4[1].1 4

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 4[1].1 4 as PDF for free.

More details

  • Words: 3,991
  • Pages: 20
Ex # 4.1 Ta y l o r S e r i e s a n d C a l c u l a t i o n o f Function

Q#01:Let f(x) = Sinx a) use x0=0 and find P5(x), P7(x) and P9(x). solution: ( x 0 )( x − x 0 ) 2 ( x )( x − x0 ) 5 + ..... + f 5 0 → [1] 2! 5! ( x )( x − x0 ) 2 ( x )( x − x 0 ) 7 P7 ( x) = f ( x0 ) + f ′( x 0 )( x − x0 ) + f ′′ 0 + ..... + f 7 0 → [ 2] 2! 7! 9 ( x 0 )( x − x 0 ) 2 9 ( x 0 )( x − x 0 ) P9 ( x) = f ( x0 ) + f ′( x 0 )( x − x0 ) + f ′′ + ..... + f → [ 3] 2! 9! P5 ( x) = f ( x0 ) + f ′( x 0 )( x − x0 ) + f ′′

Given: f ( x) = sin x f ′( x) = cos x f ′′( x) = − sin x f ′′′( x) = − cos x f 4 ( x ) = sin x f 5 ( x ) = cos x f 6 ( x) = − sin x f 7 ( x) = − cos x f 8 ( x ) = sin x f 9 ( x) = cos x

f (0) = 0 f ′(0) = 1 f ′′(0) = 0 f ′′′(0) = −1 f 4 (0) = 0 f 5 (0) = 1 f 6 (0) = 0 f 7 (0) = −1 f (0) = 0 f ′(0) = 1

By putting all values in eq-1 we get,

0( x − 0) 2 (−1)( x − 0) 3 0( x − 0) 4 1( x − 0) 5 p5 ( x) = 0 + 1( x − 0) + + + + 2! 3! 4! 5! 3 5 x x p5 ( x) = x − + 3! 5! eq 2 => x 3 x 5 0( x − 0) 6 (−1)( x − 0) 7 p7 ( x) = x − + + + 3! 5! 6! 7! 3 5 7 x x x p7 ( x) = x − + − 3! 5! 7! eq3 => x 3 x 5 x 7 0( x − 0) 8 (1)( x − 0) 9 + − + + 3! 5! 7! 8! 9! 3 5 7 x x x p9 ( x) = x − + − 3! 5! 7! p9 ( x) = x −

b) show that if x<=1 then x3 x5 x7 x9 sin( x) ≈ x − + − + has the bound error 3! 5! 7! 9! E 9 (x) < 1 10!≤ 2.75574 * 10 −7 Solution : we have f ( x +1) (c )( x − x 0 ) n +1 E n ( x) = (n + 1)! f 10 (c)( x − 0)10 → (1) 10! f 10 ( x) = − sin x

E9 ( x ) =

| f 10 (c) |=| − sin c | f 10 (c = 1) = sin(1) = 0.017452406 EQ1 => 0.017452406(1 − 0)10 10! = 0.00000004809

E9 =

Q#02:Let f(x) = Cosx a) use x0=0 and find P4(x), P6(x) and P8(x). solution: ( x0 )( x − x0 ) 2 ( x )( x − x0 ) 4 + ..... + f 5 0 → [1] 2! 4! 6 ( x0 )( x − x0 ) 2 7 ( x0 )( x − x0 ) P6 ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + f ′′ + ..... + f → [ 2] 2! 6! ( x )( x − x0 ) 2 ( x )( x − x0 )8 P8 ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + f ′′ 0 + ..... + f 9 0 → [ 3] 2! 8! P4 ( x ) = f ( x0 ) + f ′( x0 )( x − x0 ) + f ′′

Given: f ( x) = cos x f ′( x) = − sin x f ′′( x) = − cos x f 3 ( x ) = sin x f 4 ( x) = cos x f 5 ( x) = − sin x f 6 ( x) = − cos x f 7 ( x) = sin x f 8 ( x ) = cos x

f (0) = 1 f ′(0) = 0 f ′′(0) = −1 f 3 (0) = 0 f 4 (0) = 1 f 5 (0) = 0 f 6 (0) = 1 f (0) = 0 f 8 (0) = 1

