii) 2
−ON
= 5 −3 = 4 cm ON ⊥ CD CN = ND 2
4.
(Pyth. theorem)
2
2
(Pyth. theorem)
cm
(given) (line from centre ⊥ chord bisects chord) CD =( 2 ×4) cm =8 cm
Basic Properties of Circles (I)
6.
∵ ∴
CM = MD OM ⊥ CD
∴
∠ OMC = 90°
(given) (line joining centre to mid-pt. of chord ⊥ chord)
∠AOC = ∠OCM +∠OMC
△)
= 32 ° +90 ° =122 °
Consider △OAC. ∵ OC = OA (radii) ∴ ∠ OCA = ∠ OAC (base ∠ s, isos. △) ∠OCA +∠OAC +∠AOC =180 ° (∠ 2∠OCA +122 ° =180 ° ∠OCA = 29 ° sum of △)
1 AB 2 1 = ( AM + MB) 2 1 = (16 + 4) cm 2 = 10 cm
OB =
(ext. ∠ of 7.
∴
OM = OB − MB = (10 − 4) cm = 6 cm
Join OD. Consider △OMD.
OD = OB = 10 cm
(radii)
MD = OD
∵ ∴ ∴
8.
∵ ∴
2
−OM
2
(Pyth. theorem)
= 10 2 −6 2 cm = 8 cm OM ⊥ CD (given) CM = MD (line from centre ⊥ chord bisects chord) CD =( 2 ×8) cm =16 cm
BM = MC = 6 cm OM ⊥ BC
(given) (line joining centre to mid-pt. of chord ⊥ chord)
Consider △OMB. OM = OB
2
− BM
= 10 −6 = 8 cm Consider △OMD. 2
MD = OD
2
2
(Pyth. theorem)
cm
−OM
= 17 −8 =15 cm 2
2
2
2
(Pyth. theorem)
cm
6
Certificate Mathematics in Action Full Solutions 4B
∴
7
CD = MD −MC = (15 −6) cm = 9 cm
6 9.
Construct a circle with centre O lying on BH, such that the circle cuts AB at two points P and Q, and cuts BC at two points R and S are shown.
Basic Properties of Circles (I)
∴
= 15° ∠MND = ∠OND +∠ONM =90 °+15 ° =105 °
∴
∠ OND = 90°
(line joining centre to mid-pt. of chord ⊥ chord)
Draw OM and ON such that OM ⊥ AB and ON ⊥ BC.
OB = OB
∠ABH = ∠CBH ∠OMB = ∠ONB = 90 ° common side given constructe ∴ ∴ ∴
SMEFSU08EX@F04 Construct the traingle ABC as shown.
AC 12 cm AC = 12 tan 60 ° cm
tan 60 ° =
d
△OBM ≅ △OBN OM = ON PQ = RS
AAS corr. sides, ≅ △s chords equidistant from centre are equal
= 12 3 cm ∴
Area of △ABC
1 × BC × AC 2 1 = ×12 ×12 3 cm 2 2 =
= 72 3 cm 2 110.
Level 2 10. (a)
∵ ∴ ∴
AM = MB ∠ OMA = 90° ∠OMN
(given) (line joining centre to mid-pt. of chord ⊥ chord) =∠OMA −∠ AMN =90 °−75 ° =15 °
Let M be a point on AB such that OM ⊥ AB.
(b)
Join ON. ∵ CN = ND ∴ ∠ OND = 90° ∵ ∴ ∴
(given) (line joining centre to mid-pt. of chord ⊥ chord) CD = AB (given) ON = OM (equal chords, equidistant from centre) ∠ ONM = ∠ OMN (base ∠ s, isos. △)
8
Certificate Mathematics in Action Full Solutions 4B ∵
OM ⊥ AB
1 = × 24 cm 2 = 12 cm
∴
chord
bisects
1 = × 18 cm 2 = 9 cm
(line from centre
chord)
(given)
AN = NB
∴
⊥
(line from centre
ON ⊥ AB
(b) ∵
(constructed)
AM = MB
chord
bisects
⊥
chord)
Consider △OMA. OM = OA 2 − AM = 15 −12 = 9 cm Consider △OMC. 2
2
2
(Pyth. theorem)
cm
MC = MB + BC = (12 + 28 ) cm
Join OA. Consider △OAN. OA = r cm ON 2 + AN 2 = OA
= 40 cm OC = OM
2
+MC
= 9 +40 = 41 cm 2
12. (a)
2
2
(Pyth. theorem)
cm
(r −3) 2 + 9 2 = r 2
Consider △OAB and △OAC. common OA = OA
OB = OC AB = AC
∴ ∴ ∴ (b)
Consider △ABN and △ACN.
∠OAB = ∠OAC
(proved in (a)) (given) (common side)
AB = AC AN = AN ∴ ∴ ∴
(c)
side
radii given SSS corr. ∠ s, ≅ △s
△OAB ≅ △OAC ∠ OAB = ∠ OAC OA bisects ∠ BAC.
r
∴
△ABN ≅ △ACN (SAS) BN = CN (corr. sides, ≅ △s) ON ⊥ BC (line joining centre to mid-pt. of chord ⊥ chord)
14. ∵
2
(radius) 2
(Pyth. theorem)
−6r +90 = r r =15
2
OM ⊥ CD
(given)
CM = MD 1 = × 12 cm 2 = 6 cm
∴
(line from centre chord
bisects
⊥
chord)
Let r cm be the radius of the circle. OM = AM −OA
= (18 − r ) cm
ON = AN − OA = (8 − 5) cm = 3 cm
Consider △ONC. NC = OC
2
−ON
= 5 −3 = 4 cm Consider △ANC. 2
AC =
AN
2
2
+NC
= 4 5 cm
9
(Pyth. theorem)
cm
= 8 2 +4 2 cm
13. (a)
2
ON = OY − NY = ( r −3) cm
Join OC. Consider △OCM. OC = r cm
OM
2
+ CM
2
(radius)
= OC 2
(18 − r ) 2 + 6 2 = r 2
2
(Pyth. theorem)
360 − 36 r + r 2 = r 2 r = 10
∴
MB = OB −OM
(Pyth. theorem)
6 =[ r −(18 −r )] cm
Basic Properties of Circles (I)
15.
=( 2r −18 ) cm =(2 ×10 −18) cm =2 cm
Let M be a point on AB such that OM ⊥ AB. ∵ OM ⊥ AB (constructed)
MB = AM
1 = × 18 cm 2 = 9 cm
∴
(line from centre chord
bisects
⊥
chord)
Join OB. OB = 13 cm Consider △OMB. OM = OB
2
(radius) −MB
2
(Pyth. theorem)
= 13 2 −9 2 cm = 88 cm
Let N be a point on CD such that ON ⊥ CD. ∵ ON ⊥ CD (constructed)
NC = DN
1 = × 24 cm 2 = 12 cm
∴
(line from centre chord
∵ ∴ ∴ ∴
bisects
⊥
chord)
∠ONK = ∠OMK = 90 ° ONKM is a rectangle. NK = OM KC = NC −NK = NC −OM
(property of rectangle)
=(12 − 88 ) cm =2.62 cm (cor. to 2 d.p.)
