IMrtlVIt
2-4 Absolute Value in Open Sentences (continued) Example 3
Solve |4* — 51 > 9 and graph its solution set.
Solution
Write 14* — 5| > 9 as the equivalent disjunction:
4* - 5 < -9 4* < -4 * < -1
4*-5>9 4* > 14
or or or
H r-e-H - 2 - 1 0 1 2 3 4
.'. the solution set is *: * < — 1 or * > — <-
2J
Check: Test a point in each of the shaded regions and a point between them. Try* = -2: |4(-2) - 5| = |-8 - 5| = | - 13| = 13 > 9 True V Try* = 4: |4 • 4 - 5| = |16 - 5| = |ll| = 11 > 9 True V Try* = 0: |4 • 0 - 5| = |0 - 5| = | -5| = 5 > 9 False V
Example 4
Solve 15 — 2* - 1 < 2 and graph its solution set.
Solution
Rewrite the inequality so that the absolute value is alone on one side. |5 - 2*| - 1 < 2 |5 - 2*| < 3 Write 5 - 2 * | < 3 as the equivalent conjunction: -3 < 5 - 2* < 3 -8 < -2* < -2 4 > * > 1 .'. the solution set is {*: 1 < * < 4). 1 }
-
1
0
1
2
3
4
5
Check: Test a point in the shaded region and a point on either side of it. Try* - 2: |5 - 2 • 2| = |5 - 4| = |l| = 1 < 3 True V Try* = 0: 5 - 2 • 0| = 5 - 0| = |5| = 5 < 3 False V Try* = 5: 5 - 2 • 5| = |5 - 10| = | -5 = 5 < 3 False V Solve and graph the solution set.
13. 17. 21. 25. 29. 33.
26
\r > 2 \g - 4| > 2 6 < \2m - 3| |2n + 3| > -2 |4 - 3*| > 5 2 2
** > 1 3*
14. \k\ < 5 18. |z - 1| < 2 22. \3h + 1 > 5 26. |2 - q\ > 5 30. |6 - 4w\ > 2
34.
m +1 2
T^ "
15. |-3m| > 0 19. 0 > |* - 7|
16. |/ + 2| > 3
23. \5p - 4| < 1
20. 12? + 1| < 5 24. |3* - 2| < 4
27. |3 - a\ i= 2 31. |6 - 7c| < -1
28. |1 - 26| < 3 32. |3 - 0.4y| < 7
«Jw •
«^\*»
I I
T
-ii
^v _/
|f
i
A
^
~^»
l.
Study Guide, ALGEBRA AND TRIGONOMETRY, Structure and Method, Book 2 Copyright © by Houghton Mifflin Company. All rights reserved.