By putting all values in eq-1 we get,

(−1)( x − 0) 2 0( x − 0) 3 1( x − 0) 4 p 4 ( x ) = 1 + 0( x − 0) + + + 2! 6! 24! 2 4 x x p 4 ( x) = 1 − + 2! 24! eq 2 => (−1)( x − 0) 2 0( x − 0) 3 1( x − 0) 4 0( x − 0) 5 (−1)( x − 0) 6 p 6 ( x) = 1 + 0( x − 0) + + + + + 2! 6! 24! 5! 6! 2 4 6 x x x p 6 ( x) = 1 − + − 2 24 6! eq3 => x 2 x 4 x 6 0( x − 0) 7 1( x − 0) 8 + − + + 2! 4! 6! 7! 8! 2 4 6 8 x x x x p9 ( x) = 1 − + − + 2 24 6! 8! p9 ( x) = 1 −

b) show that if |x| <=1 then the approximation

x 2 x 4 x6 x8 cos( x ) ≈ 1 − + − + has the bound error 2! 4! 6! 8! E 8 (x) < 1 9!≤ 2.75574 * 10 −6 Solution : we have E n ( x) =

f ( n +1) (c)( x − x 0 ) n +1 (n + 1)!

f 10 (c)( x − 0) 9 → (1) 9! f 9 ( x) = − sin x

E8 ( x ) =

| f 9 (c ) |=| − sin c | f 9 (c = 1) = sin(1) = 0.017452406 EQ1 => 0.017452406(1 − 0) 9 9! = 0.00000004809

E9 =

C ) use x 0 = π / 4 and find P4(x), which involves power of (x - π / 4). Solution : 4 ( x0 )( x − xo ) 2 4 ( x 0 )( x − x 0 ) P4 ( x) = f ( x0 ) + f ′( x 0 )( x − xo ) + f ′′ + ...... + f → (1) 2! 4! f ( x ) = sin x f ( π / 4) = 1 2

=

1 2

+

1 2

( x − π / 4) +

(−

1 2

)( x − π / 4) 2

(− +

2!

1 2

)( x − π / 4) 3

(

1

+

3!

2

)( x − π / 4) 4 4!

1  ( x − π / 4) 2 ( x − π / 4) 3 ( x − π / 4) 4  1 + ( x − π / 4 ) − − +   2! 3! 4! 2  3 2 Q#06 : Taylor Polynomial N = 3 P3 ( x) for f(x) = x − 2 x + 2 x expanded about x 0 = 1 also =

show that f ( x) = P3 ( x). Solution : we know that P3 ( x ) = f ( x0 ) + f ′( x 0 )( x − x 0 ) + f

2 ( x0 )( x − x0 ) ′′

2!

Given : f ( x) = x3 − 2x 2 + 2x

f (1) = 1

2

f ′(1) = 1 f ′′(1) = 2

f ′( x ) = 3 x − 4 x + 2 f ′′( x ) = 6 x − 4 f 3 ( x) = 6

f 3 (1) = 6

putting all values in eq1 x( x − 1) 6( x − 1) P3 ( x ) = 1 + 1( x − 1) + + 2! 3! 2 3 = 1 + x − 1 + x − 2 x + 1 + x − 3x 2 + 3x − 1 2

= x 3 − 2 x 2 + 2 x = f ( x)

3

+ f ′′

( x0 )( x − x0 ) 3!

→ (1)

Q#04 : Taylor series N = 5 for f(x) = 1/(1 - x) expanded about x 0 = 0. Solution : we know that P5 ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + f ′′ Given : f ( x ) = 1 /(1 − x)

5!

→ (1)

f ′′( 0 ) = 2

f 3 ( 0 ) = −6

−4

3

( x0 )( x − x0 ) 5

f ′(0) = −1

−3

( x ) = −6(1 + x) 4 f ( x ) = 24(1 + x) −5 −6 f 5 ( x) = −120(1 + x ) f

2!