16.
(a)
Join OD, OB and OA as shown. Let ∠ OAB = x, then ∠ OAD = 90° −x.
10
Certificate Mathematics in Action Full Solutions 4B ∵ OB = OA ∴ ∠ OBA = ∠ OAB
radii base ∠ s, isos. △
=x
∠AOB =180 ° −∠OAB −∠OBA =180 ° −2 x
∴
∠ sum of △
∵ OD = OA ∴ ∠ ODA = ∠ OAD = 90° −x
DL = EL FN = NG
∠AOD =180 ° −∠OAD −∠ODA =180 ° −2(90 ° − x )
∴
∠ sum of △
DE = 2( LM − EM ) = 2( MN − EM ) = 2( MN − MF ) = 2 FN = FG
=2x
∠AOB +∠AOD
∴
= (180 ° −2 x) +2 x =180 °
∴
(b) Draw OM ⊥ AB and ON ⊥ DA. ∵ OM ⊥ AB and ON ⊥ DA (constructed) ∴ AM = MB and DN = NA (line from centre ⊥ chord bisects chord)
1 AD 2 1 = × 18 cm 2 = 9 cm
(adj. ∠ s on st. line) x =2∠ ACB =2 ×42 °
(∠ at centre twice ∠ at ☉ ) ce
=84 °
2.
AMON is a rectangle.
OM = NA = 9 cm
proved
Level 1 ∠ACB +138 ° =180 ° (adj. ∠ s on st. line) 1. ∠ACB = 42 °
NA =
∴
by (a)
Exercise 6B (p. 21)
BOD is a straight line.
∵
line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord line from centre ⊥ chord bisects chord
(b) EM = MF
radii base ∠ s, isos. △
(property of rectangle)
∠ ACB = 90° (∠ in semi-circle) ∵ CA = CB (given) ∴ x = ∠ CBA (base ∠ s, isos. △) ∠ACB +∠CBA +x =180 ° (∠ sum of 2 x +90 ° =180 ° x = 45 ° △)
3.
2
= 15 2 −9 2 cm =12 cm AB = 2 AM = (2 ×12 ) cm = 24 cm
17. (a)
∵ ∴ ∵ ∴
11
(∠ s in the same segment)
∠DAC = ∠DBE = 25 °
(∠ s in the same segment)
x +∠ACD =125 ° (ext. ∠ of △) x +55 ° =125 ° x =70 °
Consider △OAM. AM = OA 2 −OM
∠ACD = ∠ABD = 55 °
(Pyth. theorem)
∠ ALM = ∠ BMN = ∠ CNG = 90°given LA // MB // NC corr. ∠ s equal LA // MB // NC and AB = BC given LM = MN intercept theorem
4.
x = ∠DAC +∠ADC = 25 °+42 °
(ext. ∠ of △)
= 67 °
5.
Reflex
∠AOC =2∠ABC
twice at ☉ ) ce
=2 ×140 ° =280 °
(∠ at centre
6
Basic Properties of Circles (I)
(∠at centre twice ∠at ) x =360 °−reflex ∠ AOC =360 °−280 °
(∠ s at a pt.)
=80 °
6.
∠ACD =180 °−∠CAD −∠CDA
sum of △)
=180 °−32 °−90 ° = 58 °
∠ACB = 90 °
(∠ in semi-circle)
x =∠ACB −∠ACD =90 °−58 ° =32 °
∴
7.
(∠
∠ ABC = 90°
(∠ in semi-circle)
∠BCA = ∠BDA =x
(∠ s in the same segment)
∠ BCA =180 °−∠ ABC −∠ BAC x =180 °−90 °−65 ° =25 °
(∠
sum of △)
8.
∠AOB = 2∠ACB
☉ )
(∠ at centre twice ∠ at
= 2 ×70 ° =140 °
△
ce
OB = OA ∠OBA = x (radii) (base ∠ s, isos.
)
x +∠OBA +∠AOB =180 ° 2 x +140 ° =180 ° x = 20 °
(∠ sum of
△)
12
Certificate Mathematics in Action Full Solutions 4B 9.
12.
Join OC.
65 ° + ∠BCA = 118 ° ∠BCA = 53 ° ∠AOB = 2∠BCA = 2 × 53 ° = 106 ° ∠AOB + ∠OAK = 118 ° ∠OAK = 118 ° −106 ° = 12 °
(ext. ∠of
1 ∠ACB = ∠AOB 2 1 = ×130 ° 2 = 65 °
(∠ at centre twice ∠ at
)
(∠at centre twice ∠at ) (ext. ∠of
☉ )
)
ce
OC = OA (radii) ∠ OCA = ∠ OAC (base ∠ s, isos. △) = 20° OB = OC (radii) x = ∠ OCB (base ∠ s, isos. △) = ∠ ACB − ∠ OCA = 65° −20° = 45 ° 10.
13. ∠ DAC, ∠ ACD, ∠ DAB, ∠ DBA, ∠ EFD and ∠ FED (any four of the above angles) Level 2 14. ∵ ∴ ∵
(∠ in semi-circle) ∠DAC = 90 ° ∠ACD =180 °−∠DAC −∠ADC (∠ =180 °−90 °−55 ° =35 °
∴
∠ABC = ∠ACB = 35 ° (given) (base ∠ s, isos.
△
)
= 20 °
(opp. ∠ s of // gram)
1 ∠BOD 2 (∠ at centre twice ∠ at ☉ ) ce 1 x = ×36 ° 2 = 18 °
∠BCD =
∠ ODC
=∠ BCD =18 °
(∠ in semi-circle) (∠
(∠ sum of △)
∠ABC + ∠BAD = 55 ° (ext. ∠ of △) ∠BAD = 55 ° − 35 °
∠ BOD = 36°
(base ∠ s, isos. △)
sum of △)
15. (a)
11.
∠BDC = ∠DCA =x ∠ADB = 90 °
(given) (base ∠ s, isos. △) (given)
∠DAC +∠DCA +∠ADC =180 ° x +x +(90 °+x ) =180 ° x =30 °
sum of △)
AB = AC
DC = DA ∠ DCA = x BD = BC
∠OAB + ∠AOC = 180 ° ∠AOC = 180 ° − 32° = 148 °
(int. ∠ s, BA // CO) ∴ Reflex ∠ AOC = 360° −∠ AOC = 360° −148° = 212 ° ∠ AOC =360 °−∠ AOC =360 °−148 ° =212 °
1 reflex ∠AOC 2 1 = ×212 ° 2 =106 °
∠ABC =
∠BKD =∠ODK +∠BOD (ext. ∠ of =18 °+36 ° =54 ° (ext. ∠ of △) △)
(b)
twice ∠ at ☉ ) ce
ce
(∠ at centre twice ∠ at ☉ )
(ext. ∠ of △)
(∠ s at a pt.)
(∠ s at a pt.)
(alt. ∠ s, DO // AC)
13
(int. ∠ s, BA // CO)
(∠ at centre
6
19. (a)
Basic Properties of Circles (I)
OABC is a parallelogram. OA = OC ∴ OABC is a rhombus.
(given) (radii)
(b) Reflex ∠ AOC = 360° −x ∠ s at a pt.
1 reflex ∠AOC 2 1 = (360 ° − x) 2 x =180 ° − 2
∠ABC =
16.
∠DCB + ∠CKB = 50°
(∠ ext. ∠ of △)
∠DCB = 50° − 28° = 22° ∠DAB = ∠DCB (∠ s in the same segment) = 22 ° (∠ in semi-circle) ∠ACB = 90 ° ∠CAB =180 °−∠ACB −∠CBA (∠
sum of △) ∴
twice ∠ at ☉
∴
=180 °−90 °−50 ° = 40 °
∠CAD =∠CAB −∠DAB =40 °−22 ° =18 °
20. (a)
∴ 21. (a)
(∠in semi - circle) ∠ ABD + ∠ BAD + ∠ ADB = 180°(∠ sum of △) ∠ ABD + (44° + ∠ BAC) + 90° = 180° ∠ ABD + ∠ ABD + 134° = 180° ∠ ABD
18.
1 ∠ABE = ∠AOE 2 1 = ×124 ° 2 = 62 °
(ext. ∠ of △)
∴
(ext. ∠ of △)
(corr. sides, ~ △s)
KD =4 cm
OK ⊥ EB BK = EK
given line from centre ⊥ chord bisects chord
side
△BKD ≅ △EKD
(b) ∠ ABD = 90° ∠ BDC ∠ CBD – ∠ BCD (∠ sum of △) = 180° – 90° – 42° = 48° ∠ KED = ∠ KBD ∠ KED + ∠ KBD = ∠ BDC 2∠ KED = 48 ∠ KED = 24 ∠ BAD =∠ BED ∴ =24 °
= 26 °
∠AKE =∠BAD +∠ABE =26 °+62 ° =88 °
vert. opp. ∠ s ∠ s in the same segment ∠ s in the same segment AAA
KD = KD
given common
(∠ at centre twice ∠ at ☉ce)
∠BEC = 62 ° − 36 ° = 26 ° ∠BAD = ∠BEC (∠ s in the same segment)
∵ ∴
(proved in (b))
∠BKD = ∠EKD = 90 °
= 23 °
∠ACE + ∠BEC = ∠ABE
∴
AK KD = BK KC 6 KD = 3 2 cm
(b)
∠BDC =∠ABD ∠ADB =90 ° (∠ s inthe same segment) (alt. ∠ s, DC // AB )
(opp. ∠ s of // gram)
x 180° − = x 2 3 x = 180 ° 2 x = 120 °
∠ AKB = ∠ DKC ∠ BAK = ∠ CDK ∠ ABK = ∠ DCK ∴ △AKB ~ △DKC
∠BAC =∠BDC 17.
ce
∠ ABC = x
(c)
∠ at centre
SAS (∠ in semicircle) = 180° –
(corr. ∠ s, ≅ △s) (ext. ∠ of △) (∠ s in the same segment)
22.
14
Certificate Mathematics in Action Full Solutions 4B
= 180° – x – 90° = 90° – x
∠ BAC BC = x AC
Join AP. ∠ APB = 90°
∠ACQ = ∠APQ = 90
∠s inthe ∴
∠ in semi-circle
same segment
QC ⊥ AB
4.
∠C O D C D = ∠BO C BC
4 (84 °) 6 = 56 °
∠BOD = ∠BOC + ∠COD = 84 ° + 56 °
Exercise 6C (p. 32) Level 1
Reflex ∠ AOB = 360° – ∠ AOB (∠ s at a pt.) = 360° – 80° = 280°
= 140 ° (∠ at centre twice ∠ at ☉ce) 1 x = ∠BOD 2 1 = ×140 ° 2 = 70 °
∴
x cm
(arcs prop. to ∠
80° x = 14 280 ° =4
∴
6. ∠ BAC = 180° – ∠ ABC – ∠ ACB = 180° – 50° – 75° = 55°
x cm AC
=
∠BAC ∠ABC
3.
15
∠ ACB = 90° ∠ BAC= 180° – x – ∠ ACB
(a)
(∠ sum of △)
AC
AC
= BD
alt. ∠ s, CD // AB
BD
∠ A O B A B (arcs prop. to ∠ s at centre) = ∠BO C BC 4 ( 48 °) 3 =64 °
(b)
∠ACB =
centre twice ∠ at ☉ce) (∠ in semi-circle) (∠ sum of △)
equal ∠ s, equal arcs
∠AOB =
(arcsce prop. to ⊙ ∠ s at )
55° x = 10 50° = 11
∠ ADC = ∠ BAD
5.
centre)
2.
(arcs prop. to ∠ s at centre)
∠COD =
Join OA. ∠ ABQ = ∠ AOQ ∠ s in the same segment = 2∠ ABP ∠ at centre twice ∠ at ☉ce ∴ BP bisects ∠ ABQ.
∠AOB = Reflex ∠AOB Major AB
ce
23.
1.
(arcs prop. to ∠ s at ⊙ )
90° − x 4 = x 5 450° − 5 x = 4 x x = 50°
1 ∠AOB 2
(∠ at
6 ∵ ∴
1 ×64 ° 2 =32 ° =
Basic Properties of Circles (I)
AB = AD ∠ ABD = ∠ ADB
(given) (base ∠ s, isos. △)
∠ABD +∠ADB +∠BAD =180 ° 2∠ABD +120 ° =180 ° ∠ABD =30 °
sum of △)
∠ACB =180 °−∠BAC −∠ABC
7.
∠ BEC △)
= 180° – ∠ EBC – ∠ ECB
= 180° – 62° – 64° = 54° ∠ DEB = ∠ EBC − ∠ EDB = 62° – 35° = 27°
(ext. ∠ of △)
∴
= ∠ DEB : ∠ BEC
AB
AB : BC
BC
(arcs prop. to ∠ s at = 27° : 54° = 1: 2 8.
∠ BAC = 90° ∠ BAD = ∠ BAC + ∠ CAD = 90° + 30° = 120°
∴
AB
AB : BC
∵
⊙ce) ∴ ∵
∴ ∵
∴
10. ∵
(∠
= ∠ ACB : ∠ BAC
BC
(arcs prop. to ∠ s = 60° : 90° = 2:3 9.
(∠ in semi-circle)
sum of △)
(∠ sum of
=180 °−90 °−30 ° = 60 °
(∠
at ⊙ce)
∠ APC= ∠ APB + ∠ BPC = 5° + 10° = 125° = ∠ CPD
A C= C DAC = CD
(equal ∠ s, equal arcs)
∠ BPD = ∠ BPC + ∠ CPD = 10° + 15° = 25° = ∠ EPF
B D= E F
(equal ∠ s, equal arcs)
A D= F GAD = FG
(equal ∠ s, equal arcs)
(given)
BD = EF
∠ APD = ∠ APB + ∠ BPC + ∠ CPD = 5° + 10° + 15° = 30° = ∠ FPG
A B= C DAB = CD
∴ ∠ ADB = ∠ DAC and ∠ ACB = ∠ DBC (equal arcs, equal ∠ s) ∴ KD = KA and KC = KB (sides opp. equal ∠ s) ∴ △AKD and △BKC are isosceles triangles.