+ ....... + f ′′

f ( 0) = 1

f ′( x ) = −1 /(1 − x) − 2 f ′′( x ) = 2(1 + x)

( x0 )( x − x0 ) 2

f 4 (0) = 24 f 5 ( 0 ) = −120

putting all values in eq1 2( x − 1) 6( x − 1) 24( x − 0) 4 120( x − 0) + + − 2! 3! 4! 5! 2 3 4 5 =1− x + x − x + x − x

P5 ( x ) = 1 − 1( x − 0 ) +

2

3

Q#05 : Find Taylor Polynomial of degree N = 3 for f(x) = e − x

2

/2

5

expanded about x0 = 0.

Solution : we know that P3 ( x) = f ( x0 ) + f ′( x 0 )( x − x 0 ) + f ′′

( x0 )( x − x0 ) 2 2!

+ f3

( x0 )( x − x0 ) 3

Given : f ( x) = e −x

2

f ′( x ) = − xe

− x2 / 2

f ′′( x ) = x e

−x2 / 2

2

f

3

( x) = − x

f ( 0) = 1

/2

f ′(0) = 0 −e

3 −x2 / 2

e

f ′′( 0 ) = −1

− x2 / 2

+ 2 xe

f 3 ( 0) = 0

−x2 / 2

putting all values in eq1 0( x − 0 ) ( − 1)( x − 0 ) 0( x − 0 ) + + 1! 2! 3! 2 x =1− 2

P5 ( x ) = 1 +

2

3

3

→ (1)

Q#08 : Given function is f ( x ) = ( 2 + x )

1/ 2

a) Find Taylor Polynomial of degree N = 3 expanded about x0 = 2. Solution : we know that P3 ( x) = f ( x0 ) + f ′( x 0 )( x − x 0 ) + f ′′

( x0 )( x − x0 ) 2 2!

+ f3

( x0 )( x − x0 ) 3

Given : f ( x) = ( 2 + x)

f ( 2) = 2

1/ 2

f ′( x ) = 1 / 2( 2 + x )

−1 / 2

f ′′( x ) = −1 / 4( 2 + x ) f

3

( x ) = 3 / 8( 2 + x )

f ′( 2) = −1 / 4 f ′′( 2 ) = −1 / 32

−3 / 2

f 3 ( 2 ) = 3 / 256

−5 / 2

putting all values in eq1 1( x − 2 ) 1( x − 2 ) 3( x − 2 ) + + 4 64 1536 2 ( x − 2) − ( x − 2) + ( x − 2) 3 = 2− 4 64 512 2

P3 ( x ) = 2 +

3

b) use P3 ( x ) to find an approx. to 31/2. Solution : Putting x = 1.

( 2 + x)

1/ 2

2 3 ( ( x − 2) ( x − 2) x − 2) = 2− − +

4 64 512 2 3 ( 2 + 1) 1 / 2 = 2 − (1 − 2) − (1 − 2) + (1 − 2) 4 64 512 1 1 1 = 2+ − − 4 64 512 31 / 2 = 1.732421875 Approx. 3 = 1.732050808

True

3

→ (1)

c) Max value | f

4

( C) | on the interval 1 ≤ C ≤ 3 find a bound for | E 3 ( x ) | .

Solution :

f

4

( x ) = − 15 (2 + x) −7 / 2

16 15 −7 / 2 | f 4 ( C ) |= ( 2 + C ) 16 15 −7 / 2 | f 4 ( C = 1) |= ( 2 + 1) = 0.020046 16 15 −7 / 2 | f 4 ( C = 3) |= ( 2 + 3) = 0.003354 16 n +1 f n +1 ( c )( x − x 0 ) En ( x) = ( n + 1)! E3 ( x ) =