16
Certificate Mathematics in Action Full Solutions 4B 13. ∠ PRS = ∠ PQS
A B= B C= C D
∵
AB = BC = CD ∠ PRQ
(given) ∴ ∠ ACB = ∠ CAB and ∠ BDDBC = ∠ DBC (equal arcs, equal ∠ s) ∴ BC = BA and CD = CB (sides opp. equal ∠ s) ∴ △ABC and △BCD are isosceles triangles.
= 30°
= 75° −30° = 45°
(∠ s in the same segment) = ∠ QRS – ∠ PRS
Q R= P QQR = PQ (given)
∵
∠QSR = ∠PRQ = 45 ° ∴
∠ QSR = ∠ PRQ (equal arcs, equal ∠ s) = 45° ∠ RQS = 180° – ∠ QRS – ∠ QSR (∠ sum of △) = 180° −75° − 45° = 60 °
Level 2 11.
∠ ABD = 180° – ∠ BAD − ∠ ADB (∠ sum of △) = 180° – (40° + 20°) – 70° = 50°
Join BC. ∠ CBD= ∠ CAD = 20° ∠ CBA = 20° + 50° = 70°
AD C ∠CBA = BC ∠BAC 7 0° x = 1 0 4 0° = 1 7.5
14. (a)
OD = OB (radii) ∠ ODB = ∠ OBD (base ∠ s, isos. △) = 30° ∴ ∠ BOA = ∠ OBD + ∠ ODB (ext. ∠ of △) = 30° + 30° = 60 °
(∠ s in the same segment) = ∠ CBD + ∠ ABD
(b)
(arcs prop. to ∠ s at ☉ ) ce
x cm CD
=
∠ BAC ∠ CAD
40° x = 15 50° = 12
17
(arcs prop. to ∠ s at
☉ ) ce
15. (a) 12. ∠ BAD = 90° (∠ in semi-circle) ∠ BAC = ∠ BAD – ∠ CAD = 90° – 50° = 40°
∠ ADB AB = ∠ CDB BC 3 = 2 2 ∠ CDB = (30° ) 3 = 20°
OA = OC
radii
AB = CB OB = OB
given common
∴ (b) ∵ ∴
(arcs prop. to ∠ s at ☉ )
∴
ce
equal arcs
side
△ABO ≅ △CBO
SSS
∠ AOB = ∠ COB ∠ AOD = ∠ COD
corr. ∠ s, ≅ △s
A D= D CAD = DC
equal ∠ s,
6
16. ∵
B C= C D
∴ ∵ ∴
∠ CAB = ∠ DAC OC = OA ∠ ACO = ∠ CAB = ∠ DAC OC // AD
∴ 17. (a)
∵ ∴
equal arcs, equal ∠ s radii base ∠ s, isos. △
π × 18 cm 2
= 9π cm ∴
Radius of the circle =
9π cm 2π
=
4.5 cm
alt. ∠ s equal
OE ⊥ BD BE = ED
∠ BAC = ∠ DAC ∴
Circumference of the circle =
BC = CD given
AE = AE ∠ AEB = ∠ AED = 90° ∴ △ABE ≅ △ADE (b)
Basic Properties of Circles (I)
given line from centre ⊥ chord bisects chord common side given SAS corr. ∠ s, ≅ △s
B C= C DBC = CD
equal ∠ s, equal
arcs 18. (a)
With the notations in the figure,
∠ DFE= ∠ BDF + ∠ DBF (ext. ∠ of △) = 20° + 30° = 50° ∠ AGE= ∠ CAG + ∠ ACG (ext. ∠ of △) = 40° + 50° = 90° ∴ x = 180° – ∠ FGE – ∠ GFE(∠ sum of △) = 180° – 90° – 50° = 40 °
(b)
EA
AB BC CD D E AB :
BC :
CD :
DE :
EA = ∠ ADB : ∠ BEC : ∠ CAD : (arcs prop. to ∠ s at ☉ ∠ DBE : ∠ ACE (arcs prop. to ∠ s at ☉ce) = 20° : 40° : 40° : 30° : 50° = 2 : 4 : 4 :3:5
(cb)
to ∠ s at △ce)
AB 2 = C irc u m fne creeo f th ec irc le 2 + 4 + 4 + 3 + 5 (by (b))
18
Certificate Mathematics in Action Full Solutions 4B Exercise 6D (p. 39) Level 1 1. ∠BCD = 95 °
(ext. ∠ , cyclic quad.)
∠BCD + x = 180 ° x = 180 ° − 95 ° = 85 °
2.
(adj. ∠ s on st. line)
∵ ∴ ∴
∠BCD = 180 ° − 76 ° = 104 °
(opp. ∠ s, cyclic
CD = CB (given) ∠ BDC = x (base ∠ s, isos. △) ∠ BDC +x +∠ BCD =180 ° 2 x +104 ° =180 ° (∠ sum x =38 °
of △) 3.
∠ ACB = 90°
(∠ in semi-circle)
∠ABC + ∠ACB + ∠BAC =180 ° (∠ sum of
△)
∠ABC =180 °−90 °−40 ° =50 °
x + ∠ABC = 180 ° x = 180 ° − 50 °
(opp. ∠ s, cyclic quad.)
= 130 °
4.
x =∠ABD =46 °
(∠ s in the same segment)
y +∠BCD =180 ° (opp. ∠ s, cyclic quad.) y +(54 °+ x ) =180 ° y =180 °−(54 °+46 °) =80 °
5.
∠EBC + ∠CDE = 180 °
quad.)
∠EBC = 180 ° − 110° = 70°
∠ECB + ∠BAE = 180 °
quad.)
∠ECB = 180 ° − 120 ° = 60°
(opp. ∠ s, cyclic
(opp. ∠ s, cyclic
∠BEC + ∠EBC + ∠ECB =180 ° (∠ sum of △)
6.
(a) of △)
19
∠ BEC
∠DFE = ∠BCD (ext. ∠ , cyclic quad.) = 60 ° ∠DFE +∠FDE +∠DEF =180 ° (∠
sum of △) ∠ DEF
∠BCD + ∠BAD = 180 °
quad.)
(b)
=180 °−70 °−60 ° =50 °
∠ADE =∠CAD +∠ACD =36 °+60 ° =96 °
(ext. ∠
=180 °−60 °−96 ° =24 °
6
7.
∠FCD + ∠DEF = 180 ° ∠FCD = 180 ° − 130 ° = 50 °
quad.)
(opp. ∠ s, cyclic
(ext. ∠ , cyclic quad.)
x =∠FCD =50 °
∠ ABD = y ∵ AD = AB ∠ A DB =∠ABD ∴ =y
(ext. ∠ , cyclic quad.) (given) (base ∠ s, isos. △)
∠BAD +∠ABD +∠ADB =180 ° sum of △)
Basic Properties of Circles (I)
∠ABC + ∠ADC =180 ° (opp. ∠ s, cyclic quad.)
∵
∠ABC =180 °−115 ° =65 ° BC = CD
(given)
∠BAC =∠DAC ∴ (equal chords, equal ∠ s) =35 ° (∠ ∠ACB + ∠ABC + ∠BAC =180 ° sum of △)
∠ ACB
=180 °−65 °−35 ° =80 °
(∠
x + 2 y =180 ° 2 y =180 ° − 50 ° y = 65 °
8.
Join AD. ∠ ABC + ∠ CDA = 180° ∠ ADE = 90° ∠ ABC + ∠ CDE
opp. ∠ s, cyclic quad. ∠ in semi-circle
= ∠ABC +(∠CDA +∠ADE ) = (∠ABC +∠CDA ) +∠ADE =180 °+90 ° = 270 °
1 ∠AOB 2 1 = ×40 ° 2 = 20 °
∠APB = 9.
(a)
(∠ at centre twice ∠
at ☉ ) ce
(b) ∠BAP + ∠BCP =180 ° quad.)
(opp. ∠ s, cyclic
∠BAP =180 °−50 ° =130 ° ∠ABP +∠BAP +∠APB =180 ° (∠ sum of △)
10.
∠ ABP =180 °−130 °−20 ° =30 °
∠DAC + ∠ADC + ∠ACD =180 ° sum of △)
(∠
∠DAC =180 °−115 °−30 ° = 35 °
20
Certificate Mathematics in Action Full Solutions 4B Level 2 11.
Reflex ∠ AOC centre twice
= 2∠ ABC
(∠ at
= 2 × 110° ∠ at
☉ ) ce
= 220°
∠AOC =360 °−reflex ∠AOC =360 °−220 ° =140 °
pt.)
(∠ s at a
∴ ∠CPB +∠AOC =180 ° (opp. ∠ s, cyclic quad.) ∠ CPB =180 °−140 ° =40 ° 12.
∠COD = ∠BAD = 40 °
(corr. ∠ s, OC //
OD = OC ∠ ODC = ∠ OCD
(radii) (base ∠ s, isos. △)
AB)
∠COD +∠ODC +∠OCD =180 °
sum of △)
40 ° + 2∠ODC =180 ° ∠ODC = 70 °
(∠
∠ODC + ∠ABC =180 ° (opp. ∠ s, cyclic ∠ABC =180 ° − 70 ° =110 °
quad.) 13. (a)
∠ KAD = ∠ KCB ∠ KDA = ∠ KBC ∠ AKD = ∠ CKB ∴ △KAD ~ △KCB
ext. ∠ , cyclic quad. ext. ∠ , cyclic quad. common angle AAA
KA KD = KC KB KA KD = KD + DC KA + AB (b) 2 cm 3 cm = 3 cm + DC (2 + 4) cm 4 cm = 3 cm + DC DC =1 cm
(corr. sides,
~ △s)
14.
∠BAD = ∠BCE = 65 °
∠ ADB = 90°
(ext. ∠ , cyclic quad.) (∠ in semi-circle) (∠
∠ABD + ∠ADB +∠BAD =180 °
sum of △)
∠ABD =180 ° −90 ° −65 ° = 25 °
21
∠BDC = ∠ABD = 25 °
(alt. ∠ s, DC // AB)
∠DBC +∠BDC = ∠BCE ∠DBC = 65 ° −25 ° = 40 °
△)
(ext. ∠ of
6 15. ∠ACD + ∠ADC + ∠CAD =180 ° sum of △)
Basic Properties of Circles (I)
∠AED +∠ACD =180 ° (opp. ∠ s, cyclic quad.) ∠AED = 180 ° − ∠ACD = 180 − (140 ° − ∠ADC ) = 40 ° + ∠ADC
(∠
∠ACD =180 ° −40 ° −∠ADC =140 ° −∠ADC ∠ABC + ∠ADC = 180° (opp. ∠ s, cyclic quad.) ∠ABC = 180° − ∠ADC
∴
∠ ABC +∠ AED =(180 °−∠ ADC ) +( 40 °+∠ ADC ) =220 °
16.
Join BD. Let ∠ CBE = x. ∵ CE = CB
(given)
∠CEB = ∠CBE ∴ (base ∠ s, isos. △) =x ∠CBE + ∠BCE + ∠CEB = 180 ° (∠ sum
∠BCE = 180 ° − 2 x
of △)
(opp. ∠ s, cyclic quad.) ∠BDE +∠BCE =180 ° ∠BDE =180 ° −(180 °−2 x ) ∠ DBE = 90°
=2x
(∠ in semi-circle)
∠ABD + ∠DBE + ∠CBE =180 ° (adj. ∠ s
on st. line)
∠ABD =180 °−90 °− x =90 °−x ∠BAD +∠ABD = ∠BDE (ext. ∠ of △) 27 ° +(90 ° − x ) = 2 x 3 x =117 ° x = 39 ° ∴ 17. (a)
∠ CBE
=39 °
∠APC =∠ABC +∠PCB =( x + x ) + y =2 x + y
(ext. ∠
of △)
∠ARB =∠ACB +∠RBC =( y + y ) + x
(ext. ∠
= x +2 y of △) (b) ∠APC +∠ARB =180 ° (opp. ∠ s, cyclic quad.) ( 2 x + y ) +( x + 2 y ) =180 °
3 x +3 y =180 ° x + y = 60 °
22
Certificate Mathematics in Action Full Solutions 4B ∠BAC + ∠ABC + ∠ACB = 180 ° (∠ sum of △)
23
∠BAC +2 x +2 y =180 ° ∠BAC +2( x + y ) =180 ° ∠BAC +120 ° =180 ° ∠BAC = 60 °
6 Revision Exercise 6 (p. 47) Level 1
Basic Properties of Circles (I)
1 (∠ at centre twice reflex ∠ POR ∠ at ☉ce) 2 1 = ×222 ° 2 =111 °
∠PQR =
1.
(b)
∠ORQ +∠PQR =180 ° (int. ∠ s, OR // PQ)
∠ ORQ
=180 °−111 ° =69 °
Join OF. Draw ON such that ON ⊥ FE.
OF = OB
1 BC 2 1 = × 20 cm 2 = 10 cm =
(radii)
ON = AB = 6 cm
(property of rectangle)
Consider △ONF. FN = OF
2
= 10 −6 =8 cm ON ⊥ FE FN = NE 2
∵ ∴ ∴
2.
2
2
(Pyth. theorem)
cm
(constructed) (line from centre ⊥ chord bisects chord) FE =( 2 ×8) cm
=16 cm
∠ AEC = 90°
(∠ in semi-circle)
∠EBC = ∠EAC (∠ s in the same segment) = 30 ° ∠AEB = ∠EDC +∠EBC (ext. ∠ of △) =35 ° +30 ° = 65 ° ∠ BEC
3.
−ON
(a)
=∠ AEC −∠ AEB =90 °−65 ° =25 °
∠POR +∠OPQ =180 ° (int. ∠ s, OR // PQ)
∠POR =180 °−42 ° =138 ° ∴ Reflex
∠ POR =360 °−∠ POR =360 °−138 ° =222 °
(∠ s at a pt.)
24
(opp. ∠ s, cyclic quad.)
Certificate Mathematics in Action Full Solutions 4B 4.