f

4

( c )( x − x0 ) 4

4! 4 0.020046(1 − 2 ) E3 ( x ) = 4! E3 ( x ) = 0.00083525

Ex # 4.3

Lagrange Approximation EX#4.3 (Page 216) Q1: Find Lagrange polynomials that approx. f (x) = x^3. a) Find the linear interpolation polynomial Pi(x) using nodes Xo= -1 and X1= 0. We have P1(x) = L0y0 + L1y1 P1(x) = (x-x1) y0 + (x-x0) y1 x0-x1 x1-x0 x-(0) y0 + x-(-1) y1 -1-0 0-(-1) -x (-1) + (x+1)(0) P1(x) = x b) Find the quadratic interpolation polynomial P2(x) using the nodes x0 = -1, x1 =-1, and x2 = 1. We have P2(x) = (x – x1) (x – x2) y0 + (x – x0) ( x – x2) y1 + (x- x0) (x-x1) y2 (x0 – x1) (x0 – x2) (x1 – x0) (x1 – x2) (x2 – x0) (x2 – x1) = ( x- 0) (x – 1) (-1) + (x+1)(x-1) (0) + (x+1) (x-0) (1) (-1-0)(-1-1) (0+1)(0-1) (1+1) (1-0) = x (x-1) (-1) + 0 + (x+1) (x) 2 2 = 1 [ -x^2 + x+ x^2 +x] 2

= P2(x) = x

Ans

c) Find the cubic interp. Polynomial using the nodes x0 = -1 , x1 = 0, x2 = 1, and x3 = 2 We have P3 (x) = ( x – x1) (x-x2) (x-x3) y0 + (x-x0) (x-x2) (x-x3) y1 + (x0 –x1) (x0 – x2) (x0-x3) (x1-x0) (x1-x2) (x1-x3) ( x-x0)(x-x1) (x-x3) y2 + (x-x0) (x-x1) (x-x2) y3 (x2-x0) (x2-x1) (x2-x3) (x3-x0) (x3-x1) (x3-x2) = (x-0) (x-1) (x-2) (-1) + (x=1) ( x + 1) (x-1)(x-2) ( 0) + (1-0) (1-1) (1-2) (0+1) (0-1) (0-2) = (x+1) (x-0) (x-2) (1) + (x+1) (x-0) (x-1) (8) (1+1) (1-0) (1-2) (2+1) (2-0) (2-1) = -x (x2-2x) – x+2) + 0 + x(x2-2x+x-2) + 0 -2 = 8x (x2 – 1) 6 = 0+0 – x3 + 2x^2 – x^2 +2x + 8x^3 – 8x 1 6 = -3x^3 + 6x^2 – 3x^2+6x+8x^3+8x 6 = 5x^3 + 3x^2 – 2x 6

Ans

d) Find the Linear interpolation polynomial P1(x) using the nodes x0 = 1, x1 = 2 Same as a) Q2: Let f(x) = x +2/x a) use quadratic Lagrange interpolation based on the nodes x0 = 1, x1 = 2 and x2 = 2.5 to approximation f(1.5) and f(1.2)

We have P2 (x) = (x-x1) (x-x2) y0 + (x-x0) (x-x2) y1 + (x-x0) (x-x1) y2 (x0-x1) (x0-x2) (x1-x0)(x1-x2) (x2-x0) (x2-x1) = (x-2) (x-2.5) y0 + (x-1)(x-2.5) (3) y + 1.5 -0.5 = (x-1) (x-2) (3.3) 0.75 = (x^2-2.5x-2x+5) 3 - (x^2-2.5x – x+2.5) 3 + (x^2-2x-x+2)3.3 1.5 0.5 0.75 = 3x^2 – 13.5x +15 – 3x^2 -10.5x+7.5 + 3.3x^2 – 6.6x- 3.3x+6.6 1.5 0.5 0.75 = 3x^2 – 13.5x +15 – 9x^2 +31.5x – 22.5 + 6.6x^2 – 19.8x+13.2 1.5 P2(x)= 0.6x – 1.8x + 5.7 1.5

Ans

f(1.5) = ? P=(1.5) = 0.6(1.5)^2-1.8(15)+5.7/1.5 = 1.35 -2.7+5.7/1.5 P2 (1.5) = 2.9 Ans F (1.2) = ? P2(1.2) = 0.6(1.2)^2-1.8(1.2)+5.7/1.5 P2 (1.2) = 2.936 Ans

B Use cubic language interpalation. Nodes are x0 = 0.5, x1 = 1, x2 = 2 , r x3 = 2.5 to approx f (1.5) & f (1.2) Solution P3 (x) = (x – x1) ( x – x2) (x – x3) y 0 + (x – x0) ( x – x2) (x – x3) y1 + (x0 – x1) (x – x2) (x – x3) (x1– x0) (x1 – x2)(x1– x3) (x – x0) ( x – x1) (x – x3) y 2 + (x – x0) ( x – x1) (x – x2) y3 + (x2 – x0) (x2 – x1) (x2 – x3) (x3 – x0) (x3 – x1)(x3– x2) =

(x – 1) ( x – 2) (x – 2.5 ) (4.5) + (x – 0.5) ( x – 2) (x – 2.5) 3 + (0.5 – 1) (0.5 – 2)(0.5 – 2.5) (1– 0.5) (1 – 2) (1 – 2.5) (x – 0.5) ( x – 1) (x – 2.5 ) (3) + (x – 0.5) ( x – 2) (x – 2.5) 3.3 + (2 – 0.5) (2 – 2) (2 – 2.5) (2.5 – 0.5) (2.5 – 1) (2.5 - 2)

=

x3 – 4x2 + 4.25x – 1.25 -1.5

+ 3 (x - 0.5) (x – 2) ( x – 2.5) 0.75

+

0

3.3x2 – 3.3x -1.65x + 1.6 ( x – 2 ) 1.5 =

-x3 – 4x2 - 4.25x – 1.25 + 6x3 – 28x2– 30.5x+3.3x3-11.55x2+11.55-3.3 1.5

=

8.3x3 – 35.55x2 – 23.2x – 7.05 1.5

+

Q # 03 F (x) = 2 Sin ( 3.14 x / 6 )

‘ x ‘ is in radians.

a) Use quadratic language interpolation. Nodes are x0 = 0, x1 = 1, x2 = to approx f (2) & f (2.4). P2 (x) = L0 y0 + L1 y1 +L2 y2 P2 (x) = (x - x1) (x - x2) (x2 -x1) (x2 -x2)

y0 + (x - x0) (x - x2) y1 + (x - x0) (x - x0) y2 (x1 -x0) (x1-x2) (x2 -x0) (x2 -x1)

= (x - 1) (x - 3) (0 -1) (0 – 3)

y0

+

(x - 0) (x - 3) (1 - 0) (1 - 3)

y1 + (x - 0) (x - 1) y2 (3 - 0) (3 - 1)

= (x - 1) (x - 3) 3

(0)

+

x (x - 3) -2

(1)

= - 3^2 + 9x + x^2 - x 6 = -2 x^2+ 8x 6 P2(x) = -x^2+4(2) 3 = 1.333333333 Ans f(2) = ? P2(2) = -(2.4)^2 + 4(2.4) 3

+ x - (x - 1) (1) 6

P2 (2.4) = 1.28 Ans

b) Use cubic Lagrange interpolation based on the nodes x0 = 0, x1 = 1, x2 = 3, x3 = 5 to approx f(2) and f(2.4)

P3 (x) = L0y0 + L1y1 + L2y2 + L3 y3 = (x-x1) (x-x2) (x-x3) y0 + (x-x0) (x-x2) (x-x3) y1 + (x0-x1) (x0-x2) (x0-x3)

(x1-x0) (x1-x2) (x1-x3)

= (x-x0) (x-x1) (x-x3) y2 + (x-x0) (x-x1) (x-x0) y3 (x2-x0) (x2-x1) (x2-x3)

(x3-x0) (x3-x1) (x3-x2)

= (x-x1) (x-3) (x-5) (0) + (x-0) (x-3) (x-5) (1) + (0-1) (0-3) (0-5)

(1-0) (1-3) (1-5)

= (x-0) (x-1) (x-5) (1) + (x-0) (x-1) (x-3) (0.5) (3-0) (3-1) (3-5)

(5-0) (5-1) (5-3)

= x^3-8^2+15x – 3x^3 + 18x^2 – 15x +5x+ 5x^3 – 20x^2+15x 4 = 4x^3 – 18 x^2 +30x / 4 = 2x^3 – 9 x^2 +15x / 2 Ans for f(2)= ? f(2) = 2(2)^3 – 9 (2)^2 + 15 (2) / 2 f(2) = 5 Ans for f (2.4) = ? f(2.4) = 2 (2.4)^3 – 9 (2.4) +15 (2.4) / 2