(arcs prop. to ∠ s at ☉ce)
∠ABC + ∠ADC =180 ° (62 ° + ∠CBD ) + (58 ° + ∠CDB ) =180 °
With the notations in the figure,
120 ° + ∴
1 ∠CDB + ∠CDB =180 ° 2 3 ∠CDB = 60 ° 2 ∠CDB = 40 ° ∠KDC = 40 °
1 ∠AOB 2 1 = ×54 ° 2 = 27 °
∠BCA =
(∠ at centre twice ∠ at ☉ce)
∠ONC = ∠OBC +∠BCA (ext. ∠ of △) = 42 ° + 27 ° = 69 °
∠OAC +∠AOB =∠ONC (ext. ∠ of △) ∠OAC =69 ° −54 ° =15 °
5.
∵ ∴
A D= D CAD = DC ∠ACD = ∠CAD =35 °
∠ BCA = 90°
(given)
(equal arcs, equal ∠ s) (∠ in semi-circle)
∠BCD = ∠BCA +∠ACD =90 ° +35 ° =125 °
∠BAD +∠BCD =180 ° (opp. ∠ s, (∠BAC +35 °) +125 ° =180 ° ∠BAC =20 ° cyclic quad.)
∠CDB BC = ∠CBD CD 2 = 1
6.
∴
25
∠CBD =
1 ∠CDB 2
(arcs prop. to ∠ s at ☉ce)
(opp. ∠ s, cyclic quad.)
6
7.
∠ABC + ∠ADC = 180 °
∠ABC = 180 ° − 115 ° = 65°
∠ACB AB = ∠BAC BC 3 = 2
3 ∠BAC 2 ∠ACB +∠ABC +∠BAC =180 ° 3 ∠BAC + 65 ° +∠BAC =180 ° ∠ ( sum 2 5 ∠BAC =115 ° 2 ∠BAC = 46 °
∴
∠ACB =
Basic Properties of Circles (I)
∠BOC = ∠ABO +∠BEC (ext. ∠ of △) = 28 ° +36 ° = 64 ° OC = OB ∠ OCB = ∠ OBC
(radii) (base ∠ s, isos. △)
∠BOC +∠OCB +∠OBC =180 ° (∠ sum 64 ° +2∠OCB =180 ° ∠OCB = 58 °
of △)
∠BAD +∠BCD =180 ° ∠BAD +(58 °+36 °) =180 ° ∠BAD =86 °
(opp. ∠ s, cyclic
quad.)
of △) 8.
(a)
OC = OB ∠ OCB =∠ OBC
(radii) (base ∠ s, isos. △) ∠OCB +∠OBC +∠BOC =180 ° 2∠OCB +80 ° =180 ° ∠OCB =50 °
(∠ sum of △)
1 (∠ at centre twice ∠BOC ∠ at ☉ce) 2 1 = ×80 ° 2 = 40 °
∠BAC = (b)
∠DAB + ∠BCD =180 ° (opp. ∠ s, cyclic quad.) (∠DAC +∠BAC ) +(∠OCB +∠OCD ) =180 ° 36 °+40 °+50 °+∠OCD =180 ° ∠OCD =54 ° 9.
Produce CO to cut AB at E. Join BC. ∠BEC = ∠OCD (alt. ∠ s, AB // DC)
=36 °
26
Certificate Mathematics in Action Full Solutions 4B 10.
∠ AOC +reflex ∠ AOC ∠ ABC +2∠ ABC
=360 ° =360 °
∠ ABC
=120 °
(∠ s at a pt.) 13.
Draw OM such that OM ⊥ BC. ∵ OM ⊥ BC (constructed) ∴ BM = MC (line from centre ⊥ chord bisects chord) ∴
1 MC = ×6 cm 2 = 3 cm
Join BD and DC. ∠ ABD = 90° ∠ ACD = 90° ∴ ∠ ABD = ∠ ACD AD = AD AB = AC ∴ △ABD ≅ △ACD ∴ ∠ BAD = ∠ CAD ∴ AD bisects ∠ BAC.
Consider △OMC. OM = OC
2
− MC
2
(Pyth. theorem)
= 5 2 −32 cm = 4 cm Consider △OAM. AM = OA
2
−OM
2
(Pyth. theorem)
= 7 2 −4 2 cm = 33 cm AB = AM −BM
= 2 p +q
=( 33 −3) cm = 2.74 cm
common side given RHS corr. ∠ s, ≅ △s
14. ∠ ACD = p + q (ext. ∠ of △) ∠ BDC = p (∠ s in the same segment) r =∠ACD +∠BDC (ext. ∠ of △) = p +q + p
= AM −MC
∴
∠ in semi-circle ∠ in semi-circle
(cor. to 2 d.p.)
15.
11.
Let O be the centre of the circle and r cm be the radius. Join OA. OA = r cm (radius) OM =OC −MC Join BD. ∠ ABD = 90°
(∠ in semi-circle)
∠EBD =∠ABD −∠ABE =90 °−44 ° = 46 °
∠ ECD =∠EBD
∴ (∠ s in the same segment)
=46 °
12. (a)
(b)
∵ ∴ ∵ ∴
∠ AOC = ∠ ABC
= ( r −1) cm OM ⊥ AB
AM = MB
1 = × 10 cm 2 = 5 cm
(given) (line from centre ⊥ chord bisects chord)
Consider △OAM.
AB // OC and OA // CB (given) OABC is a parallelogram. OA = OC (radii) OABC is a rhombus.
Reflex ∠ AOC = 2∠ ABC
27
∵
(property of rhombus) (∠ at centre twice ∠ at ☉ce)
OA 2 = AM 2 + OM
2
r 2 = 5 2 + ( r −1) 2
(Pyth. theorem)
r 2 = 25 + r 2 − 2r +1 2r = 26 r = 13 ∴
The radius of the circle is 13 cm.
6 Level 2 ∠AOD + ∠BOD = 180 ° 16. ∠AOD = 180 ° − 140 ° = 40°
(adj. ∠ s on st.
∠ ACB = 90° ∠ DBA = ∠ DCA
(∠ in semi-circle) (∠ s in the same segment) ∠CAB = ∠CEA + ∠DCA (ext. ∠
(alt. ∠ s, CD // BA)
∠ODC = ∠AOD = 40 °
1 ∠DCA = ∠AOD 2 1 = ×40 ° 2 = 20 °
(∠ at centre twice ∠ at ☉ce)
= 25 ° + ∠DCA
of △)
∠CAB +∠CBA +∠ACB =180 ° (∠ sum of △)
( 25 °+∠DCA ) +(37 °+∠DBA ) +90 ° =180 °
∠OKC = ∠ODC +∠DCA
∠AKO + ∠OKC = 180 ° ∠AKO = 180 ° − 60 °
2∠DCA = 28 °
(ext. ∠ of
= 40 ° + 20 ° = 60 °
△)
∠ AKD =180 °−74 °−54 ° =52 °
19. (a)
line)
Basic Properties of Circles (I)
(adj. ∠ s on st.
∠DCA =14 °
(b)
∠CAB =25 °+∠DCA =25 °+14 ° =39 °
= 120 °
line) 17. (a) ∠ABC +∠AFC =180 ° quad.)
(opp. ∠ s, cyclic
∠AFC =180 °−102 ° =78 °
∠ CDE
=∠ AFC =78 °
(ext. ∠ , cyclic
quad.)
(b)
∠COE = 2∠CDE = 2 ×78 ° =156 °
(∠ at centre twice ∠ at ☉ce)
∠BAF +∠ABO +∠COE +∠FEO =360 ° ∠BAF +102 °+156 °+38 ° =360 ° ∠BAF =64 °
18. (a)
∠ ADC = 90° (∠ ∠APD +∠ADC +∠BAD 20 °+90 °+(∠BAC +54 °) ∠BAC
in semi-circle) =180 ° ∠ ( =180 ° =16 °
sum of △) (b)
∠ BDC = ∠ BAC = 16°
(∠ s in the same segment)
∠ADB = ∠ADC −∠BDC = 90 ° −16 ° = 74 ° ∠AKD + ∠ADB + ∠CAD =180 ° (∠ sum of △)
28
Certificate Mathematics in Action Full Solutions 4B 20.
∠AOB AB = ∠BOC BC 1 = 2
22. (a)
∠BOC = 2∠AOB
Join MN. ∠ ABM = ∠ MNC (ext. ∠ , cyclic quad.) ∠ ADM = ∠ MNE (ext. ∠ , cyclic quad.) ∠ ABM + ∠ ADM = ∠ MNC + ∠ MNE = 180° (adj. ∠ s on st. line) ∴
∴
∠BAD +∠ABM +∠ADM +∠BMD =360 ° 65 °+180 °+∠BMD =360 ° ∠BMD =115 °
∴
∠AOC = ∠AOB + ∠BOC 90 ° = ∠AOB + 2∠AOB
1 ×90 ° 3 = 30 ° 1 (∠ B at centre twice ∠BCA = ∠AO 2 ∠ at ☉ce) 1 = ×30 ° 2 =15 °
∠AOB =
21.
(b)
Join BE.
∠BEC BC = ∠CAD CD 3 ∠ B E C= (2 8° ) 2 = 4 2°
2∠CAO =180 °−90 ° ∠CAO = 45 °
(arcs prop. to ∠ s at ☉ce)
∴
∠CEO =∠CAO +∠AOB =45 °+30 ° =75 °
(ext. ∠
of △) (arcs prop. to ∠ s at ☉ce)
∴ ∠BKE +∠KEB + ∠KBE =180 ° (∠ sum of △)
29
∵ OC = OA ∴ ∠ ACO = ∠ CAO
(radii) (base ∠ s, isos. △) ∠CAO + ∠ACO + ∠AOC =180 ° (∠ sum of △)
∠DBE DE = ∠CAD CD 4 ∠ D B E= (2 8° ) 2 = 5 6°
∠ BKE
(arcs prop. to ∠ s at centre)
=180 °−42 °−56 ° =82 °
23. (a)
∠ APD = ∠ CPB ∠ PAD = ∠ PCB ∠ PDA = ∠ PBC ∴ △PAD ~ △PCB
common angle ext. ∠ , cyclic quad. ext. ∠ , cyclic quad. AAA
(b)
∠ AKB = ∠ DKC ∠ BAK = ∠ CDK ∠ ABK = ∠ DCK ∴ △AKB ~ △DKC
vert. opp. ∠ s ∠ s in the same segment ∠ s in the same segment AAA
(c)
PA PD = PC PB PA PD = PD + DC PA + AB 6 cm 8 cm = 8 cm + DC (6 +10) cm 12 cm = 8 cm + DC
sides, ~ △s) ∴
DC =4 cm
(corr.
6
∠ ACE + ∠ BOE = 180°
AB BK = DC CK 10 BK = 4 3 cm 24. (a)
(b)
BK =7.5 cm
∵ ∴
AM = MB and CN = ND ∠ OMK = ∠ ONK = 90°
∵ ∴
AB = DC OM = ON
∴
OK = OK △OMK ≅ △ONK
∴ ∴ (c) ∴ ∴ isos. △ ∴ ∴ ∵ ∴ isos. △
25. (a)
(corr. sides, ~ △s)
∴
∴
given line joining centre to mid-pt. of chord ⊥ chord given equal chords, equidistant from centre common side RHS corr. sides, ≅ △s given KN – CN
KM = KN BM = CN KM – BM = KB = KC KB =KC AB =DC KA =KD ∠ KAD =
proved in (b) given ∠ KDA
base ∠ s,
∠ BCD + ∠ KDA = ∠ BCD +∠ KAD = 180° opp. ∠ s, cyclic quad. BC // AD int. ∠ s supp. AC = AB ∠ ACB =
cyclic quad. ∴ BC // ED (b) ∠ CED same segment = ∠ BDE ∴ FE ∠s
Basic Properties of Circles (I)
given ∠ ABC =
opp. ∠ s, cyclic quad.
∠ ACE + 2∠ CAE = 180° ∠ ACE + ∠ CAE = 180° – ∠ CAE (∠ ACE + ∠ CAE) +∠ CEA = 180° ∠ sum of △ (180° – ∠ CAE) + ∠ CEA = 180° ∠ CAE = ∠ CEA ∴ CA = CE sides opp. equal ∠ s 28. (a)
(b)
∵ CE = CD ∴ ∠ CED= ∠ CDE = ∠ ABC
given base ∠ s, isos. △ ext. ∠ , cyclic quad. ∴ ABE is an isosceles triangle. sides opp. equal ∠ s
Let ∠ ABD = x. ∵
C D= A DCD = AD (given)
∴ ∠ DBC= ∠ ABD =x ∠ ABE = ∠ ABD + ∠ DBC = 2x ∠ AEB = ∠ ABE = 2x ∠ EDC isos. △) = 2x ∠ DCB = 4x …… (1) ∠ BDC = 90°
(equal arcs, equal ∠ s)
(base ∠ s, isos. △) = ∠ AEB
(base ∠ s,
= ∠ AEB + ∠ EDC (∠ in semi-circle)
base ∠ s,
∠ ADE ext. ∠ ,
corr. ∠ s equal = ∠ CBD
∠ s in the
alt. ∠ s, BC // ED = FD sides opp. equal
26. ∠ NBP = ∠ MDP ∠ BNP = 180° – ∠ NBP – ∠ NPB = 180° – ∠ MDP – ∠ DPM = ∠ DMP = ∠ NMC ∴ QM = QN
ext. ∠ , cyclic quad. ∠ sum of △ given vert. opp. ∠ s sides opp. equal ∠ s
27.
Join BO and OE. ∠ BOE = 2 ∠ CAE
∠ at centre twice ∠ at ☉ce
30
Certificate Mathematics in Action Full Solutions 4B ∠ DBC + ∠ DCB + ∠ BDC =
△)
180°
∠ DCB = 180° – x – 90° = 90° – x …… (2) From (1) and (2), we have
4 x = 90 ° − x x =18 °
∠BAD + ∠DCB = 180 ° ∠BAD = 180 ° − 4 x = 180 ° − 4 × 18° = 108 °
(opp. ∠s, cyclic quad.) (by (1))
Multiple Choice Questions (p. 52) 1.