= 27.648 -21.6+36 / 2 f(2.4) = 21.024 Ans Q5: Write down the erroe term E3 (x) for cubic lagrange interpolation to f(x) , nodes are x0 =-1, x1= 0 , x2=3 and x3 = 4 a) given f(x) is , f(x) = 4x3 – 3x + 2 E3 (x) = (x-x0) (x-x1) (x-x2) (x-x3) f ‘ ‘ ‘ ‘ (c) ---- (1) 4! F^4 (x) = 0 F^4 © = 0 = (x+1) (x-0) (x-3) (x-4) (0) 4x3x2x1 E3 (x) = 0 Ans

C) x^ 5 – 5x^ 4 E3(x) = (x-x0) (x-x1) (x-x2) (x-x3) f ‘ ‘ ‘ ‘ (c) ---- (1) F ’ ‘ ‘ ‘ (x) = 120 (x-1) F ‘ ‘ ‘ ‘ = 120 (c – 1) Equ > E3(x) =(x+1) (x-0) (x-3) (x-4) 120 (c – 1) 24 e3(x) = 5 (x+1) x (x-3) (x-4) (c-1) Answer

Let f(x) = X^x a)find the quadratic Lagrange polynomial P2 (x) using nodes x0 = 1, x1 = 1.25) and x2=1.5 P2 (x) = L0y0 + L1y1 + L2y2 = (x-x1) (x-x2)

y0 + (x-x0) (x-x2)

(x0-x1) (x0-x2)

y1 + (x- x0)

(x1-x0) (x1-x2)

(x-x1)

y2

(x2-x0) (x2-x1)

= (x -1.25) (x -1.5) (1) + (x – 1) (x -1.5) (1.321714) (1 - 1.25) (1 -1.5)

= ( x – 1) ( x – 1.25)

(1.25 -1) (1.25 – 1.5)

(1.8371173)

(1.5 – 1)(1.5-1.25) = x^– 1.5x – 1.25x +1.875 + x^ -1.5x – x – 1.5 (1.32) + x^ +1.25x+x+1.25 (1.83) -0.125 = x^ - 2.75x + 1.875

-0.0625

0.125

+ 1.33x^ - 3.325x – 1.995 + 1.84x^- 4.14x + 2.3

-0.125

-0.0625

0.125

= x^ - 2.75x + 1.875+1.33x^ - 3.325x – 1.995 + 1.84x^- 4.14x + 2.3 0.125

= 0.175x^ + 0.2725x – 0.5725 0.125 P2 ( x ) = 1.4 x^ + 2.18 x – 4.58 b) Use the polynomial from part (a) to estimate the avg value of f(x) over the internal ( 1, 1.5)

Solution Taking f(1.3) = ? f(1.3) = 1.4 (1.3)^ + 2.18 (1.3) - 4.58 = 2.366 + 2.834 – 4.58 f(1.3) = 0.62 Answer Q 10: f(x) on the interval [ 0,1] Determine the step size L, so that linear Lagrange interpolation has an accuracy of 10^-6 ( search dat (E, (x) < 5 x 10 ^-7) We have [ E , (x) ] < h^2 M^2 ----- (1) 8 M2 = ? M2 = [ f ‘ ‘ x] Equ 1 : f ‘ ‘ (x) = [ - sin x ] = sin 9 (1) from internal = 0.84147098 eq1 : 5x 10^-7 < h^2 (0.84147098) 8

Ans

c) quadratic Lagrange polynomial E2 (x) < 5x10^-7 We have E2 (x) < h^3 M3 ---- (1) 9 square root of 3 M3 = f^3 (x) = ? [f ^3 (x) ] =[ -co s x] = cos (0.5) = 0.99996192 Eq1 :

5x10^-7 < h^3 (0.99996192) 9 square root of 3

Answer

Related Documents

Dreamdelay.411
May 2020 23
Manga Naruto 411
April 2020 6
Par Is 411
October 2019 13
Informativo Stj 411
June 2020 4
Ap 411 Prospectiva 2009
December 2019 12