Answer: B ∵ OP ⊥ AB
AP = PB
∴
1 = × 12 cm 2 = 6 cm
OP = OA 2 − AP 2
(given) (line from centre ⊥ chord bisects chord)
(Pyth. theorem)
= 10 2 −6 2 cm = 8 cm
Join OC. OC = OA = 10 cm ∵ OQ ⊥ CD
(radii)
CQ = QD
∴
1 = ×16 cm 2 = 8 cm
OQ = OC
∴
2.
31
2
−CQ
2
(given) (line from centre ⊥ chord bisects chord) bisects
(Pyth. theorem)
= 10 2 −8 2 cm = 6 cm PQ =OP +OQ =(8 +6) cm =14 cm
Answer: A ∠ BCD = 90°
(∠ in semi-circle)
(∠ sum of
∠DCA =∠BCD −∠ACB =90 °−71 ° =19 ° ∠ABD = ∠DCA (∠ s in the same segment) =19 ° ∴
x =∠ABD +∠BAC =19 °+32 ° =51 °
(ext. ∠ of △)
6 3.
Answer: D ∠ BDC = 90°
(∠ in semi-circle) (∠ ∠BDC +∠DCB +∠DBC =180 ° sum of △)
Basic Properties of Circles (I)
∠BED + ∠EBD = ∠BDC ∠EBD = 43 ° − 24 ° =19 °
(ext. ∠ of △)
∠DCB =180 °−90 °−32 ° =58 ° (opp. ∠ s, ∠BAD + ∠DCB = 180 ° ∠BAD = 180 ° − 58 ° = 122 °
cyclic quad.)
AB = AD (given) ∠ ABD = ∠ ADB (base ∠ s, isos. △) ∴ ∠ABD + ∠ADB + ∠BAD =180 ° (∠ sum of △) 2∠ ABD +122 ° =180 ° ∠ ABD =29 ° 4.
Answer: D
∠ADE = ∠CAD +∠ACD (ext. ∠ of △) = 52 ° + x ∠CBF = ∠ADE (ext. ∠ , cyclic quad.) = 52 ° + x ∴ ∠CBE +∠BEC +∠BCE =180 ° (∠ sum of △)
5.
(52 °+x ) +30 °+ x =180 ° 2 x =98 ° x =49 °
Answer: C Reflex ∠ AOC = 360° – x
(∠ s at a pt.)
1 reflex ∠AOC (∠ at centre c e twice ∠ at ☉ ) 2 1 = (360 ° − x ) 2 x =180 ° − 2
∠ABC =
∴ ∠ABC + ∠BCA + ∠BAC =180 ° (∠ sum of △)
x 180 ° − +35 ° + 28 ° =180 ° 2 x =126 ° 6.
Answer: C ∠ BDC = ∠ BAC = 46° ∠ ACB = ∠ ADB
(∠ s in the same segment) (∠ s in the same segment)
=x ∴ ∠PDC +∠PCD +∠CPD =180 ° (∠ sum of △) ( x +46 °) +( 48 °+x ) +34 ° =180 °
x =26 ° 7.
Answer: B
32
Certificate Mathematics in Action Full Solutions 4B Join AD. ∠ ADB = 90° (∠ in semi-circle) ∠ADC +∠ABC =180 ° (opp. ∠ s, (90 °+43 °) +(19 °+ x ) =180 ° x = 28 ° cyclic quad.) 8.
Answer: A
∠DBC + ∠DCB + ∠BDC =180 °
(∠
sum of △)
∠DBC =180 °−83 °−46 ° (arcs prop. to ∠ s =51 ° ce at ☉ )
∠ABD AD = ∠DBC DC 2 ∠ A B D= (5 1° ) 3 = 3 4°
(opp. ∠ s, cyclic quad.)
∠ABC +∠ADC =180 ° (34 °+51 °) +( 46 °+x ) =180 ° x =49 ° 9.
Answer: C
(opp. ∠ s, cyclic quad.)
∠ A D C+ ∠ A B C= 1 8 0°
∠ A D C= 1 8 0° − ∠ A B C(arcsceprop. to ∠ s at ☉ )
∠ A B C m in o rA C = ∠ A D C m ajo rA C ∠ABC 7+ 3 = 1 8 0° − ∠ A B C 6 + 8 5 ∠ A B C= (1 8 0° − ∠ A B C) 7 5 ∠ A B C= × 1 8 0° 12 = 7 5° 10. Answer: B
∠DCB + ∠BAD = 180 ° ∠DCB = 180 ° − 112 ° = 68°
∴
33
OD = OC ∠ ODC = ∠ OCD = 68° ∠ DOC = ∠ ABO =x
(opp. ∠ s, cyclic quad.)
(radii) (base ∠ s, isos. △) (corr. ∠ s, OD // BA)
6 ∴ ∠DOC + ∠ODC + ∠OCD =180 ° sum of △)
Basic Properties of Circles (I)
(∠
x +68 °+68 ° =180 ° x = 44 °
34
Certificate Mathematics in Action Full Solutions 4B 11. Answer: B
(opp. ∠ s, cyclic quad.)
∠ADC + ∠ABC =180 ° ∠ADC =180 ° − x
∠ACD + ∠AED =180 °
(opp. ∠ s, cyclic quad.)
∠ACD =180 ° − y ∠ACD +∠ADC +∠CAD =180 ° ∠ (180 °− y ) +(180 °−x ) +45 ° =180 ° ( x + y = 225 ° sum of △) 12. Answer: A With the notations in the figure, join FC.
∠BFC =∠BAC =a
(∠ s in the same
∠CFD = ∠CED =b
(∠ s in the same
segment)
segment)
For A, x = ∠ BFC + ∠ CFD =a+b For B, if x = y,
then
B C = DA F E
BCD = AFE (equal ∠ s,
equal arcs) which is not always true. For C, ∵ x = a + b and x = y is not always true. ∴ y = a + b is not always true. For D, join BC and CD. ∵ x + ∠ BCD = 180°(opp. ∠ s, cyclic quad.) ∴ x + y = 180° is false. 13. Answer: A
Join BD. ∠ ADB = 90°
35
(∠ in semi-circle)
1 ∠COD 2 1 = × 48 ° 2 = 24 °
∠CBD =
☉ )
(∠ at centre twice ∠ at
ce
x =∠ADB +∠CBD =90 °+24 ° =114 °
(ext. ∠ of △)
6
Basic Properties of Circles (I)
HKMO (p. 54) Let O be the centre of the circle. With the notations in the figure, join OC and OD.
∵
A C= C D= D BAC = CD = DB (given)
∴
∠COA = ∠COD = ∠DOB(equal arcs, equal ∠ s) 1 ×180 ° 3 = 60 °
= Join CD. OC = OD ∴ ∠ OCD = ∠ ODC
(radii) (base ∠ s, isos. △) ∠OCD +∠ODC +∠COD =180 ° (∠ sum of
∠OCD = 60 °
△)
∴ ∠ OCD = ∠ COA ∴ CD // AB (alt. ∠ s equal) Consider △CAD and △COD. ∵ They have the same base and the same height. ∴ Area of △CAD = area of △COD ∴ Shaded area = area of sector OCD
60 ° ×area of circle 360 ° 60 ° 2= ×Q 360 ° Q =12 2=
∴
36